Lu-Hai Wang

National Health Research Institutes, Miao-li-chieh, Taiwan, Taiwan

Are you Lu-Hai Wang?

Claim your profile

Publications (27)177.26 Total impact

  • Source
    Shih-Hsuan Chan · Lu-Hai Wang
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that have been found highly conserved among species. MiRNAs are able to negatively regulate gene expression through base pairing of 3¿ UTRs of their target genes. Therefore, miRNAs have been shown to play an important role in regulating various cellular activities. Over the past decade, substantial evidences have been obtained to show that miRNAs are aberrantly expressed in human malignancies and could act as ¿OncomiRs¿ or ¿Tumor suppressor miRs¿. In recent years, increasing number of studies have demonstrated the involvement of miRNAs in cancer metastasis. Many studies have shown that microRNAs could directly target genes playing a central role in epithelia-mesenchymal-transition (EMT), a cellular transformation process that allows cancer cells to acquire motility and invasiveness. EMT is considered an essential step driving the early phase of cancer metastasis. This review will summarize the recent findings and characterization of miRNAs that are involved in the regulation of EMT, migration, invasion and metastasis of cancer cells. Lastly, we will discuss potential use of miRNAs as diagnostic and prognostic biomarkers as well as therapeutic targets for cancer.
    Journal of Biomedical Science 01/2015; 22(1):9. DOI:10.1186/s12929-015-0113-7 · 2.74 Impact Factor
  • Cancer Research 01/2015; 75(1 Supplement):A69-A69. DOI:10.1158/1538-7445.CHTME14-A69 · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glucocorticoids are widely used in conjunction with chemotherapy for ovarian cancer to prevent hypersensitivity reactions. Here we reveal a novel role for glucocorticoids in the inhibition of ovarian cancer metastasis. Glucocorticoid treatments induce the expression of miR-708, leading to the suppression of Rap1B, which result in the reduction of integrin-mediated focal adhesion formation, inhibition of ovarian cancer cell migration/invasion and impaired abdominal metastasis in an orthotopic xenograft mouse model. Restoring Rap1B expression reverts glucocorticoid-miR-708 cascade-mediated suppression of ovarian cancer cell invasion and metastasis. Clinically, low miR-708 and high Rap1B are found in late-state ovarian tumours, as compared with normal, and patients with high miR-708 show significantly better survival. Overall, our findings reveal an opportunity for glucocorticoids and their downstream mediators, miR-708 or Rap1B, as therapeutic modalities against metastatic ovarian epithelial cancer.
    Nature Communications 01/2015; 6:5917. DOI:10.1038/ncomms6917 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SOX2 is a transcription factor essential for self-renewal and pluripotency of embryonic stem cells. Recently, SOX2 was found overexpressed in the majority of the lung squamous cell carcinoma (SQC), in which it acts as a lineage-survival oncogene. However, downstream targets/pathways of SOX2 in lung SQC cells remain to be identified. Here, we show that BMP4 is a downstream target of SOX2 in lung SQC. We found that SOX2-silencing-mediated inhibition of cell growth was accompanied by upregulation of BMP4 mRNA and its protein expression. Meta-analysis with 293 samples and qRT-PCR validation with 73 clinical samples revealed an inversely correlated relationship between levels of SOX2 and BMP4 mRNA, and significantly lower mRNA levels in tumor than in adjacent normal tissues. This was corroborated by immunohistochemistry analysis of 35 lung SQC samples showing lower BMP4 protein expression in tumor tissues. Cell-based experiments including siRNA transfection, growth assay and flow cytometry assay, further combined with a xenograft tumor model in mice, revealed that reactivation of BMP4 signaling could partially account for growth inhibition and cell cycle arrest in lung SQC cells upon silencing SOX2. Finally, chromatin immunoprecipitation analysis and luciferase reporter assay revealed that SOX2 could negatively regulate BMP4 promoter activity, possibly through binding to the promoter located in the first intron region of BMP4. Collectively, our findings suggest that BMP4 could act as a tumor suppressor and its downregulation by elevated SOX2 resulting in enhanced growth of lung SQC cells.
