Masaki Hata

KAN Research Institute, Kōbe, Hyōgo, Japan

Are you Masaki Hata?

Claim your profile

Publications (13)131.47 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Claudin-2 is highly expressed in tight junctions of mouse renal proximal tubules, which possess a leaky epithelium whose unique permeability properties underlie their high rate of NaCl reabsorption. To investigate the role of claudin-2 in paracellular NaCl transport in this nephron segment, we generated knockout mice lacking claudin-2 (Cldn2(-/-)). The Cldn2(-/-) mice displayed normal appearance, activity, growth, and behavior. Light microscopy revealed no gross histological abnormalities in the Cldn2(-/-) kidney. Ultrathin section and freeze-fracture replica electron microscopy revealed that, similar to those of wild types, the proximal tubules of Cldn2(-/-) mice were characterized by poorly developed tight junctions with one or two continuous tight junction strands. In contrast, studies in isolated, perfused S2 segments of proximal tubules showed that net transepithelial reabsorption of Na(+), Cl(-), and water was significantly decreased in Cldn2(-/-) mice and that there was an increase in paracellular shunt resistance without affecting the apical or basolateral membrane resistances. Moreover, deletion of claudin-2 caused a loss of cation (Na(+)) selectivity and therefore relative anion (Cl(-)) selectivity in the proximal tubule paracellular pathway. With free access to water and food, fractional Na(+) and Cl(-) excretions in Cldn2(-/-) mice were similar to those in wild types, but both were greater in Cldn2(-/-) mice after i.v. administration of 2% NaCl. We conclude that claudin-2 constitutes leaky and cation (Na(+))-selective paracellular channels within tight junctions of mouse proximal tubules.
    Proceedings of the National Academy of Sciences 04/2010; 107(17):8011-6. · 9.74 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Zonula occludens (ZO)-1/2/3 are the members of the TJ-MAGUK family of membrane-associated guanylate kinases associated with tight junctions. To investigate the role of ZO-1 (encoded by Tjp1) in vivo, ZO-1 knockout (Tjp1(-/-)) mice were generated by gene targeting. Although heterozygous mice showed normal development and fertility, delayed growth and development were evident from E8.5 onward in Tjp1(-/-) embryos, and no viable Tjp1(-/-) embryos were observed beyond E11.5. Tjp1(-/-) embryos exhibited massive apoptosis in the notochord, neural tube area, and allantois at embryonic day (E)9.5. In the yolk sac, the ZO-1 deficiency induced defects in vascular development, with impaired formation of vascular trees, along with defective chorioallantoic fusion. Immunostaining of wild-type embryos at E8.5 for ZO-1/2/3 revealed that ZO-1/2 were expressed in almost all embryonic cells, showing tight junction-localizing patterns, with or without ZO-3, which was confined to the epithelial cells. ZO-1 deficiency depleted ZO-1-expression without influence on ZO-2/3 expression. In Tjp1(+/+) yolk sac extraembryonic mesoderm, ZO-1 was dominant without ZO-2/3 expression. Thus, ZO-1 deficiency resulted in mesoderms with no ZO-1/2/3, associated with mislocalization of endothelial junctional adhesion molecules. As a result, angiogenesis was defected in Tjp1(-/-) yolk sac, although differentiation of endothelial cells seemed to be normal. In conclusion, ZO-1 may be functionally important for cell remodeling and tissue organization in both the embryonic and extraembryonic regions, thus playing an essential role in embryonic development.
    Molecular biology of the cell 07/2008; 19(6):2465-75. · 5.98 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Claudins, the major components of tight junction (TJ) strands, which form paracellular barriers, consist of 24 family members, the combination of which determines the properties of TJ-based paracellular barriers. Here, we generated claudin-15-deficient (Cldn15(-/-)) mice to examine the ubiquitously expressed functions of claudin-15. We generated Cldn15(-/-) mice by the conventional gene-targeting strategy. Because the upper small intestine was enlarged in Cldn15(-/-) mice, we analyzed the phenotype from various angles regarding histology, physiology, and cell biology. Cldn15(-/-) mice were born and grew normally with an enlarged upper small intestinal phenotype, megaintestine. Deficiency of claudin-15 did not cause a compensatory increase in the background expression of other types of claudins, claudin-1, -2, -3, -4, -7, -12, -18, -20, and -23, in the small intestine. Cldn15(-/-) mice showed enhanced proliferation of normal cryptic cells after weaning without diseased states such as polyps or cancer, resulting in megaintestine, in which the upper small intestine was approximately 2 times larger than normal in length and diameter. The number of transit-amplifying cells in crypts increased approximately 2-fold. Freeze-fracture electron microscopy revealed that deficiency of claudin-15 decreased the number of TJ strands, although the electric conductance was decreased in distal segments in Cldn15(-/-) jejunum, as compared with Cldn15(+/+) littermates. Based on the specific roles of claudins in paracellular barrier formation without any direct role in cell proliferation, as previously shown in cultured epithelial cells, we propose that claudin-15-based formation of TJs to organize the microenvironment including ion conductance is important for normal-sized morphogenesis of the small intestine.
