N K Isaev

Moscow State Textile University, Moskva, Moscow, Russia

Are you N K Isaev?

Claim your profile

Publications (57)77.52 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: A protective behavioral effect of a nerve growth factor dipeptide mimetic GK-2 in the model of open focal trauma of rat brain sensorimotor cortex and its antioxidative and regenerative properties in cultures of rat cerebellar granule cells and mouse embryonal spinal ganglion, respectively, were studied. Intraperitoneal injections of GK-2 (1 mg/kg) for 5 days daily after traumatic brain injury improved significantly motor function of limbs. Moreover, supplementation the incubation medium with GK-2 (0.5-1.5 mg/l) decreased neuronal death induced by H2O2 in cerebellar granule cell cultures and stimulated neurite outgrowth from cultured mouse embryonal spinal ganglia. Our results suggest that GK-2 exhibits pronounced positive behavioral effect in vivo as well as neuroprotective and regenerative effects in vitro, and that these neuroprotective properties probably associated with cell survival but not with cell differentiation pathway.
    The International journal of neuroscience. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Disbalance of zinc (Zn2+) and copper (Cu2+) ions in the central nervous system is involved in the pathogenesis of numerous neurodegenerative disorders such as multisystem atrophy, amyotrophic lateral sclerosis, Creutzfeldt-Jakob disease, Wilson-Konovalov disease, Alzheimer's disease, and Parkinson's disease. Among these, Alzheimer's disease (AD) and Parkinson's disease (PD) are the most frequent age-related neurodegenerative pathologies with disorders in Zn2+ and Cu2+ homeostasis playing a pivotal role in the mechanisms of pathogenesis. In this review we generalized and systematized current literature data concerning this problem. The interactions of Zn2+ and Cu2+ with amyloid precursor protein (APP), β-amyloid (Abeta), tau-protein, metallothioneins, and GSK3β are considered, as well as the role of these interactions in the generation of free radicals in AD and PD. Analysis of the literature suggests that the main factors of AD and PD pathogenesis (oxidative stress, structural disorders and aggregation of proteins, mitochondrial dysfunction, energy deficiency) that initiate a cascade of events resulting finally in the dysfunction of neuronal networks are mediated by the disbalance of Zn2+ and Cu2+.
    05/2014; 79(5):391-6.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bivalent metal cations are key components in the reaction of DNA synthesis. They are necessary for all DNA polymerases, being involved as cofactors in catalytic mechanisms of nucleotide polymerization. It is also known that in the presence of Mn2+ the accuracy of DNA synthesis is considerably decreased. The findings of this work show that Cd2+ and Zn2+ selectively inhibit the Mn2+-induced error-prone DNA polymerase activity in extracts of cells from human and mouse tissues. Moreover, these cations in low concentrations also can efficiently inhibit the activity of homogeneous preparations of DNA polymerase iota (Pol ι), which is mainly responsible for the Mn2+-induced error-prone DNA polymerase activity in cell extracts. Using a primary culture of granular cells from postnatal rat cerebellum, we show that low concentrations of Cd2+ significantly increase cell survival in the presence of toxic Mn2+ doses. Thus, we have shown that in some cases low concentrations of Cd2+ can display a positive influence on cells, whereas it is widely acknowledged that this metal is not a necessary microelement and is toxic for organisms.
    Biochemistry (Moscow) 10/2013; 78(10):1137-45. · 1.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial medicine was established more than 50 years ago after discovery of the very first pathology caused by impaired mitochondria. Since then, more than 100 mitochondrial pathologies have been discovered. However, the number may be significantly higher if we interpret the term "mitochondrial medicine" more widely and include in these pathologies not only those determined by the genetic apparatus of the nucleus and mitochondria, but also acquired mitochondrial defects of non-genetic nature. Now the main problems of mitochondriology arise from methodology, this being due to studies of mitochondrial activities under different models and conditions that are far from the functioning of mitochondria in a cell, organ, or organism. Controversial behavior of mitochondria ("friends and foes") to some extent might be explained by their bacterial origin with possible preservation of "egoistic" features peculiar to bacteria. Apparently, for normal mitochondrial functioning it is essential to maintain homeostasis of a number of mitochondrial elements such as mitochondrial DNA structure, membrane potential, and the system of mitochondrial quality control. Abrogation of these elements can cause a number of pathologies that have become subjects of mitochondrial medicine. Some approaches to therapy of mitochondrial pathologies are discussed.