    International Journal of Cancer 08/2014; 135(4). DOI:10.1002/ijc.28734 · 5.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: microRNAs offer tools to identify and treat invasive cancers. Using highly invasive isogenic oral squamous cell carcinoma (OSCC) cells established using in vitro and in vivo selection protocols from poorly invasive parental cell populations, we used microarray expression analysis to identify a relative and specific decrease in miR-491-5p in invasive cells. Lower expression of miR-491-5p correlated with poor overall survival of OSCC patients. miR-491-5p overexpression in invasive OSCC cells suppressed their migratory behavior in vitro and lung metastatic behavior in vivo. We defined the G protein-coupled receptor kinase-interacting protein 1 (GIT1) as a direct target gene for miR-491-5p control. GIT1 overexpression was sufficient to rescue miR-491-5p-mediated inhibition of migration/invasion and lung metastasis. Conversely, GIT1 silencing phenocopied the ability of miR-491-5p to inhibit migration/invasion and metastasis of OSCC cells. Mechanistic investigations indicated that miR-491-5p overexpression or GIT1 attenuation reduced focal adhesions, with a concurrent decrease in steady-state levels of paxillin, phospho-paxillin, phospho-FAK, EGF/EGFR-mediated ERK1/2 activation and MMP2/9 levels and activities. In clinical specimens of OSCC, GIT1 levels were elevated relative to paired normal tissues and were correlated with lymph node metastasis, with expression levels of miR-491-5p and GIT1 correlated inversely in OSCC where they informed tumor grade. Together, our findings identify a functional axis for OSCC invasion that suggests miR-491-5p and GIT1 as biomarkers for prognosis in this cancer.
    Cancer Research 12/2013; 74(3). DOI:10.1158/0008-5472.CAN-13-1297 · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metastasis is the major factor affecting patient survival in ovarian cancer. However, its molecular mechanisms remain unclear. The present study used isogenic pairs of low and high invasive ovarian cancer cell lines to demonstrate the downregulation of miRNA-138 in the highly invasive cells, and its functioning as an inhibitor of cell migration and invasion. An orthotopic xenograft mouse model further demonstrated that the expression of miRNA-138 inhibited ovarian cancer metastasis to other organs. Results indicated that miR-138 directly targeted SOX4 and HIF-1α, and overexpression of SOX4 and HIF-1α effectively reversed the miR-138-mediated suppression of cell invasion. Epidermal growth factor receptor (EGFR) acted as the downstream molecule of SOX4 by way of direct transcriptional control, whereas Slug was the downstream molecule of HIF-1α by way of proteasome-mediated degradation. Analysis of human ovarian tumors further revealed downregulation of miR-138 and upregulation of SOX4 in late stage tumors. Patients with miR-138(low) / SOX(high) signature are predominant in late stage and tend to have malignant phenotypes including lymph nodes metastasis, larger ascites volume and higher tumor grade. This study demonstrate the role and clinical relevance of miR-138 in ovarian cancer cell invasion and metastasis; providing a potential therapeutic strategy for suppression of ovarian cancer metastasis by targeting SOX4 and HIF-1α pathways.
    International Journal of Cancer 08/2013; 133(4). DOI:10.1002/ijc.28086 · 5.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Overexpression of Shc adaptor proteins is associated with mitogenesis, carcinogenesis and metastasis. Multiple copies in T-cell malignancy 1 (MCT-1) oncoprotein promotes cell proliferation, survival and tumorigenic effects. Our current data show that MCT-1 is a novel regulator of Shc-Ras-MEK-ERK signaling and MCT-1 is significantly co-activated with Shc gene in human carcinomas. The knockdown of MCT-1 enhances apoptotic cell death accompanied with the activation of caspases and cleavage of caspase substrates under environmental stress. The cancer cell proliferation, chemo-resistance and tumorigenic capacity are proved to be effectively suppressed by targeting MCT-1. Accordingly, an important linkage between MCT-1 oncogenicity and Shc pathway in tumor development has now been established. Promoting MCT-1 expression by gene hyperactivation may be recognized as a tumor marker and MCT-1 may serve as a molecular target of cancer therapy.
    Oncotarget 11/2012; 3(11). · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer remains the second leading cause of cancer death in men in the Western world. Yet current therapies do not significantly improve the long-term survival of patients with distant metastasis. In this study, we investigated the role of the guanine nucleotide exchange factor Vav3 in prostate cancer progression and metastasis and found that Vav3 expression correlated positively with prostate cancer cell migration and invasion. Stimulation of the receptor tyrosine kinase EphA2 by ephrinA1 resulted in recruitment and tyrosine phosphorylation of Vav3, leading to Rac1 activation as well as increased migration and invasion in vitro. Reduction of Vav3 resulted in fewer para-aortic lymph nodes and bone metastasis in vivo. Clinically, expression of Vav3 and EphA2 was elevated in late-stage and metastatic prostate cancers. Among patients with stage IIB or earlier prostate cancer, higher Vav3 expression correlated with lower cumulative biochemical failure-free survival, suggesting that Vav3 may represent a prognostic marker for posttreatment recurrence of prostate cancer. Together, our findings provide evidence that the Vav3-mediated signaling pathway may serve as a therapeutic target for prostate cancer metastasis.