    Gastroenterology 03/2008; 134(2):523-34. · 12.82 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: ERM (ezrin/radixin/moesin) proteins are organizers of apical actin cortical layer in general. We previously reported that the knockout of radixin resulted in Rdx(-/-) mice with displacement/loss of the canalicular transporter Mrp2, giving rise to Dubin-Johnson syndrome-like conjugated hyperbilirubinemia in the mixed genetic background (C57BL/6-129/Sv) (Kikuchi, et al. (2002) Nature Genetics 31, 320-325). However, when these mice were kept under mixed genetic background for years (late mixed backgrounds; LMB), the conjugated hyperbilirubinemia gradually became inconspicuous, while evidence of liver injury increased. We examined the effect of genetic background by backcrossing LMB Rdx(-/-) mice to C57BL/6 and 129/Sv wild type mice with the result that the Rdx(-/-) congenic mice regained hyperbilirubinemia with reduced hepatocellular damage. As revealed by immunofluorescence and western blots, the localization/expression of apical transporters, Mrp2, CD26, P-gps, and Bsep were not influenced by backcrossing, though those of a basolateral transporter, Mrp3, were strikingly increased by backcrossing.
    Biochimica et Biophysica Acta 04/2007; 1772(3):298-306. · 4.66 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: ZO-1, ZO-2, and ZO-3 are closely related MAGUK family proteins that localize at the cytoplasmic surface of tight junctions (TJs). ZO-1 and ZO-2 are expressed in both epithelia and endothelia, whereas ZO-3 is exclusively expressed in epithelia. In spite of intensive studies of these TJ MAGUKs, our knowledge of their functions in vivo, especially those of ZO-3, is still fragmentary. Here, we have generated mice, as well as F9 teratocarcinoma cell lines, that do not express ZO-3 by homologous recombination. Unexpectedly, ZO-3(-/-) mice were viable and fertile, and rigorous phenotypic analyses identified no significant abnormalities. Moreover, ZO-3-deficient F9 teratocarcinoma cells differentiated normally into visceral endoderm epithelium-like cells in the presence of retinoic acid. These cells had a normal epithelial appearance, and the molecular architecture of their TJs did not appear to be affected, except that TJ localization of ZO-2 was upregulated. Suppression of ZO-2 expression by RNA interference in ZO-3(-/-) cells, however, did not affect the architecture of TJs. Furthermore, the speed with which TJs formed after a Ca(2+) switch was indistinguishable between wild-type and ZO-3(-/-) cells. These findings indicate that ZO-3 is dispensable in vivo in terms of individual viability, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment.
    Molecular and Cellular Biology 01/2007; 26(23):9003-15. · 5.37 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Retroviral proteases are encoded in the retroviral genome and are responsible for maturation and assembly of infectious virus particles. A number of retroviral protease sequences with retroviral elements are integrated in every eukaryotic genome as endogenous retroviruses. Recently, retroviral-like aspartic proteases that were not embedded within endogenous retroviral elements were identified throughout the eukaryotic and prokaryotic genomes. However, the physiological role of this novel protease family, especially in mammals, is not known. During the high throughput in situ hybridization screening of mouse epidermis, as a granular layer-expressing clone, we identified a mouse homologue of SASPase (Skin ASpartic Protease), a recently identified retroviral-like aspartic protease. We detected and purified the endogenous 32-kDa (mSASP32) and 15-kDa (mSASP15) forms of mSASP from mouse stratum corneum extracts and determined their amino acid sequences. Next, we bacterially produced recombinant mSASP15 via autoprocessing of GST-mSASP32. Purified recombinant mSASP15 cleaved a quenched fluorogenic peptide substrate, designed from the autoprocessing site for mSASP32 maximally at pH 5.77, which is close to the pH of the epidermal surface. Finally, we generated mSASP-deficient mice that at 5 weeks of age showed fine wrinkles that ran parallel on the lateral trunk without apparent epidermal differentiation defects. These results indicate that the retroviral-like aspartic protease, SASPase, is involved in prevention of fine wrinkle formation via activation in a weakly acidic stratum corneum environment. This study provides the first evidence that retroviral-like aspartic protease is functionally important in mammalian tissue organization.