    Biochemistry (Moscow) 09/2013; 78(9):979-990. · 1.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Normal brain aging leads to decrease in cognitive functions, shrink in brain volume, loss of nerve fibers and degenerating myelin, reduction in length and branching of dendrites, partial loss of synapses, and reduction in expression of genes that play central roles in synaptic plasticity, vesicular transport, and mitochondrial functioning. Impaired mitochondrial functions and mitochondrial reactive oxygen species can contribute to the damage of these genes in aging cerebral cortex. This review discusses the possibility of using mitochondria-targeted antioxidants to slow the processes of brain aging.
    Biochemistry (Moscow) 03/2013; 78(3):295-300. · 1.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxic preconditioning is thought to rely on gene products regulated by hypoxia-inducible factor (HIF)-1. Here, we show that the HIF-1 target gene cyclin-dependent kinase inhibitor 1, p21(WAF1/CIP1), is essential for neuroprotection by hypoxic/aglycemic or erythropoietin preconditioning using wild-type and p21(WAF1/CIP1)-deficient neurons. Furthermore, overexpression of wild-type p21(WAF1/CIP1) or phospho-mutants significantly increased cell death after hypoxia/aglycemia. Moreover, deferoxamine-induced endogenous tolerance did not involve p21(WAF1/CIP1) expression in cortical neurons. Our data suggest that balanced expression and potentially posttranslational regulation of p21(WAF1/CIP1) is required for hypoxic preconditioning.Journal of Cerebral Blood Flow & Metabolism advance online publication, 9 January 2013; doi:10.1038/jcbfm.2012.213.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 01/2013; · 5.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is generally accepted that mitochondrial production of reactive oxygen species is nonlinearly related to the value of the mitochondrial membrane potential with significant increment at values exceeding 150 mV. Due to this, high values of the membrane potential are highly dangerous, specifically under pathological conditions associated with oxidative stress. Mild uncoupling of oxidative phosphorylation is an approach to preventing hyperpolarization of the mitochondrial membrane. We confirmed data obtained earlier in our group that dodecylrhodamine 19 (C(12)R1) (a penetrating cation from SkQ family not possessing a plastoquinone group) has uncoupling properties, this fact making it highly potent for use in prevention of pathologies associated with oxidative stress induced by mitochondrial hyperpolarization. Further experiments showed that C(12)R1 provided nephroprotection under ischemia/reperfusion of the kidney as well as under rhabdomyolysis through diminishing of renal dysfunction manifested by elevated level of blood creatinine and urea. Similar nephroprotective properties were observed for low doses (275 nmol/kg) of the conventional uncoupler 2,4-dinitrophenol. Another penetrating cation that did not demonstrate protonophorous activity (SkQR4) had no effect on renal dysfunction. In experiments with induced ischemic stroke, C(12)R1 did not have any effect on the area of ischemic damage, but it significantly lowered neurological deficit. We conclude that beneficial effects of penetrating cation derivatives of rhodamine 19 in renal pathologies and brain ischemia may be at least partially explained by uncoupling of oxidation and phosphorylation.
    Biochemistry (Moscow) 09/2012; 77(9):1029-37. · 1.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A protective effect of a mitochondria-targeted antioxidant, a cationic rhodamine derivative linked to a plastoquinone molecule (10-(6'-plastoquinonyl)decylrhodamine-19, SkQR1) was studied in the model of open focal trauma of rat brain sensorimotor cortex. It was found that daily intraperitoneal injections of SkQR1 (100 nmol/kg) for 4 days after the trauma improved performance in a test characterizing neurological deficit and decreased the volume of the damaged cortical area. Our results suggest that SkQR1 exhibits profound neuroprotective effect, which may be explained by its antioxidative activity.
    Biochemistry (Moscow) 09/2012; 77(9):996-9. · 1.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Programmed execution of various cells and intracellular structures is hypothesized to be not the only example of elimination of biological systems - the general mechanism can also involve programmed execution of organs and organisms. Modern rating of programmed cell death mechanisms includes 13 mechanistic types. As for some types, the mechanism of actuation and manifestation of cell execution has been basically elucidated, while the causes and intermediate steps of the process of fatal failure of organs and organisms remain unknown. The analysis of deaths resulting from a sudden heart arrest or multiple organ failure and other acute and chronic pathologies leads to the conclusion of a special role of mitochondria and oxidative stress activating the immune system. Possible mechanisms of mitochondria-mediated induction of the signaling cascades involved in organ failure and death of the organism are discussed. These mechanisms include generation of reactive oxygen species and damage-associated molecular patterns in mitochondria. Some examples of renal failure-induced deaths are presented with mechanisms and settings determined by some hypothetical super system rather than by the kidneys themselves. This system plays the key role in the process of physiological senescence and termination of an organism. The facts presented suggest that it is the immune system involved in mitochondrial signaling that can act as the system responsible for the organism's death.
