Maurício Reis Bogo

Faculdade Dom Bosco de Porto Alegre, Pôrto de São Francisco dos Casaes, Rio Grande do Sul, Brazil

Are you Maurício Reis Bogo?

Claim your profile

Publications (144)397.17 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Maple syrup urine disease (MSUD) is caused by an inborn error in metabolism resulting from a deficiency in the branched-chain α-keto acid dehydrogenase complex activity. This blockage leads to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine and valine, as well as their corresponding α-keto acids and α-hydroxy acids. High levels of BCAAs are associated with neurological dysfunction and the role of pro- and mature brain-derived neurotrophic factor (BDNF) in the neurological dysfunction of MSUD is still unclear. Thus, in the present study we investigated the effect of an acute BCAA pool administration on BDNF levels and on the pro-BDNF cleavage-related proteins S100A10 and tissue plasminogen activator (tPA) in rat brains. Our results demonstrated that acute Hyper-BCAA (H-BCAA) exposure during the early postnatal period increases pro-BDNF and total-BDNF levels in the hippocampus and striatum. Moreover, tPA levels were significantly decreased, without modifications in the tPA transcript levels in the hippocampus and striatum. On the other hand, the S100A10 mRNA and S100A10 protein levels were not changed in the hippocampus and striatum. In the 30-day-old rats, we observed increased pro-BDNF, total-BDNF and tPA levels only in the striatum, whereas the tPA and S100A10 mRNA expression and the immunocontent of S100A10 were not altered. In conclusion, we demonstrated that acute H-BCAA administration increases the pro-BDNF/total-BDNF ratio and decreases the tPA levels in animals, suggesting that the BCAA effect may depend, at least in part, on changes in BDNF post-translational processing.
    Neurochemical Research 02/2015; · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Imbalances in glutamatergic signaling have been proposed as the cause of several neurological disturbances. The use of MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist, to mimic features of these neurological disorders is effective both in mammals and in fish. However, the variability of the subunits comprising the NMDA receptor during development alters the pharmacokinetic properties of the receptor and leads to different responses to this drug. Here, we evaluated the locomotor response of zebrafish to MK-801 (1, 5, and 20 μM) through the development (30 days postfertilization [dpf] to 2 years postfertilization [ypf]). The NMDA receptor subunit gene expression was also analyzed through the development (7 dpf to 2 ypf). Zebrafish displayed an age-related response to MK-801 with a higher response at 60 and 120 dpf. The magnitude of hyperlocomotion promoted by MK-801 seems to be less powerful for zebrafish in relation to rodents. The verification of expression levels in zebrafish NMDA receptor subunits shows that NR1.1 had a slight reduction throughout the development, while the NR2 subunits, especially NR2A.2 and NR2C.1, vary their expression levels according to the stage of development. The time-specific locomotor response to MK-801 through the development could be a consequence of differential NMDA receptor subunit expression. This result of developmental response to MK-801 is a crucial component in the consolidation of zebrafish as a suitable model to study glutamatergic neurotransmission in early phases.
    Zebrafish 01/2015; · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Adenosine is a well-known endogenous modulator of neuronal excitability with anticonvulsant properties. Thus, the modulation exerted by adenosine might be an effective tool to control seizures. In this study, we investigated the effects of drugs that are able to modulate adenosinergic signaling on pentylenetetrazole (PTZ)-induced seizures in adult zebrafish. The adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) decreased the latency to the onset of the tonic-clonic seizure stage. The adenosine A1 receptor agonist cyclopentyladenosine (CPA) increased the latency to reach the tonic-clonic seizure stage. Both the adenosine A2A receptor agonist and antagonist, CGS 21680 and ZM 241385, respectively, did not promote changes in seizure parameters. Pretreatment with the ecto-5'nucleotidase inhibitor adenosine 5'-(α,β-methylene) diphosphate (AMPCP) decreased the latency to the onset of the tonic-clonic seizure stage. However, when pretreated with the adenosine deaminase (ADA) inhibitor, erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA), or with the nucleoside transporter (NT) inhibitors, dipyridamole and S-(4-Nitrobenzyl)-6-thioinosine (NBTI), animals showed longer latency to reach the tonic-clonic seizure status. Finally, our molecular analysis of the c-fos gene expression corroborates these behavioral results. Our findings indicate that the activation of adenosine A1 receptors is an important mechanism to control the development of seizures in zebrafish. Furthermore, the actions of ecto-5'-nucleotidase, ADA, and NTs are directly involved in the control of extracellular adenosine levels and have an important role in the development of seizure episodes in zebrafish.