    Journal of Biological Chemistry 10/2006; 281(37):27512-25. · 4.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Gamma-tubulin regulates the nucleation of microtubules, but knowledge of its functions in vivo is still fragmentary. Here, we report the identification of two closely related gamma-tubulin isoforms, TUBG1 and TUBG2, in mice, and the generation of TUBG1- and TUBG2-deficient mice. TUBG1 was expressed ubiquitously, whereas TUBG2 was primarily detected in the brain. The development of TUBG1-deficient (Tubg1-/-) embryos stopped at the morula/blastocyst stages due to a characteristic mitotic arrest: the mitotic spindle was highly disorganized, and disorganized spindles showed one or two pole-like foci of bundled MTs that were surrounded by condensed chromosomes. TUBG2 was expressed in blastocysts, but could not rescue the TUBG1 deficiency. By contrast, TUBG2-deficient (Tubg2-/-) mice were born, grew, and intercrossed normally. In the brain of wild-type mice, TUBG2 was expressed in approximately the same amount as TUBG1, but no histological abnormalities were found in the Tubg2-/- brain. These findings indicated that TUBG1 and TUBG2 are not functionally equivalent in vivo, that TUBG1 corresponds to conventional gamma-tubulin, and that TUBG2 may have some unidentified function in the brain.
    Developmental Biology 07/2005; 282(2):361-73. · 3.87 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Loss of gastric acid secretion is pathologically known as achlorhydria. Acid-secreting parietal cells are characterized by abundant expression of ezrin (Vil2), one of ezrin/radixin/moesin proteins, which generally cross-link actin filaments with plasma membrane proteins. Here, we show the direct in vivo involvement of ezrin in gastric acid secretion. Ezrin knockout (Vil2(-/-)) mice did not survive >1.5 wk after birth, making difficult to examine gastric acid secretion. We then generated ezrin knockdown (Vil2(kd/kd)) mice by introducing a neomycin resistance cassette between exons 2 and 3. Vil2(kd/kd) mice born at the expected Mendelian ratio exhibited growth retardation and a high mortality. Approximately 7% of Vil2(kd/kd) mice survived to adulthood. Ezrin protein levels in Vil2(kd/kd) stomachs decreased to <5% of the wild-type levels without compensatory up-regulation of radixin or moesin. Adult Vil2(kd/kd) mice suffered from severe achlorhydria. Immunofluorescence and electron microscopy revealed that this achlorhydria was caused by defects in the formation/expansion of canalicular apical membranes in gastric parietal cells.
    The Journal of Cell Biology 04/2005; 169(1):21-8. · 10.82 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Claudins are cell adhesion molecules working at tight junctions (TJs) that are directly involved in compartmentalization in multicellular organisms. The cochlea includes a rather peculiar compartment filled with endolymph. This compartment is characterized by high K+ concentration (approximately 150 mM) and a positive endocochlear potential (approximately 90 mV; EP), both indispensable conditions for cochlear hair cells to transduce acoustic stimuli to electrical signals. These conditions are thought to be generated by the stria vascularis, which is adjacent to the endolymph compartment. The stria vascularis itself constitutes an isolated compartment delineated by two epithelial barriers, marginal and basal cell layers. Because TJs of basal cells are primarily composed of claudin-11, claudin-11-deficient (Cld11-/-) mice were generated with an expectation that the compartmentalization in stria vascularis in these mice would be affected. Auditory brainstem response measurements revealed that Cld11-/- mice suffered from deafness; although no obvious gross morphological malformations were detected in Cld11-/- cochlea, freeze-fracture replica electron microscopy showed that TJs disappeared from basal cells of the stria vascularis. In good agreement with this, tracer experiments showed that the basal cell barrier was destroyed without affecting the marginal cell barrier. Importantly, in the endolymph compartment of Cld11-/- cochlea, the K+ concentration was maintained around the normal level (approximately 150 mM), whereas the EP was suppressed down to approximately 30 mV. These findings indicated that the establishment of the stria vascularis compartment, especially the basal cell barrier, is indispensable for hearing ability through the generation/maintenance of EP but not of a high K+ concentration in the endolymph.
    Journal of Cell Science 11/2004; 117(Pt 21):5087-96. · 5.88 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Ezrin/radixin/moesin (ERM) proteins cross-link actin filaments to plasma membranes to integrate the function of cortical layers, especially microvilli. We found that in cochlear and vestibular sensory hair cells of adult wild-type mice, radixin was specifically enriched in stereocilia, specially developed giant microvilli, and that radixin-deficient (Rdx(-)(/)(-)) adult mice exhibited deafness but no obvious vestibular dysfunction. Before the age of hearing onset ( approximately 2 wk), in the cochlea and vestibule of Rdx(-)(/)(-) mice, stereocilia developed normally in which ezrin was concentrated. As these Rdx(-)(/)(-) mice grew, ezrin-based cochlear stereocilia progressively degenerated, causing deafness, whereas ezrin-based vestibular stereocilia were maintained normally in adult Rdx(-)(/)(-) mice. Thus, we concluded that radixin is indispensable for the hearing ability in mice through the maintenance of cochlear stereocilia, once developed. In Rdx(-)(/)(-) mice, ezrin appeared to compensate for radixin deficiency in terms of the development of cochlear stereocilia and the development/maintenance of vestibular stereocilia. These findings indicated the existence of complicate functional redundancy in situ among ERM proteins.