    Biochemistry (Moscow) 07/2012; 77(7):742-53. · 1.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Zinc chloride (0.01 mM kept for 3h) is not toxic to cultured cerebellar granule neurons (CGNs) while kainate (0.1mM kept for 3h) demonstrates some but very low toxicity towards these cells. Measurements of the relative intraneuronal zinc ion concentration showed that increase in [Zn(2+)](i) under the simultaneous action of ZnCl(2) and kainate was significantly stronger compared to their separate action. Simultaneous treatment of CGNs with kainate and zinc chloride caused the swelling of neuronal mitochondria and consequent intensive neuronal death, which was totally prevented by NBQX (an AMPA/kainate-receptors blocker) or ruthenium red (a mitochondrial Ca(2+) uniporter blocker). These data imply that Zn(2+) synergistically to kainate increase their separate toxic effects on mitochondria leading to rapid neuronal death.
    Toxicology Letters 01/2012; 208(1):36-40. · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Addition of 200 nM β-amyloid 1-42 (Abeta) to a rat hippocampal slice impairs the induction of a long-term post-tetanic potentiation (LTP) of population spike (PS) in pyramidal neurons of the CA1 field of hippocampus. Intraperitoneal injection into the rat of the mitochondria-targeted plastoquinone derivative SkQR1 (1 µmol/kg of weight given 24 h before the slices were made) abolishes the deleterious effect of Abeta on LTP. These data demonstrate that SkQR1 therapy is able to compensate the Abeta-induced impairments of long-term synaptic plasticity in the hippocampus, which are the main cause of loss of memory and other cognitive functions associated with Alzheimer's disease.
    Biochemistry (Moscow) 12/2011; 76(12):1367-70. · 1.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zinc chloride (0.02 mM, 3h) did not have any influence on the survival of cerebellar granule neurons (CGNs) incubated in balanced salt solution (BSS). However, in the absence of glucose ZnCl(2) caused severe neuronal damage, decreasing cell survival to 12±2%. Either the blockade of ionotropic glutamate NMDA-receptors with MK-801 or APV or supplementation the medium with ruthenium red (mitochondrial Ca(2+) uniporter blocker) almost entirely protected CGNs from the toxic effect of ZnCl(2) during glucose deprivation (GD). However, NBQX (AMPA/kainate glutamate receptor blocker) did not show protective effect. Measurements of intracellular calcium ions concentration using fluorescent probe (Fluo-4 AM) and zinc ions (FluoZin-3AM) demonstrated that 1.5h-exposure to GD induced intensive increase of Fluo-4 fluorescence and small increase of FluoZin-3 fluorescence in neurons. The supplementation of medium with ZnCl(2) caused equal increase of FluoZin-3 fluorescence at both GD and normoglycemia, whereas the potentiation of Fluo-4 fluorescence by zinc was observed only under GD and could be prevented by MK-801. However, neither MK-801 nor NBQX could influence [Zn(2+)](i) increase caused by zinc addition under GD, while ruthenium red did cause significant increase of [Zn(2+)](i). This data implies that zinc ions during GD induce an additional overload of CGNs with calcium ions that get transported through activated NMDA-channel. Zinc and calcium ions accumulate in mitochondria and amplify individual destructive action on these organelles leading to neuronal death.
    Brain research bulletin 11/2011; 87(1):80-4. · 2.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic resonance tomography, staining with triphenyltetrazolium chloride, and tests for evaluation of functional disturbances "cylinder" and "limb stimulation" showed that daily intraperitoneal injection of dipeptide mimetic of nerve growth factor GK-2 (1 mg/kg) for 6 days to rats with experimental focal ischemia provoked by unilateral intravascular occlusion of a branch of the middle cerebral artery significantly improved neurological deficit and decreased the infarction area.