    Zebrafish 01/2015; · 2.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is a debilitating neurodevelopmental disorder that is associated with dysfunction in the cholinergic system. Early prevention is a target of treatment to improve long-term outcomes. Therefore, we evaluated the preventive effects of omega-3 fatty acids on AChE activity in the prefrontal cortex, hippocampus and striatum in an animal model of schizophrenia. Young Wistar rats (30 days old) were initially treated with omega-3 fatty acids or vehicle alone. Animals received ketamine to induce an animal model of schizophrenia or saline plus omega-3 fatty acids or vehicle alone for 7 consecutive days beginning on day 15. A total of 22 days elapsed between the treatment and intervention. Animals were sacrificed, and brain structures were dissected to evaluate AChE activity and gene expression. Our results demonstrate that ketamine increased AChE activity in these three structures, and omega-3 fatty acids plus ketamine showed lower values for the studied parameters, which indicates a partial preventive mechanism of omega-3 fatty acid supplementation. We observed no effect on AChE expression. Together, these results indicate that omega-3 fatty acid supplementation effectively reduced AChE activity in an animal model of schizophrenia in all studied structures. In conclusion, the present study provides evidence that ketamine and omega-3 fatty acids affect the cholinergic system, and this effect may be associated with the physiopathology of schizophrenia. Further studies are required to investigate the mechanisms that are associated with this effect. Copyright © 2014. Published by Elsevier Inc.
    Life Sciences 12/2014; 121. · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypermethioninemic patients may exhibit different neurological dysfunctions, and the mechanisms underlying these pathologies remain obscure. Glutamate and ATP are important excitatory neurotransmitters co-released at synaptic clefts, and whose activities are intrinsically related. Adenosine-the final product of ATP breakdown-is also an important neuromodulator. Here, we investigated the effects of long-term (7-day) exposure to 1.5 or 3 mM methionine (Met) on glutamate uptake in brain tissues (telencephalon, optic tectum, and cerebellum) and on ATP, ADP, and AMP catabolism by ecto-nucleotidases found in brain membrane samples, using a zebrafish model. Also, we evaluated the expression of ecto-nucleotidase (ntdp1, ntdp2mg, ntdp2mq, ntdp2mv, ntdp3, and nt5e) and adenosine receptor (adora1, adora2aa, adora2ab, adora2b) genes in the brain of zebrafish exposed to Met. In animals exposed to 3.0 mM Met, glutamate uptake in the telencephalon decreased significantly. Also, ATP and ADP (but not AMP) catabolism decreased significantly at both Met concentrations tested. The messenger RNA (mRNA) levels of ntpd genes and of the adenosine receptors adora1 and adora2aa increased significantly after Met exposure. In contrast, adora2ab mRNA levels decreased after Met exposure. Our data suggest that glutamate and ATP accumulate at synaptic clefts after Met exposure, with potential detrimental effects to the nervous system. This phenomenon might explain, at least in part, the increased susceptibility of hypermethioninemic patients to neurological symptoms.
    Molecular Neurobiology 11/2014; · 5.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rat dams were treated with caffeine during the entire gestation.•The chronic exposure of caffeine during gestation and breastfeeding is involved in behavioral and biochemical alterations.•Chronic maternal exposure to caffeine promotes important alterations in neuromotor development.•Maternal caffeine intake to interfere on cholinergic neurotransmission during brain development.
