Vivianne Montgrain

University of Washington Seattle, Seattle, WA, United States

Are you Vivianne Montgrain?

Claim your profile

Publications (6)36.45 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative burst, a critical antimicrobial mechanism of neutrophils, involves the rapid generation and release of reactive oxygen intermediates (ROIs) by the NADPH oxidase complex. Genetic mutations in an NADPH oxidase subunit, gp91 (also referred to as NOX2), are associated with chronic granulomatous disease (CGD), which is characterized by recurrent and life-threatening microbial infections. To combat such infections, ROIs are produced by neutrophils after stimulation by integrin-dependent adhesion to the ECM in conjunction with stimulation from inflammatory mediators, or microbial components containing pathogen-associated molecular patterns. In this report, we provide genetic evidence that both the Vav family of Rho GTPase guanine nucleotide exchange factors (GEFs) and phospholipase C-gamma2 (PLC-gamma2) are critical mediators of adhesion-dependent ROI production by neutrophils in mice. We also demonstrated that Vav was critically required for neutrophil-dependent host defense against systemic infection by Staphylococcus aureus and Pseudomonas aeruginosa, 2 common pathogens associated with fatal cases of hospital-acquired pneumonia. We identified a molecular pathway in which Vav GEFs linked integrin-mediated signaling with PLC-gamma2 activation, release of intracellular Ca2+ cations, and generation of diacylglycerol to control assembly of the NADPH oxidase complex and ROI production by neutrophils. Taken together, our data indicate that integrin-dependent signals generated during neutrophil adhesion contribute to the activation of NADPH oxidase by a variety of distinct effector pathways, all of which require Vav.
    Journal of Clinical Investigation 12/2007; 117(11):3445-52. · 12.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The importance of reactive oxygen intermediate (ROI) production in antimicrobial responses is demonstrated in human patients who suffer from chronic granulomatous disease (CGD) due to defective NADPH oxidase function. Exactly how bacterial products activating Toll-like receptors (TLRs) induce oxidative burst is unknown. Here, we identify the Vav family of Rho guanine nucleotide exchange factors (GEFs) as critical mediators of LPS-induced MyD88-dependent activation of Rac2, NADPH oxidase, and ROI production using mice deficient in Vav1, Vav2, and Vav3. Vav proteins are also required for p38 MAPK activation and for normal regulation of proinflammatory cytokine production, but not for other MyD88-controlled effector pathways such as those involving JNK, COX2, or iNOS and the production of reactive nitrogen intermediates (RNIs). Thus, our data indicate that Vav specifically transduces a subset of signals emanating from MyD88.
    Blood 05/2007; 109(8):3360-8. · 9.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Class 1 phosphoinositide 3-kinases (PI3Ks), consisting of PI3Kalpha, beta, gamma, and delta, are a family of intracellular signaling molecules that play important roles in cell-mediated immune responses. In thymocytes, however, their role is less clear, although PI3Kgamma is postulated to partially contribute to pre-TCR-dependent differentiation. We now report that PI3Kdelta, in conjunction with PI3Kgamma, is required for thymocyte survival and ultimately for T-cell production. Surprisingly, genetic deletion of the p110delta and p110gamma catalytic subunits resulted in a dramatic reduction in thymus size, cellularity, and lack of corticomedullary differentiation. Total thymocyte counts in these animals were 27-fold lower than in wild-type (WT) controls because of a diminished number of CD4+ CD8+ double-positive (DP) cells and were associated with T-cell depletion in blood and in secondary lymphoid organs. Moreover, this alteration in the DP population was intrinsic to thymocytes, because the reconstitution of p110gammadelta-/- animals with WT fetal liver cells restored the proportions of all thymocyte populations to those in WT controls. The observed defects were related to massive apoptosis in the DP population; TCRB expression, pre-TCR selection, and generation of DP cells appeared relatively unperturbed. Thus, class 1 PI3Ks work in concert to protect developing thymocytes from apoptosis.
    Blood 04/2006; 107(6):2415-22. · 9.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The specific signals mediating the activation of microglia and astrocytes as a prelude to, or consequence of, CNS inflammation continue to be defined. We investigated TLRs as novel receptors mediating innate immune responses in human glial cells. We find that microglia express mRNA for TLRs 1-9, whereas astrocytes express robust TLR3, low-level TLR 1, 4, 5, and 9, and rare-to-undetectable TLR 2, 6, 7, 8, and 10 mRNA (quantitative real-time PCR). We focused on TLRs 3 and 4, which can signal through both the MyD88-dependent and -independent pathways, and on the MyD88-restricted TLR2. By flow cytometry, we established that microglia strongly express cell surface TLR2; TLR3 is expressed at higher levels intracellularly. Astrocytes express both cell surface and intracellular TLR3. All three TLRs trigger microglial activation upon ligation. TLR3 signaling induces the strongest proinflammatory polarizing response, characterized by secretion of high levels of IL-12, TNF-alpha, IL-6, CXCL-10, and IL-10, and the expression of IFN-beta. CXCL-10 and IL-10 secretion following TLR4 ligation are comparable to that of TLR3; however, other responses were lower or absent. TLR2-mediated responses are dominated by IL-6 and IL-10 secretion. Astrocytes respond to TLR3 ligation, producing IL-6, CXCL-10, and IFN-beta, implicating these cells as contributors to proinflammatory responses. Initial TLR-mediated glial activation also regulates consequent TLR expression; while TLR2 and TLR3 are subject to positive feedback, TLR4 is down-regulated in microglia. Astrocytes up-regulate all three TLRs following TLR3 ligation. Our data indicate that activation of innate immune responses in the CNS is not homogeneous but rather tailored according to cell type and environmental signal.
    The Journal of Immunology 11/2005; 175(7):4320-30. · 5.52 Impact Factor
  • Source

Publication Stats

395 Citations
36.45 Total Impact Points

Institutions

  • 2007
    • University of Washington Seattle
      • Department of Immunology
      Seattle, WA, United States
    • Washington University in St. Louis
      • Department of Pathology and Immunology
      Saint Louis, MO, United States