Eva Leung

King's College London, Londinium, England, United Kingdom

Are you Eva Leung?

Claim your profile

Publications (4)16.62 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: CD4(+)CD25(+) regulatory T cells (Tregs) play a crucial role in controlling immune responses. It is an appealing strategy to harness Tregs for adoptive cell therapy to induce tolerance to allografts. Several approaches have been developed to expand antigen-specific Tregs. Despite the large body of experimental data from murine studies demonstrating the great potential of these cells for clinical application, Treg adoptive transfer therapy was used in immunodeficient animals or in strain combinations with limited histiocompatibility. The aim of this study was to investigate whether Treg lines can protect from allograft rejection in a fully MHC-mismatched strain combination and whether the presence of Tregs with indirect allospecificity offered an advantage compared to self-reactive Tregs. Treg lines with self-specificity or with indirect allospecificity were generated by stimulating BL/6 CD4(+)CD25(+) T cells with autologous immature DCs either unpulsed or pulsed with K(d) peptide. The Treg lines were injected into recipient mice in combination with temporary depletion of CD8(+) T cells and a short course of Rapamycin. The data demonstrate that Treg lines with indirect allospecificity can be generated and most importantly they can induce indefinite survival of BALB/c hearts transplanted into BL/6 recipients when combined with short term immunosuppression. However, the Treg lines with self-specificity were only slightly less effective. The data presented in this study demonstrate the potential of ex vivo expanded Treg lines for adoptive cell therapy to promote transplantation tolerance.
    Transplant Immunology 06/2009; 21(4):203-9. DOI:10.1016/j.trim.2009.05.003 · 1.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Naturally arising CD4(+)CD25(+) regulatory T cells play a pivotal role in the prevention of autoimmunity and in the induction of donor-specific transplantation tolerance. Harnessing regulatory cells for potential adoptive cell therapy is hampered by their lack of antigen-specificity and their limited numbers. Here we describe the generation and expansion of murine CD4(+)CD25(+) T cells with antigen-specificity for an K(d) peptide as potential reagents for adoptive cell therapy in promoting donor-specific transplantation tolerance. Using bone marrow-derived autologous dendritic cells pulsed with the K(d) peptide, we generated T cell lines from purified CD4(+)CD25(+) T cells from C56BL/6 mice. The T cell lines expressed high level of CD25 and low level of CD45RB and CD69. They maintained the expression of CD62L, GITR, CTLA-4 and more importantly FoxP3. The CD4(+)CD25(+) T cell lines were anergic after TCR stimulation and produced little cytokine such as IL-2 and IFN-gamma. Importantly, they were more potent than freshly isolated CD4(+)CD25(+) T cells in suppressing proliferation and cytokine secretion by effector CD4(+) T cells. Furthermore, the CD4(+)CD25(+) T cell lines could be expanded to large cell numbers and maintained in culture up to 1 year. The K(d)-specific CD4(+)CD25(+) T cell lines will be invaluable in devising a strategy for the induction of cardiac transplantation tolerance in wild-type B6 mice carrying a full mismatch BALB/c heart.
    International Immunopharmacology 01/2007; 6(13-14):1883-8. DOI:10.1016/j.intimp.2006.07.032 · 2.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD4+CD25+Foxp3+ regulatory T cells (Tregs) contribute to the maintenance of peripheral tolerance by inhibiting the expansion and function of conventional T cells. Treg development and homeostasis are regulated by the Ag receptor, costimulatory receptors such as CD28 and CTLA-4, and cytokines such as IL-2, IL-10, and TGF-beta. Here we show that the proportions of Tregs in the spleen and lymph nodes of mice with inactive p110delta PI3K (p110deltaD910A/D910A) are reduced despite enhanced Treg selection in the thymus. p110deltaD910A/D910A CD4+CD25+Foxp3+ Tregs showed attenuated suppressor function in vitro and failed to secrete IL-10. In adoptive transfer experiments, p110deltaD910A/D910A T cells failed to protect against experimental colitis. The identification of p110delta as an intracellular signaling protein that regulates the activity of CD4+CD25+Foxp3+ Tregs may facilitate the further elucidation of the molecular mechanisms responsible for Treg-mediated suppression.
    The Journal of Immunology 12/2006; 177(10):6598-602. DOI:10.4049/jimmunol.177.10.6598 · 4.92 Impact Factor
  • Source
    C R Monk · M Spachidou · F Rovis · E Leung · M Botto · R I Lechler · O A Garden ·
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the hypothesis that loss of suppression mediated by peripheral CD4+,CD25+ regulatory T cells is a hallmark of systemic lupus erythematosus (SLE). Mice of the MRL/Mp strain were studied as a polygenic model of SLE. Following immunomagnetic selection, peripheral lymphoid CD25+ and CD25- CD4+ T cells were cultured independently or together in the presence of anti-CD3/CD28 monoclonal antibody-coated beads. Proliferation was assessed by measuring the incorporation of tritiated thymidine. While MRL/Mp CD4+,CD25+ regulatory T cells showed only subtle abnormalities of regulatory function in vitro, syngeneic CD4+,CD25- T cells showed significantly reduced sensitivity to suppression, as determined by crossover experiments in which MRL/Mp CD4+,CD25- T cells were cultured with H-2-matched CBA/Ca CD4+,CD25+ regulatory T cells in the presence of a polyclonal stimulus. Our findings highlight a novel defect of peripheral tolerance in SLE. Identification of this defect could open new opportunities for therapeutic intervention.
    Arthritis & Rheumatology 04/2005; 52(4):1180-4. DOI:10.1002/art.20976 · 7.76 Impact Factor