    Brain Research 11/2014; · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background and purposeSpinal voltage-gated calcium channels (VGCC) are pivotal regulators of painful and inflammatory alterations, representing attractive therapeutic targets. We examined the effects of epidural administration of the P/Q- and N-type VGCC blockers Tx3-3 and Phα1β, respectively, isolated from the spider P. nigriventer, on symptomatic, inflammatory and functional changes allied to mouse cyclophosphamide (CPA)-induced haemorrhagic cystitis (HC). The effects of P. nigriventer-derived toxins were compared to those displayed by MVIIC and MVIIA, extracted from the cone snail C. magus.Experimental approachHC was induced by a single intraperitoneal injection of CPA (300 mg/kg). Dose- and time-related effects of spinally-administered P/Q and N-type VGCC blockers were assessed on nociceptive behaviour and macroscopic inflammation elicited by CPA. The effects of toxins were also evaluated on cell migration, cytokine production, oxidative stress, functional cystometry alterations, and TRPV1, TRPA1 or NK1 mRNA expression.Key resultsThe spinal blockage of P/Q-type VGCC by Tx3-3 and MVIIC, or N-type VGCC by Phα1β attenuated nociceptive and inflammatory events associated with HC, including bladder oxidative stress and cytokine production. CPA produced a slight increase of bladder TRPV1 and TRPA1 mRNA expression, which was reversed by all the tested toxins. Noteworthy, Phα1β strongly prevented bladder neutrophil migration, besides HC-related functional alterations, and its effects were potentiated by co-injecting the selective NK1 receptor antagonist CP-96345.Conclusions and implicationsOur results shed new lights on the role of spinal P/Q and N-type VGCC in bladder dysfunctions, pointing out Phα1β as a promising alternative for treating complications associated to CPA-induced HC.
    British Journal of Pharmacology 10/2014; 172(3). · 5.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Paraquat (PQ) is an agrochemical agent commonly used worldwide, which is allied to potential risks of intoxication. This herbicide induces the formation of reactive oxygen species (ROS) that ends up compromising various organs, particularly the lungs and the brain. This study evaluated the deleterious effects of paraquat on the central nervous system (CNS) and peripherally, with special attempts to assess the putative protective effects of the selective CXCR2 receptor antagonist SB225002 on these parameters. PQ-toxicity was induced in male Wistar rats, in a total dose of 50 mg/kg, and control animals received saline solution at the same schedule of administration. Separate groups of animals were treated with the selective CXCR2 antagonist SB225002 (1 or 3 mg/kg), administered 30 min before each paraquat injection. The major changes found in paraquat-treated animals were: decreased body weight and hypothermia, nociception behavior, impairment of locomotor and gait capabilities, enhanced TNF-α and IL-1β expression in the striatum, and cell migration to the lungs and blood. Some of these parameters were reversed when the antagonist SB225002 was administered, including recovery of physiological parameters, decreased nociception, improvement of gait abnormalities, modulation of striatal TNF-α and IL-1β expression, and decrease of neutrophil migration to the lungs and blood. Taken together, our results demonstrate that damage to the central and peripheral systems elicited by paraquat can be prevented by the pharmacological inhibition of CXCR2 chemokine receptors. The experimental evidence presented herein extends the comprehension on the toxicodynamic aspects of paraquat, and opens new avenues to treat intoxication induced by this herbicide.
    PLoS ONE 08/2014; 9(8):e105740. · 3.53 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes mellitus, which causes hyperglycemia, affects the central nervous system and can impairs cognitive functions, such as memory. The aim of this study was to investigate the effects of hyperglycemia on memory as well as on the activity of acethylcholinesterase. Hyperglycemia was induced in adult zebrafish by immersion in glucose 111mM by 14 days. The animals were divided in 4 groups: control, glucose-treated, glucose-washout 7-days and glucose-washout 14-days. We evaluated the performance in inhibitory avoidance task and locomotor activity. We also determined acethylcholinesterase activity and gene expression from whole brain. In order to counteract the effect of hyperglycemia underlined by effects on acethylcholinesterase activity, we treated the animals with galantamine (0.05ng/g), an inhibitor of this enzyme. Also we evaluated the gene expression of insulin receptor and glucose transporter from zebrafish brain. The hyperglycemia promoted memory deficit in adult zebrafish, which can be explained by increased AChE activity. The ache mRNA levels from zebrafish brain were decrease in 111mM glucose group and returned to normal levels after 7 days of glucose withdrawal. Insulin receptors (insra-1, insra-2, insrb-1 and insrb-2) and glut-3 mRNA levels were not significantly changed. Our results also demonstrated that galantamine was able to reverse the memory deficit caused by hyperglycemia, demonstrating that these effects involve modulation of AChE activity. These data suggest that the memory impairment induced by hyperglycemia is underlined by the cholinergic dysfunction caused by the mechanisms involving the control of acetylcholinesterase function and gene expression.