    Cancer Research 06/2012; 72(12):3000-9. DOI:10.1158/0008-5472.CAN-11-2502 · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: SOX9 is an important transcription factor required for development and has been implicated in several types of cancer. However, SOX9 has never been linked to lung cancer to date. Here, we show that SOX9 expression is upregulated in lung adenocarcinoma and show how it is associated with cancer cell growth. Data mining with five microarray data sets containing 490 clinical samples, quantitative reverse transcription-PCR validation assay in 57 independent samples, and immunohistochemistry assay with tissue microarrays containing 170 lung tissue cores were used to profile SOX9 mRNA and protein expression. Short interference RNA suppression of SOX9 in cell lines was used to scrutinize functional role(s) of SOX9 and associated molecular mechanisms. SOX9 mRNA and protein were consistently overexpressed in the majority of lung adenocarcinoma. Knockdown of SOX9 in lung adenocarcinoma cell lines resulted in marked decrease of adhesive and anchorage-independent growth in concordance with the upregulation of p21 (CDKN1A) and downregulation of CDK4. In agreement with higher SOX9 expression level in lung adenocarcinoma, the p21 mRNA level was significantly lower in tumors than that in normal tissues, whereas the opposite was true for CDK4, supporting the notion that SOX9 negatively and positively regulated p21 and CDK4, respectively. Finally, whereas SOX9-knockdown cells showed significantly attenuated tumorigenicity in mice, SOX9 transfectants consistently showed markedly stronger tumorigenicity. Our data suggest that SOX9 is a new hallmark of lung adenocarcinoma, in which SOX9 might contribute to gain of tumor growth potential, possibly acting through affecting the expression of cell cycle regulators p21 and CDK4.
    Clinical Cancer Research 09/2010; 16(17):4363-73. DOI:10.1158/1078-0432.CCR-10-0138 · 8.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The current standard treatment for ovarian carcinoma, consisting of surgery followed by chemotherapy with carboplatin and paclitaxel, is fraught with a high rate of recurrences. We hypothesized that targeted inhibition of specific signaling pathways in combination with conventional drugs may increase chemotherapeutic efficacy. We analyzed the expression and activation profiles of various signaling pathways in nine established ovarian cancer cell lines (CAOV-3, ES2, PA-1, SKOV-3, NIHOVCAR3, OV90, TOV112D, A1847, A2780) and 24 freshly procured human ovarian tumors. The PI3 kinase pathway component Akt was frequently overexpressed and/or activated in tumor cells. The effect of several PI3K pathway inhibitors (rapamycin, LY294002, SH-6) and rapamycin in combination with carboplatin on various tumor cell growth characteristics was tested in cell lines and fresh tumor-derived transient monolayer and organ cultures. Rapamycin by itself and additively with carboplatin inhibited the growth and invasion, and increased the sensitivity to anoikis of most of the ovarian cancer cell lines and fresh tumors. The additive inhibitory effect may be due to enhanced apoptosis as demonstrated by Poly-ADP-Ribose Polymerase (PARP) cleavage and Annexin V staining in cells treated with both rapamycin and carboplatin. Rapamycin in combination with standard chemotherapeutic agents may improve the efficiency of ovarian cancer treatment.
    Gynecologic Oncology 10/2009; 114(3):516-22. DOI:10.1016/j.ygyno.2009.06.002 · 3.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: RACK1 is a 7-WD motif-containing protein with numerous downstream effectors regulating various cellular functions. Using a yeast two-hybrid screen, we identified dynein light chain 1 as a novel interacting partner of RACK1. Additionally, we demonstrated that RACK1 formed a complex with DLC1 and Bim, specifically BimEL, in the presence of apoptotic agents. Upon paclitaxel treatment, RACK1, DLC1, and CIS mediated the degradation of BimEL through the ElonginB/C-Cullin2-CIS ubiquitin-protein isopeptide ligase complex. We further showed that RACK1 conferred paclitaxel resistance to breast cancer cells in vitro and in vivo. Finally, we observed an inverse correlation between CIS and BimEL levels in both ovarian and breast cancer cell lines and specimens. Our study suggests a role of RACK1 in protecting cancer cells from apoptosis by regulating the degradation of BimEL, which together with CIS could play an important role of drug resistance in chemotherapy.