    The Journal of Cell Biology 09/2004; 166(4):559-70. · 10.82 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Tight junctions are well-developed between adjacent endothelial cells of blood vessels in the central nervous system, and play a central role in establishing the blood-brain barrier (BBB). Claudin-5 is a major cell adhesion molecule of tight junctions in brain endothelial cells. To examine its possible involvement in the BBB, claudin-5-deficient mice were generated. In the brains of these mice, the development and morphology of blood vessels were not altered, showing no bleeding or edema. However, tracer experiments and magnetic resonance imaging revealed that in these mice, the BBB against small molecules (<800 D), but not larger molecules, was selectively affected. This unexpected finding (i.e., the size-selective loosening of the BBB) not only provides new insight into the basic molecular physiology of BBB but also opens a new way to deliver potential drugs across the BBB into the central nervous system.
    The Journal of Cell Biology 05/2003; 161(3):653-60. · 10.82 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The ezrin-radixin-moesin (ERM) family of proteins crosslink actin filaments and integral membrane proteins. Radixin (encoded by Rdx) is the dominant ERM protein in the liver of wildtype mice and is concentrated at bile canalicular membranes (BCMs). Here we show that Rdx(-/-) mice are normal at birth, but their serum concentrations of conjugated bilirubin begin to increase gradually around 4 weeks, and they show mild liver injury after 8 weeks. This phenotype is similar to human conjugated hyperbilirubinemia in Dubin-Johnson syndrome, which is caused by mutations in the multidrug resistance protein 2 (MRP2, gene symbol ABCC2), although this syndrome is not associated with overt liver injury. In wildtype mice, Mrp2 concentrates at BCMs to secrete conjugated bilirubin into bile. In the BCMs of Rdx(-/-) mice, Mrp2 is decreased compared with other BCM proteins such as dipeptidyl peptidase IV (CD26) and P-glycoproteins. In vitro binding studies show that radixin associates directly with the carboxy-terminal cytoplasmic domain of human MRP2. These findings indicate that radixin is required for secretion of conjugated bilirubin through its support of Mrp2 localization at BCMs.
    Nature Genetics 08/2002; 31(3):320-5. · 35.21 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The tight junction (TJ) and its adhesion molecules, claudins, are responsible for the barrier function of simple epithelia, but TJs have not been thought to play an important role in the barrier function of mammalian stratified epithelia, including the epidermis. Here we generated claudin-1-deficient mice and found that the animals died within 1 d of birth with wrinkled skin. Dehydration assay and transepidermal water loss measurements revealed that in these mice the epidermal barrier was severely affected, although the layered organization of keratinocytes appeared to be normal. These unexpected findings prompted us to reexamine TJs in the epidermis of wild-type mice. Close inspection by immunofluorescence microscopy with an antioccludin monoclonal antibody, a TJ-specific marker, identified continuous TJs in the stratum granulosum, where claudin-1 and -4 were concentrated. The occurrence of TJs was also confirmed by ultrathin section EM. In claudin-1-deficient mice, claudin-1 appeared to have simply been removed from these TJs, leaving occludin-positive (and also claudin-4-positive) TJs. Interestingly, in the wild-type epidermis these occludin-positive TJs efficiently prevented the diffusion of subcutaneously injected tracer (approximately 600 D) toward the skin surface, whereas in the claudin-1-deficient epidermis the tracer appeared to pass through these TJs. These findings provide the first evidence that continuous claudin-based TJs occur in the epidermis and that these TJs are crucial for the barrier function of the mammalian skin.
    The Journal of Cell Biology 04/2002; 156(6):1099-111. · 10.82 Impact Factor

Publication Stats

1k Citations
82 Downloads
967 Views
131.47 Total Impact Points

Institutions

  • 2002–2010
    • KAN Research Institute
      Kōbe, Hyōgo, Japan
  • 2008
    • Osaka University
      • Division of Biological Science
      Ōsaka-shi, Osaka-fu, Japan
    • Hyogo College of Medicine
      • Department of Pathology 2
      Nishinomiya, Hyōgo, Japan
  • 2002–2008
    • Kyoto University
      • Department of Cell Biology
      Kyoto, Kyoto-fu, Japan