    Behavioural brain research 08/2014; · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study investigated the effects of pharmacological spinal inhibition of voltage-gated calcium channels (VGCC) in mouse pruritus. The epidural administration of P/Q-type MVIIC or PhTx3.3, L-type verapamil, T-type NNC 55-0396 or R-type SNX-482 VGCC blockers failed to alter the scratching behavior caused by the PAR-2 activator trypsin, injected into the mouse nape skin. Otherwise, trypsin-elicited pruritus was markedly reduced by the spinal administration of preferential N-type VGCC inhibitors MVIIA and Phα1β. Time-course experiments revealed that C. magus-derived toxin MVIIA displayed significant effects when dosed from 1 to 4 h before trypsin, whilst the anti-pruritic effects of Phα1β from P. nigriventer remained significant for up to 12 h. In addition to reducing trypsin-evoked itching, MVIIA or Phα1β also prevented the itching elicited by intradermal (i.d.) injection of SLIGRL-NH2, compound 48/80 or chloroquine, although they did not affect H2O2-induced scratching behavior. Furthermore, the co-administration of MVIIA or Phα1β markedly inhibited the pruritus caused by the spinal injection of gastrin-releasing peptide (GRP), but not morphine. Notably, the epidural administration of MVIIA or Phα1β greatly prevented the chronic pruritus allied to dry skin model. However, either tested toxin failed to alter the edema formation or neutrophil influx caused by trypsin, whereas they significantly reduced the c-Fos activation in laminas I, II and III of the spinal cord. Our data brings novel evidence on itching transmission mechanisms, pointing out the therapeutic relevance of N-type VGCC inhibitors to control refractory pruritus.
    Neuroscience 08/2014; · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study analyzed the growth and biochemical responses of six bacterial colonies isolated from the mucus of the estuarine polychaeta Laeonereis acuta (Nereididae) after exposure to a water suspension of fullerene (nC60) and nanosilver (nAg) separately (0.01; 0.10; and 1.00 mg/L) and together (0.01; 0.10; and 1.00 mg/L of nanosilver and 1.00 mg/L of fullerene added to each nAg concentration). Exposures were performed in darkness during 24 h and then samples were taken from the worms and inoculated on agar during 24 h to analyze colonies growth. After this the material was analyzed biochemically. Colonies growth (tested by wet biomass weight) was inhibited at 0.01 and 0.10 mg/L of nAg and 0.01 and 0.10 mg/L nAg + constant 1.00 mg/L of nC60 (p < 0.05). Lipid peroxidation damage was significant from the control for the concentrations of 0.01 and 0.10 mg/L of nC60 and glutathione-S-transferase (GST) activity was significantly higher for the concentration of 1.00 mg/L mg/L nAg + constant 1.00 mg/L of nC60 (p < 0.05). Although nC60 did not induced growth inhibition, it triggered lipid peroxidation alone and increased GST activity together with nAg.60 Contrary to nC60, nanosilver inhibited bacterial growth, although the biochemical measurements indicate that this response is not due to reactive oxygen species generation.
    Marine Environmental Research 08/2014; · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gliomas are the most common malignant brain tumors in adults. Bradykinin (BK) displays an important role in cancer, although the exact role of kinin receptors in the glioma biology remains unclear. This study investigated the role of kinin B1 and B2 receptors (B1R and B2R) on cell proliferation in human glioblastoma cell lineages. The mRNA expression of B1R and B2R was verified by RT-qPCR, whereas the effects of kinin agonists (des-Arg(9)-BK and BK) were analyzed by cell counting, MTT assay and annexin-V/PI determination. The PI3K/Akt and ERK1/2 signaling activation was assessed by flow cytometry. Our results demonstrated that both human glioblastoma cell lines U-138MG and U-251MG express functional B1R and B2R. The proliferative effects induced by the incubation of des-Arg(9)-BK and BK are likely related to the activation of PI3K/Akt and ERK 1/2 pathways. Moreover, the pre-incubation of the selective PI3Kγ blocker AS252424 markedly prevented kinin-induced AKT phosphorylation. Noteworthy, the selective B1R and B2R antagonists SSR240612 and HOE-140 were able to induce cell death of either lineages, with mixed apoptosis/necrosis characteristics. Taken together, the present results show that activation of B1R and B2R might contribute to glioblastoma progression in vitro. Furthermore, PI3K/Akt and ERK 1/2 signaling may be a target for adjuvant treatment of glioblastoma with a possible impact on tumor proliferation.