    Journal of Biological Chemistry 07/2008; 283(24):16416-26. DOI:10.1074/jbc.M802360200 · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To explore the basis of metastasis, we compared the human breast cancer lines MCF-7 and MDA-MB453, which have low invasive ability, with their sublines MCF7-I4 and MDA-MB453-I4 with high invasive ability for gene expression and signaling pathways. We previously showed that the I4 lines had dramatically elevated levels of Twist compared with their parental lines. In this study, we observed significantly increased STAT3 Tyr(705) phosphorylation, but not the STAT3 protein levels, in the I4 lines. Activation of STAT3 by interleukin-6 or expression of activated Src induced Twist expression at protein and mRNA levels. Inhibiting STAT3 by a small molecule inhibitor, JSI-124, STAT3 small hairpin RNAs, or dominant negative STAT3 resulted in significant reduction of Twist protein and mRNA expression. STAT3 directly bound to the second proximal STAT3-binding site on the human Twist promoter and activated its transcriptional activity. Inhibition of STAT3 reduced migration, invasion, and colony formation of the I4 cells. Ectopic expression of Twist significantly rescued those phenotypes. Ten normal and 46 tumor specimens of breast tissues were examined for activation of STAT3 and expression of Twist. There was a strong correlation between Tyr(705) p-STAT3 and Twist level in the late stage tumor tissues. Our results indicate that activated STAT3 transcriptionally induces Twist, which plays an important role in promoting migration, invasion, and anchorage-independent growth. Together with our previous observation that Twist transcriptionally induces AKT2 to mediate Twist-promoted oncogenic functions, we conclude that STAT3, Twist, and AKT2 form a functional signaling axis to regulate pivotal oncogenic properties of cancer cells.
    Journal of Biological Chemistry 06/2008; 283(21):14665-73. DOI:10.1074/jbc.M707429200 · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: AKT (also known as PKB) plays a central role in a variety of cellular processes including cell growth, motility and survival in both normal and tumor cells. The AKT pathway is also instrumental in epithelial mesenchymal transitions (EMT) and angiogenesis during tumorigenesis. AKT functions as a cardinal nodal point for transducing extracellular (growth factors including insulin, IGF-1 and EGF ) and intracellular (such as mutated/activated receptor tyrosine kinases, PTEN, Ras and Src) signals. It is positively regulated by phosphatidylinositol 3-kinase and inhibited by phosphatase PTEN. Deregulation of the PI3K/PTEN/AKT pathway is one of the most common altered pathways in human malignancy. In the past few years, significant advances have been made in the understanding of AKT signaling in human oncogenesis and the development of small molecule inhibitor of AKT pathway. Here, we will discuss the regulation and function of AKT as well as targeting AKT for anti-cancer drug discovery.
    Current cancer drug targets 03/2008; 8(1):2-6. DOI:10.2174/156800908783497159 · 3.58 Impact Factor
  • Source
    George Z Cheng · Weizhou Zhang · Lu-Hai Wang
    [Show abstract] [Hide abstract]
    ABSTRACT: Metastasis, the foremost cause of mortality in cancer patients, is increasingly recognized as a coordinated biological process. The multistep process of metastasis posts difficulty in studying its mechanism and molecular basis. Recent works have shown that the basic helix-loop-helix transcriptional factor Twist and the serine/threonine kinase AKT play pivotal roles in tumor development and progression. Our recent study has shown that AKT2 is a transcriptional regulatory target of Twist and acts downstream of Twist to promote cancer cell survival, migration, and invasion. Functional convergence of Twist and AKT2 underscores the importance of this signaling pathway in tumor development and progression and as a potential therapeutic target.
