M J Bello

Instituto de Investigaciones Biomedicas de Barcelona, Barcino, Catalonia, Spain

Are you M J Bello?

Claim your profile

Publications (115)243.77 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gastric cancer is the forth most frequent malignancy and the second most common cause of cancer death worldwide. DNA methylation is the most studied epigenetic alteration, occurring through a methyl radical addition to the cytosine base adjacent to guanine. Many tumor genes are inactivated by DNA methylation in gastric cancer. We evaluated the DNA methylation status of ANAPC1, CDKN2A and TP53 by methylation-specific PCR in 20 diffuse- and 26 intestinal-type gastric cancer samples and 20 normal gastric mucosa in individuals from Northern Brazil. All gastric cancer samples were advanced stage adenocarcinomas. Gastric samples were surgically obtained at the João de Barros Barreto University Hospital, State of Pará, and were stored at -80 degrees C before DNA extraction. Patients had never been submitted to chemotherapy or radiotherapy, nor did they have any other diagnosed cancer. None of the gastric cancer samples presented methylated DNA sequences for ANAPC1 and TP53. CDKN2A methylation was not detected in any normal gastric mucosa; however, the CDKN2A promoter was methylated in 30.4% of gastric cancer samples, with 35% methylation in diffuse-type and 26.9% in intestinal-type cancers. CDKN2A methylation was associated with the carcinogenesis process for ~30% diffuse-type and intestinal-type compared to non-neoplastic samples. Thus, ANAPC1 and TP53 methylation was probably not implicated in gastric carcinogenesis in our samples. CDKN2A can be implicated in the carcinogenesis process of only a subset of gastric neoplasias.
    Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica ... [et al.] 07/2008; 41(6):539-43. · 1.08 Impact Factor
  • Cancer Genetics and Cytogenetics 02/2007; 172(1):84-6. · 1.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to examine the DNA methylation profile of several genes in a series of vestibular schwannomas, and to analyze its relationship with clinical and radiological features. Aberrant methylation of promoter regions is a major mechanism for silencing of tumor suppressor genes in several tumors. There is limited information about methylation status in vestibular schwannoma, with no clinical or radiological implications described to date. The methylation status of 16 tumor-related genes including RASSF1A, RAR-B, VHL, PTEN, HMLH1, RB1, TP16, CASP8, ER, TIMP3, MGMT, DAPK, TP73, GSTP1, TP14, and THBS1 was examined in a series of 22 vestibular schwannomas.The bisulfite modification of genomic DNA was performed. Clinical and radiological features were compared with the methylation results. Methylation values from 9% to 27% were found in 12 of 16 genes tested, including RASSF1A, VHL, PTEN, TP16, CASP8, TIMP3, MGMT, DAPK, THBS1, HMLH1, TP73, and GSTP1. A significant association was found between CASP8 and RASSF1A methylation. Methylation of CASP8 was associated with the patient's age and the tumor size. Methylation of TP73 was associated with hearing loss. RASSF1A methylation was inversely correlated with the clinical growth index. Aberrant methylation of tumor-related genes may play a role in the development of vestibular schwannomas. Our results may provide useful clues to the development of prognostic assays for these tumors.
    Ontology & Neurotology 01/2007; 27(8):1180-5. · 2.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The epigenetic changes in pituitary adenomas were identified by evaluating the methylation status of nine genes (RB1, p14(ARF), p16(INK4a), p73, TIMP-3, MGMT, DAPK, THBS1 and caspase-8) in a series of 35 tumours using methylation-specific PCR analysis plus sequencing. The series included non-functional adenomas (n=23), prolactinomas (n=6), prolactinoma plus thyroid-stimulating hormone adenoma (n=1), growth hormone adenomas (n=4), and adrenocorticotropic adenoma (n=1). All of the tumours had methylation of at least one of these genes and 40% of samples (14 of 35) displayed concurrent methylation of at least three genes. The frequencies of aberrant methylation were: 20% for RB1, 17% for p14(ARF), 34% for p16(INK4a), 29% for p73, 11% for TIMP-3, 23% for MGMT, 6% for DAPK, 43% for THBS1 and 54% for caspase-8. No aberrant methylation was observed in two non-malignant pituitary samples from healthy controls. Although some differences in the frequency of gene methylation between functional and non-functional adenomas were detected, these differences did not reach statistical significance. Our results suggest that promoter methylation is a frequent event in pituitary adenoma tumourigenesis, a process in which inactivation of apoptosis-related genes (DAPK, caspase-8) might play a key role.