    Journal of Neuro-Oncology 07/2014; · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lithium has been the paradigmatic treatment for bipolar disorder since 1950s, offering prophylactic and acute efficacy against maniac and depressive episodes. Its use during early pregnancy and the perinatal period remains controversial due to reports of negative consequences on the newborn including teratogenic and neurobehavioral effects generally referred as Floppy baby syndrome. The mechanisms underlying lithium therapeutic action are still elusive but exacerbation of Wnt signaling pathway due to GSK-3 inhibition is believed to represent its main effect. In this study we evaluated the impact of lithium exposure during zebrafish embryonic and early development including behavioral and molecular characterization of Wnt-β-catenin pathway components. Wild-type zebrafish embryos were individually treated for 72 hpf with LiCl at 0.05, 0.5 and 5mM. No significant teratogenic and embryotoxic effects were observed. At the end of treatment period western blot analysis of selected Wnt-β-catenin system components showed increased β-catenin and decreased N-cadherin protein levels, without significant changes in Wnt3a, supporting GSK-3 inhibition as lithium's main target. At 10 dpf 0.5 and 5mM lithium-treated larvae showed a dose-dependent decrease in locomotion among other exploratory parameters, resembling lithium-induced Floppy baby syndrome neurobehavioral symptoms in humans. At this later period previously altered proteins returned to control levels in treated groups, suggesting that the neurobehavioral effects are a lasting consequence of lithium exposure during early development. qRT-PCR analysis of β-catenin and N-cadherin gene expression showed no effects of lithium at 3 or 10 dpf, suggesting that protein fluctuations were likely due to post-transcriptional events. Other Wnt target genes were evaluated and only discrete alterations were observed. These results suggest that zebrafish may be a valuable model for investigation of early effects of lithium that may be mediated by effects on the Wnt signaling pathway.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 05/2014; · 4.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Serum carnosinase deficiency is an inherited disorder that leads to an accumulation of carnosine in the brain tissue, cerebrospinal fluid, skeletal muscle, and other tissues of affected patients. Considering that high levels of carnosine are associated with neurological dysfunction and that the pathophysiological mechanisms involved in serum carnosinase deficiency remain poorly understood, we investigated the in vivo effects of carnosine on bioenergetics parameters, namely, respiratory chain complexes (I-III, II, and II-III), malate dehydrogenase, succinate dehydrogenase, and creatine kinase activities and the expression of mitochondrial-specific transcription factors (NRF-1, PGC-1α , and TFAM) in skeletal muscle of young Wistar rats. We observed a significant decrease of complexes I-III and II activities in animals receiving carnosine acutely, as compared to control group. However, no significant alterations in respiratory chain complexes, citric acid cycle enzymes, and creatine kinase activities were found between rats receiving carnosine chronically and control group animals. As compared to control group, mRNA levels of NRF-1, PGC-1α , and TFAM were unchanged. The present findings indicate that electron transfer through the respiratory chain is impaired in skeletal muscle of rats receiving carnosine acutely. In case these findings are confirmed by further studies and ATP depletion is also observed, impairment of bioenergetics could be considered a putative mechanism responsible for the muscle damage observed in serum carnosinase-deficient patients.