    Cancer Research 03/2008; 68(4):957-60. DOI:10.1158/0008-5472.CAN-07-5067 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transformation of chicken fibroblasts in vitro by Rous Sarcoma Virus represents a model of cancer in which a single oncogene, viral src, uniformly and rapidly transforms primary cells in culture. We experimentally surveyed the transcriptional program affected by Rous Sarcoma Virus (RSV) in primary culture of chicken embryo fibroblasts. As a control, we used cells infected with non-transforming RSV mutant td106, in which the src gene was deleted. Using Affymetrix GeneChip Chicken Genome Arrays, we report 811 genes that were modulated more than 2.5 fold in the virus transformed cells. Among these, 409 genes were induced and 402 genes were repressed by viral src. From the repertoire of modulated genes, we selected 20 genes that were robustly changed. We then validated and quantified the transcriptional changes of most of the 20 selected genes by real-time PCR. The set of strongly induced genes contains vasoactive intestinal polypeptide, MAP kinase phosphatase 2 and follistatin, among others. The set of strongly repressed genes contains TGF beta 3, TGF beta-induced gene, and deiodinase. The function of several robustly modulated genes sheds new light on the molecular mechanism of oncogenic transformation.
    Virology 08/2007; 364(1):10-20. DOI:10.1016/j.virol.2007.03.026 · 3.28 Impact Factor
  • Source
    Lu-Hai Wang · Joseph L-K Chan · Wei Li
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to assess the anti-tumor efficacy of rapamycin alone or in combination with herceptin in breast cancer. A total of 20 human breast cancer lines were examined for expression of various receptor tyrosine kinases and activation of their down stream signaling molecules, as well as for their invasion and colony forming ability. The ErbB2 and PI3 kinase pathway inhibitors were tested for the inhibition on breast cancer cell growth and tumor development. Seven of the 20 lines displayed an elevated level of ErbB2, others had varying level of EGF, IGF-1 or insulin receptor. Over 30% of the lines also had constitutive activation of Akt and MAP kinase. The lines displayed a wide range of colony forming and invasion ability. The PI3 kinase pathway inhibitors LY294002 and rapamycin inhibited the colony forming ability of all of the lines with the ErbB2 overexpressing lines having a higher sensitivity. A similar trend was observed for inhibition of invasion by LY294002. Rapamycin alone and additively together with herceptin inhibited the breast cancer cell growth especially in ErbB2 overexpressing cells. Rapamycin and herceptin synergistically inhibited tumor growth and endpoint tumor load in a xenograft model using a MCF-7 subline and in a MMTV-ErbB2 transgenic model. Rapamycin and herceptin significantly reduced the level of cyclin D1 and D3 and increased the cleavage of caspase 3 suggesting an increased apoptosis. Our results suggest that rapamycin together with herceptin has an enhanced anti-cancer effect and could be developed as an improved therapeutic regimen for breast cancer.
    International Journal of Cancer 07/2007; 121(1):157-64. DOI:10.1002/ijc.22606 · 5.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metastasis, the cardinal feature of malignant tumors, is an important clinical variable in patient prognosis. To understand the basis for metastasis, we systematically selected for highly invasive cells from breast cancer cell lines, MCF7 and MDA-MB-453, with moderate to low invasive ability using Boyden chamber invasion assay. The four-cycle selected invasive lines, named MCF7-I4 and MDA-MB-453-I4, respectively, displayed epithelial-mesenchymal transition (EMT) and dramatically enhanced invasive ability. EMT changes were corroborated with decreased level of E-cadherin and increased vimentin, fibronectin, and beta(1) integrin. Twist, a basic helix-loop-helix transcription factor, and AKT2, a known proto-oncogene, were found to be elevated in the invasive cells compared with the parental. Ectopic expression and knockdown of Twist by short interference RNA resulted in significant increase and reduction, respectively, of AKT2 protein and mRNA expression. Twist bound to E-box elements on AKT2 promoter and enhanced its transcriptional activity. Moreover, silencing AKT2 decreased Twist-promoted migration, invasion, and paclitaxel resistance. Reintroducing AKT2 largely rescued the phenotype resulted from knockdown of Twist in I4 cells, suggesting that AKT2 is a downstream target and functional mediator of Twist. Finally, we observed a 68.8% correlation of elevated Twist and AKT2 expression in late-stage breast cancers as oppose to 13% in early-stage breast cancers. Our study identifies Twist as a positive transcriptional regulator of AKT2 expression, and Twist-AKT2 signaling is involved in promoting invasive ability and survival of breast cancer cells.