    Bulletin of Experimental Biology and Medicine 09/2011; 151(5):584-7. · 0.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this review, we discuss the role of glutamine in the nervous system as a precursor of the excitatory neuromediator glutamate, on one hand, and as an energy substrate for mitochondria in nerve and glial cells during normal and pathological processes, on the other hand. Particular attention is devoted to the functioning of the glutamine-glutamate cycle enzymes during brain ischemia and hypoglycemia and to processes of neuromediator regeneration in neurons. We thoroughly discuss the role of glutamine synthetase in mechanisms of ammonium detoxification and the role of glutamine as a possible factor in astrocyte damage. The analyzed data suggest that the constant maintenance of optimal concentrations and ratio of glutamine to glutamate in nerve tissue is not only critically important for the normal functioning of nervous system, but is also necessary for neuron and astrocyte viability.
    The International journal of neuroscience 05/2011; 121(8):415-22. · 0.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A synthetic polyanion composed of styrene, maleic anhydride, and methacrylic acid (molar ratio 56:37:7) significantly inhibited the respiration of isolated rat liver mitochondria in a time-dependent fashion that correlated with 1) collapse of the mitochondrial membrane potential and 2) high amplitude mitochondrial swelling. The process is apparently Ca(2+) dependent. Since it is blocked by cyclosporin A, the process is ascribed to induction of the mitochondrial permeability transition. In mitoplasts, i.e., mitochondria lacking their outer membranes, the polyanion rapidly blocked respiration. After incubation of rat liver mitochondria with the polyanion, cytochrome c was released into the incubation medium. In solution, the polyanion modified by conjugation with fluorescein formed a complex with cytochrome c. Addition of the polyanion to cytochrome c-loaded phosphatidylcholine/cardiolipin liposomes induced the release of the protein from liposomal membrane evidently due to coordinated interplay of Coulomb and hydrophobic interactions of the polymer with cytochrome c. We conclude that binding of the polyanion to cytochrome c renders it inactive in the respiratory chain due to exclusion from its native binding sites. Apparently, the polyanion interacts with cytochrome c in mitochondria and releases it to the medium through breakage of the outer membrane as a result of severe swelling. Similar properties were demonstrated for the natural polyanion, tobacco mosaic virus RNA. An electron microscopy study confirmed that both polyanions caused mitochondrial swelling. Exposure of cerebellar astroglial cells in culture to the synthetic polyanion resulted in cell death, which was associated with nuclear fragmentation.
    AJP Cell Physiology 01/2011; 300(5):C1193-203. · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The specific aim of this study was to elucidate the role of mitochondria in a neuronal death caused by different metabolic effectors and possible role of intracellular calcium ions ([Ca(2+)](i)) and glutamine in mitochondria- and non-mitochondria-mediated cell death. Inhibition of mitochondrial complex I by rotenone was found to cause intensive death of cultured cerebellar granule neurons (CGNs) that was preceded by an increase in intracellular calcium concentration ([Ca(2+)](i)). The neuronal death induced by rotenone was significantly potentiated by glutamine. In addition, inhibition of Na/K-ATPase by ouabain also caused [Ca(2+)](i) increase, but it induced neuronal cell death only in the absence of glucose. Treatment with glutamine prevented the toxic effect of ouabain and decreased [Ca(2+)](i). Blockade of ionotropic glutamate receptors prevented neuronal death and significantly decreased [Ca(2+)](i), demonstrating that toxicity of rotenone and ouabain was at least partially mediated by activation of these receptors. Activation of glutamate receptors by NMDA increased [Ca(2+)](i) and decreased mitochondrial membrane potential leading to markedly decreased neuronal survival under glucose deprivation. Glutamine treatment under these conditions prevented cell death and significantly decreased the disturbances of [Ca(2+)](i) and changes in mitochondrial membrane potential caused by NMDA during hypoglycemia. Our results indicate that glutamine stimulates glutamate-dependent neuronal damage when mitochondrial respiration is impaired. However, when mitochondria are functionally active, glutamine can be used by mitochondria as an alternative substrate to maintain cellular energy levels and promote cell survival.
    Neuroscience Letters 09/2010; 482(2):151-5. · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using a specific fluorescent probe of mitochondrial membrane potential (tetramethylrhodamine ethyl ester), we have shown that glucose deprivation (GD) of cultured cerebellar granule neurons (CGN) for 3 h lowers mitochondrial membrane potential in these cells. Longer glucose starvation (24 h) causes CGN death that is not prevented by blockers of ionotropic glutamate receptors (MK-801 (10 µM) and NBQX (10 µM)). Glutamine or pyruvate (2 mM) maintain membrane potential of mitochondria and decrease CGN death under GD conditions. In the presence of glucose the mitochondrial respiratory chain blocker rotenone induces neuron death potentiated by glutamine. The potentiation effect is completely prevented by blockers of ionotropic glutamate receptors. These results show that glutamine under conditions of GD can be utilized by mitochondria as substrate, but at the same time, in the case of mitochondrial function deterioration, metabolism of this amino acid results in glutamate accumulation to toxic level.