    Oncology Reports 03/2006; 15(2):443-8. · 2.30 Impact Factor
  • M Josefa Bello, Juan A Rey
    Cancer Genetics and Cytogenetics 02/2006; 164(2):172-3. · 1.93 Impact Factor
  • Dolores Arjona, M Josefa Bello, Juan A Rey
    [Show abstract] [Hide abstract]
    ABSTRACT: We have studied EGFR gene amplification and allelic status of chromosome 7 in 68 tumors consisting of 34 WHO grade IV glioblastomas (26 primary and 8 secondary), 14 WHO grade III anaplastic astrocytomas, and 20 WHO grade II astrocytomas, by polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP), quantitative PCR, and microsatellite analysis. EGFR gene amplification was present in 27 of these tumors (40%), and we identified allelic losses at 7p11 approximately p14 in 38 of the 68 cases (56%), including 17 tumors displaying loss for EGFR intragenic markers. The positive correlation (P < 0.05, chi(2)) between tumors with EGFR intragenic loss and EGFR gene amplification, frequently displaying the EGFR vIII form, suggests that EGFR gene rearrangement leading to intragenic loss is a molecular event that participates in the amplification process of this gene.
    Cancer Genetics and Cytogenetics 02/2006; 164(1):39-43. · 1.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Medulloblastoma (MB), a kind of infratentorial primitive neuroectodermal tumour (PNET), is the most frequent malignant brain tumour in childhood. In contrast, supratentorial PNET (sPNET) are very infrequent tumours, but they are histologically similar to MB, although they present a worse clinical outcome. We investigated the differences in genetic abnormalities between sPNET and MB. We analysed 20 central PNET (14 MB and six sPNET) by conventional comparative genomic hybridization (CGH) in order to determine whether a different genetic profile for each tumour exists. Isochromosome 17q was detected in four of the 14 MB cases, but not in any sPNET. Gains at 17q and 7 happened more frequently in MB, and those at 1q in sPNET. Losses at chromosome 10 were detected only in MB, while losses at 16p and 19p happened more frequently in sPNET. A new amplification site, on 4q12, was detected in two MB. Central PNET are a heterogeneous group of tumours from the genetic point of view. The present and previous data, together with further results from larger series, might contribute to the establishment of specific treatments for supratentorial and infratentorial PNET.
    Histopathology 01/2006; 47(6):631-7. · 2.86 Impact Factor
  • Source
    Genetics and Molecular Biology 01/2006; 29:413-422. · 0.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have studied gene amplification of genes located in 1q32 (GAC1, ELF3, MDM4, and ren1), 4q11 (PDGFR-alpha), and in 12q13-14 (MDM2 and CDK4) using quantitative real-time PCR in a group of 86 tumors consisting of 44 WHO grade IV glioblastomas (GBM) (34 primary and 10 secondary tumors), 21 WHO grade III anaplastic astrocytomas (AA), and 21 WHO grade II astrocytomas (AII). Gene amplification was present in 56 of the 86 samples (65%) in at least 1 gene in our series. GAC1 (51%) and MDM4 (27%) were the most frequently amplified genes within the 1q32 amplicon, and their higher amplification frequency was statistically significant (P<0.05, chi) in the low-grade astrocytomas. Concordant co-amplification was determined for ELF3 and ren1 or ren1 and MDM4 in the grade III-IV tumors. MDM2 amplification was significantly more frequent in primary GBM (16%) than was in secondary GBM (0%). The present study shows that gene amplification in the studied regions is already present in low-grade astrocytic tumors and that amplification of some genes may represent another molecular marker to differentiate primary from secondary GBM.