    Cancer Research 04/2007; 67(5):1979-87. DOI:10.1158/0008-5472.CAN-06-1479 · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Trefoil factor family-1 (TFF1) is a key gastric tumor-suppressor gene. TFF1 knockout mice develop multiple gastric adenomas and carcinomas, and human gastric cancers typically lack TFF1 expression. Recently, TFF1 mutations have been found in human gastric cancer. The purpose of this study was to determine the functionality of these mutants. Recombinant wild-type TFF1 and the gastric cancer-associated TFF1 mutants (A10D and E13K) were produced and tested for their effect on gastric cancer cell proliferation, apoptosis, and invasion. Molecular modeling was used to guide the choice of mutants and to evaluate structure-function relationships. Molecular modeling suggested that A10D and E13K altered the surface charge of the loop 1 region of TFF1 without disturbing protein stability. Recombinant wild-type TFF1 significantly inhibited cell growth; A10D and E13K lost this tumor-suppressive property along with the ability to block etoposide-induced apoptosis. Although wild-type TFF1 promoted cell invasion, A10D and E13K were even more pro-invasive. Invasion induced by both mutants was blocked by inhibiting PI3-kinase or phospholipase-C, but inhibiting Rho-associated kinase (ROCK) blocked only E13K-induced invasion. The loss of tumor-suppressor activity and gain of invasiveness from single point mutations constitute evidence for a functional role of TFF1 mutations in gastric cancer. These site-directed mutagenesis experiments provide the tools for continued probing of signal transduction mechanisms and structural elements responsible for TFF1 functions.
    Gastroenterology 06/2006; 130(6):1696-706. DOI:10.1053/j.gastro.2006.01.040 · 13.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current understanding of the activation of STATs is through binding between the SH2 domain of STATs and phosphotyrosine of tyrosine kinases. Here we demonstrate a novel role of RACK1 as an adaptor for insulin and insulin-like growth factor 1 receptor (IGF-1R)-mediated STAT3 activation specifically. Intracellular association of RACK1 via its N-terminal WD domains 1 to 4 (WD1-4) with insulin receptor (IR)/IGF-1R is augmented upon respective ligand stimulation, whereas association with STAT3 is constitutive. Purified RACK1 or RACK1 WD1-4 associates directly with purified IR, IGF-1R, and STAT3 in vitro. Insulin induces multiprotein complex formation of RACK1, IR, and STAT3. Overexpression or downregulation of RACK1 greatly enhances or decreases, respectively, IR/IGF-1R-mediated activation of STAT3 and its target gene expression. Site-specific mutants of IR and IGF-1R impaired in RACK1 binding are ineffective in mediating recruitment and activation of STAT3 as well as in insulin- or IGF-1-induced protection of cells from anoikis. RACK1-mediated STAT3 activation is important for insulin and IGF-1-induced anchorage-independent growth in certain ovarian cancer cells. We conclude that RACK1 mediates recruitment of STAT3 to IR and IGF-1R specifically for activation, suggesting a general paradigm for the need of an adaptor in mediating activation of STATs by receptor protein tyrosine kinases.
    Molecular and Cellular Biology 02/2006; 26(2):413-24. DOI:10.1128/MCB.26.2.413-424.2006 · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of the Jun-N-terminal kinase (JNK) signaling cascade by phorbol esters (TPA) or protein kinase C (PKC) is well documented, although the underlying mechanism is not known. Here, we demonstrate that the receptor for activated C kinase 1 (RACK1) serves as an adaptor for PKC-mediated JNK activation. Phosphorylation of JNK by PKC occurs on Ser129 and requires the presence of RACK1. Ser129 phosphorylation augments JNK phosphorylation by MKK4 and/or MKK7 and is required for JNK activation by TPA, TNFalpha, UV irradiation, and PKC, but not by anisomycin or MEKK1. Inhibition of RACK1 expression by siRNA attenuates JNK activation, sensitizes melanoma cells to UV-induced apoptosis, and reduces their tumorigenicity in nude mice. In finding the role of RACK1 in activation of JNK by PKC, our study also highlights the nature of crosstalk between these two signal-transduction pathways.
    Molecular Cell 09/2005; 19(3):309-20. DOI:10.1016/j.molcel.2005.06.025 · 14.46 Impact Factor

Publication Stats

1k Citations
177.26 Total Impact Points

Institutions

  • 2012–2015
    • National Health Research Institutes
      Miao-li-chieh, Taiwan, Taiwan
  • 2013
    • National Central University
      • Department of Life Science
      Таоюань, Taiwan, Taiwan
    • National Tsing Hua University
      • Institute of Molecular Medicine
      Hsin-chu-hsien, Taiwan, Taiwan
  • 2002–2012
    • Icahn School of Medicine at Mount Sinai
      • Department of Microbiology
      Borough of Manhattan, New York, United States
    • Georgetown University
      • Lombardi Cancer Center
      Washington, Washington, D.C., United States