    Biochemistry (Moscow) 08/2010; 75(8):1039-44. · 1.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A mitochondria-targeted chimeric compound consisting of a rhodamine derivative linked to a plastoquinone molecule (10-(6'-plastoquinonyl)decylrhodamine, SkQR1) was studied under conditions of acute brain or kidney damage. A protective effect of this compound was demonstrated in a model of focal brain ischemia, rat kidney ischemia/reperfusion, myoglobinuria (rhabdomyolysis, or crush syndrome), and pyelonephritis. We found that a single intraperitoneal injection of SkQR1 diminishes the size of the ischemic zone in the brain and improves performance of a test characterizing neurological deficit in ischemic animals. Control substance not containing plastoquinone appeared to be not neuroprotective. The data show that SkQR1 is a nephroprotectant and neuroprotectant, which can be due to the antioxidative action of this Skulachev cation.
    Biochemistry (Moscow) 02/2010; 75(2):145-50. · 1.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The volumes of foci of injuries, evaluated by T2-suspended MRT images and analysis of histological sections stained by triphenyltetrazoleum chloride, were compared on a model of unilateral intravascular blocking of the middle cerebral artery branch. The two methods for evaluation of foci of lesions gave close results, correlating with the severity of neurological deficiency in animals subjected to ischemia, manifesting in behavioral tests.
    Bulletin of Experimental Biology and Medicine 03/2009; 147(2):269-72. · 0.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Effects of 10-(6'-plastoquinonyl) decyltriphenylphosphonium (SkQ1) and 10-(6'-plastoquinonyl) decylrhodamine 19 (SkQR1) on rat models of H2O2- and ischemia-induced heart arrhythmia, heart infarction, kidney ischemia, and stroke have been studied ex vivo and in vivo. In all the models listed, SkQ1 and/or SkQR1 showed pronounced protective effect. Supplementation of food with extremely low SkQ1 amount (down to 0.02 nmol SkQ1/kg per day for 3 weeks) was found to abolish the steady heart arrhythmia caused by perfusion of isolated rat heart with H2O2 or by ischemia/reperfusion. Higher SkQ1 (125-250 nmol/kg per day for 2-3 weeks) was found to decrease the heart infarction region induced by an in vivo ischemia/reperfusion and lowered the blood levels of lactate dehydrogenase and creatine kinase increasing as a result of ischemia/reperfusion. In single-kidney rats, ischemia/reperfusion of the kidney was shown to kill the majority of the animals in 2-4 days, whereas one injection of SkQ1 or SkQR1 (1 micromol/kg a day before ischemia) saved lives of almost all treated rats. Effect of SkQR1 was accompanied by decrease in ROS (reactive oxygen species) level in kidney cells as well as by partial or complete normalization of blood creatinine and of some other kidney-controlled parameters. On the other hand, this amount of SkQ1 (a SkQ derivative of lower membrane-penetrating ability than SkQR1) saved the life but failed to normalize ROS and creatinine levels. Such an effect indicates that death under conditions of partial kidney dysfunction is mediated by an organ of vital importance other than kidney, the organ in question being an SkQ1 target. In a model of compression brain ischemia/reperfusion, a single intraperitoneal injection of SkQR1 to a rat (1 micromol/kg a day before operation) effectively decreased the damaged brain area. SkQ1 was ineffective, most probably due to lower permeability of the blood-brain barrier to this compound.
    Biochemistry (Moscow) 01/2009; 73(12):1288-99. · 1.15 Impact Factor

Publication Stats

572 Citations
77.52 Total Impact Points

Institutions

  • 1998–2013
    • Moscow State Textile University
      Moskva, Moscow, Russia
    • Lomonosov Moscow State University
      • • Faculty of Bioengineering and Bioinformatics
      • • A. N. Belozersky Research Institute of Physico-Chemical Biology
      Moskva, Moscow, Russia
  • 2011
    • New York Medical College
      • Department of Biochemistry and Molecular Biology
      New York City, NY, United States
  • 1996–2010
    • Russian Academy of Medical Sciences
      • Institute of Pharmacology
      Moskva, Moscow, Russia