    BioMed Research International 05/2014; 2014:632986. · 2.71 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: Superparamagnetic iron oxide nanoparticles (SPIONs) are of great interest in nanomedicine due to their capability to act simultaneously as a contrast agent and as a targeted drug delivery system. At present, one of the biggest concerns about the use of SPIONs remains around its toxicity and, for this reason, it is important to establish the safe upper limit for each use. In the present study, SPION coated with cross-linked aminated dextran (CLIO-NH2) were synthesized and their toxicity to zebrafish brain was investigated. We have evaluated the effect of different CLIO-NH2 doses (20, 50, 100, 140 and 200 mg/kg) as a function of time after exposure (one, 16, 24 and 48 h) on AChE activity and ache expression in zebrafish brain. The animals exposed to 200 mg/kg and tested 24 h after administration of the nanoparticles have shown decreased AChE activity, reduction in the exploratory performance, significant higher level of ferric iron in the brains and induction of casp8, casp 9 and jun genes. Taken together, these findings suggest acute brain toxicity by the inhibition of acetylcholinesterase and induction of apoptosis.
    Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology 05/2014; · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes mellitus (DM) affects over 10% of the world population. Hyperglycemia is the main feature for the diagnosis of this disease. The zebrafish (Danio rerio) is an established model organism to the study of various metabolic diseases. In this paper, hyperglycemic zebrafish, by immersing in a 111mM glucose solution for 14days, developed increase glycation of proteins from eyes, decrease of mRNA levels of insulin receptors in muscle, and reversion of high blood glucose level after treatment with anti-diabetic drugs (glimepiride and metformin) even after 7days of glucose withdrawal. Additionally, hyperglycemic zebrafish developed impaired response to exogenous insulin, which was recovered after 7days of glucose withdrawal. These data suggest that the exposure of adult zebrafish to high glucose concentration is able to induce persistent metabolic changes probably underlined by a hyperinsulinemic state and peripheral impaired glucose metabolism.
    Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology 04/2014; · 1.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mild hyperhomocysteinemia is considered to be a risk factor for cerebral and cardiovascular disorders and can be modeled in experimental rats. Inflammation has been implicated in the toxic effects of homocysteine. Cholinergic signaling controls cytokine production and inflammation through the "cholinergic anti-inflammatory pathway," and brain acetylcholinesterase activity plays a role in this regulation. The aim of this present study is to investigate the effect of mild chronic hyperhomocysteinemia on proinflammatory cytokine levels in the brain, heart, and serum of rats. Activity, immunocontent, and gene expression of acetylcholinesterase in the brain and butyrylcholinesterase activity in serum were also evaluated. Mild hyperhomocysteinemia was induced in Wistar rats by homocysteine administration (0.03 μmol/g of body weight) twice a day, from the 30th to the 60th days of life. Controls received saline in the same volumes. Results demonstrated an increase in tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and the chemokine monocyte chemotactic protein-1 (MCP-1) in the hippocampus, as well as an increase in IL-1β and IL-6 levels in cerebral cortex. Acetylcholinesterase activity was increased in rats subjected to mild hyperhomocysteinemia in both cerebral structures tested; the immunocontent of this enzyme was also increased in the cerebral cortex and decreased in the hippocampus. Levels of acetylcholinesterase mRNA transcripts were not altered. Peripherally, homocysteine increased TNF-α, IL-6, and MCP-1 levels in the heart and IL-6 levels in serum. Taken altogether, these findings suggest that homocysteine promotes an inflammatory status that can contribute, at least in part, to neuronal and cardiovascular dysfunctions observed in mild hyperhomocysteinemia.
    Molecular Neurobiology 03/2014; · 5.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Chronic exposure to paraquat (Pq), a toxic herbicide, can result in Parkinsonian symptoms. This study evaluated the effect of the systemic administration of Pq on locomotion, learning and memory, social interaction, tyrosine hydroxylase (TH) expression, dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels, and dopamine transporter (DAT) gene expression in zebrafish. Adult zebrafish received an i.p. injection of either 10 mg/kg (Pq10) or 20 mg/kg (Pq20) of Pq every 3 days for a total of six injections. Locomotion and distance traveled decreased at 24 h after each injection in both treatment doses. In addition, both Pq10- and Pq20-treated animals exhibited differential effects on the absolute turn angle. Nonmotor behaviors were also evaluated, and no changes were observed in anxiety-related behaviors or social interactions in Pq-treated zebrafish. However, Pq-treated animals demonstrated impaired acquisition and consolidation of spatial memory in the Y-maze task. Interestingly, dopamine levels increased while DOPAC levels decreased in the zebrafish brain after both treatments. However, DAT expression decreased in the Pq10-treated group, and there was no change in the Pq20-treated group. The amount of TH protein showed no significant difference in the treated group. Our study establishes a new model to study Parkinson-associated symptoms in zebrafish that have been chronically treated with Pq.
    Zebrafish 02/2014; · 2.88 Impact Factor
  • Source
    Intensive Care Medicine Experimental. 01/2014; 2(1):17.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Renal thioredoxin reductase-1 (TrxR-1) activity is stimulated at lead doses lower than that necessary to inhibit δ-aminolevulinate dehydratase activity (δ-ALA-D), which is a classical early biomarker of lead effects. Thus, we hypothesised that the activity of TrxR-1 could be a more sensitive early indicator of lead effects than is δ-ALA-D. To evaluate this hypothesis, we assessed the blood and renal TrxR-1 activity and its gene expression along with biomarkers of oxidative damage, antioxidant enzyme activities and biomarkers of lead exposure in rats acutely exposed to lead. A histopathological analysis was performed to verify renal damage. The increase in renal TrxR-1 activity paralleled the increase in the blood and renal lead levels at 6, 24 and 48 hr after the exposure to 25 mg/kg lead acetate (P<0.05), whereas its expression was increased 24 and 48 hr after exposure. These effects were not accompanied by oxidative or tissue damage in the kidneys. Blood TrxR-1 activity was not affected by lead exposure (up to 25 mg/kg). Erythrocyte δ-ALA-D activity was inhibited 6 hr after the exposure to 25 mg/kg lead acetate (P<0.05) but recovered thereafter. Renal δ-ALA-D activity decreased 24 and 48 hr after the exposure to 25 mg/kg lead acetate. There were no changes in any parameters at lead acetate doses less than 25 mg/kg. Our results indicate that blood TrxR-1 activity is not a suitable indicator of lead effects. In contrast, the increase in renal TrxR-1 expression and activity is implicated in the early events of lead exposure, most likely as a protective cellular mechanism against lead toxicity. This article is protected by copyright. All rights reserved.
    Basic & Clinical Pharmacology & Toxicology 12/2013; · 2.18 Impact Factor

Publication Stats

1k Citations
397.17 Total Impact Points


  • 2011–2014
    • Faculdade Dom Bosco de Porto Alegre
      Pôrto de São Francisco dos Casaes, Rio Grande do Sul, Brazil
  • 2001–2014
    • Pontifícia Universidade Católica do Rio Grande do Sul
      • • Faculdade de Biociências
      • • Departamento de Biologia Celular e Molecular
      • • Programa de Pós-Graduação em Biologia Celular e Molecular
      Pôrto de São Francisco dos Casaes, Rio Grande do Sul, Brazil
  • 2013
    • Universidade do Extremo Sul Catarinense (UNESC)
      Cresciúma, Santa Catarina, Brazil
  • 2008–2013
    • Fundação Universidade Federal do Rio Grande (FURG)
      • Institute of Oceanography - IO
      São Pedro do Rio Grande do Sul, Rio Grande do Sul, Brazil
    • Fundação Oswaldo Cruz
      Rio de Janeiro, Rio de Janeiro, Brazil
  • 1996–2013
    • Universidade Federal do Rio Grande do Sul
      • • Departamento de Bioquímica
      • • Instituto de Ciências Básicas da Saúde
      • • Faculdade de Farmácia
      • • Center for Biotechnology
      • • Departamento de Biologia Molecular e Biotecnologia
      Porto Alegre, Estado do Rio Grande do Sul, Brazil
  • 2012
    • Université de Montréal
      • Department of Physiology
      Montréal, Quebec, Canada
    • Universidade Federal do Pampa (Unipampa)
      Caçapava, Rio Grande do Sul, Brazil
  • 2010
    • Pontifícia Universidade Católica de Minas Gerais
      Cidade de Minas, Minas Gerais, Brazil
  • 2009–2010
    • Pontifícia Universidade Católica de Goiás (PUC Goiás)
      Goyaz, Goiás, Brazil