    Diagnostic Molecular Pathology 12/2005; 14(4):224-9. · 1.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The DAL-1/41B gene (differentially expressed in adenocarcinoma of the lung), located in the chromosome 18p11.3 region, belongs to the protein family 4.1 (membrane-associated proteins), which includes the product of the NF2 gene (merlin), and the proteins, ezrin, radixin, and moesin. DAL-1/4.1B is normally expressed at high levels in the brain, with lower levels in the kidney, intestine, and testis. DAL-1/4.1B is known to suppress growth in meningiomas and can be lost in about 60% of sporadic meningiomas as an early event in tumorigenesis; it is a critical growth regulator in the pathogenesis of neoplastic transformation. The similarity between the DAL-1/4.1B protein and merlin, with their high levels of expression in the brain and their recurrent loss in meningiomas, and the lack of previous DAL-1/4.1B mutational analysis reports initiated this mutational study of DAL-1/4.1B in a series of 83 meningiomas. We found the following sequence variations; Ala555Thr (G1663A in exon 13) and Thr950Lys (C2849A in exon 19) in two cases each, and one case with a 5pb deletion (del taaaa) in intron 18. A polymorphism in exon 14 (C2112T/Thr704Thr, also known as C2166T) was also identified; the tumoral allelic constitutions were heterozygous C/T in 15, homo- or hemizygous C in 67 and hemizygous T in one tumour. The low mutational frequency in our study discounts sequence variations in DAL-1/4.1B as the main mechanism underlying participation of this gene in the neoplastic transformation of meningiomas, and suggests that other inactivating mechanisms, such as epigenetic changes, may participate in DAL1/4.1B silencing.
    International Journal of Molecular Medicine 11/2005; 16(4):771-4. · 1.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein with tyrosine kinase activity. This report investigates the presence of mutations, amplification and/or over-expression of the EGFR gene in 86 glial tumours including 44 glioblastomas, 21 anaplastic astrocytomas, and 21 WHO grade II astrocytomas, using polymerase chain reaction/single-strand conformation polymorphism, semiquantitative reverse-transcription-polymerase chain reaction (RT-PCR) and Southern Blot techniques. Gene amplification values were found in 34 tumours. Amplification levels were not uniform, as the transmembrane region presented lower amplification rates than extra- and intracellular domains. For the 19 samples with sufficient available tumour tissue we found over-expression in 11, and no EGFR mRNA expression in three. Ten cases showed deletion transcripts, and EGFR VIII was identified in all of these cases. One of the cases with EGFR vIII also presented a truncated form, C-958, while another showed an in frame tandem duplication of exons 18--25. We found 14 cases with sequence/structure gene alterations, including seven on which genomic novel DNA changes were identified: a missense mutation (1052C > T/Ala265Val), an insertion (InsCCC2498/Ins Pro748), three intronic changes (E6+72delG, E22--14C>G and E18--109T>C), a new polymorphic variant E12+ 22A > T, and one case that presented a 190 bp insertion, that was produced by the intron-7-exon-8 duplication and generated a truncated EGFR with intact exons 1--8 followed by an additional amino acidic sequence: Val-Ile-Met-Trp. These findings corroborate that EGFR is non-randomly involved in malignant glioma development and that different mutant forms participate in aberrant activation of tyrosine kinase pathways.
    Neuropathology and Applied Neurobiology 09/2005; 31(4):384-94. · 4.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Allelic losses of chromosome 22 found in oligodendrogliomas suggest that at least one tumor suppressor gene on chromosome 22 is inactivated during the multistep process of tumorigenesis in this glial tumor. INI1hSNF5 (HUGO symbol: SMARCB1), located at 22q11, encodes a component of the ATP-dependent chromatin remodeling hSWI-SNF complex; it is a tumor suppressor gene that is mutated in several malignant tumors. The PARVG gene, located at 22q13, has been found to exhibit reduced expression in some cancer lines. Both genes are thus candidate tumor suppressors, potentially involved in the pathogenesis of gliomas. We performed mutation analyses of INI1hSNF5 and PARVG in a series of 40 oligodendrogliomas, but only sequence polymorphic variations were identified. Accordingly, INI1hSNF5 and PARVG do not seem to be the tumor suppressor genes involved in oligodendroglioma development and progression.
    Cancer Genetics and Cytogenetics 08/2005; 160(2):169-73. · 1.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proto-oncogene amplification is an important alteration that is present in about 45% to 50% of high-grade human gliomas. We studied this mechanism in 8 genes (cyclin-dependent kinase-4 [CDK4], MDM2, MDM4, renin-angiotensin system-1, ELF3, GAC1, human epidermal growth factor receptor-2, and platelet-derived growth factor receptor-A gene) in a series of 40 oligodendrogliomas (World Health Organization (WHO) grade II, 21; WHO grade III, 13; and WHO grade II-III oligoastrocytomas, 6) using real-time quantitative polymerase chain reaction. Amplification of at least 1 of these genes was detected in 58% of samples (23/40). By histopathologic grade, 67% of grade II oligodendrogliomas (14/21), 46% of grade III anaplastic oligodendrogliomas (6/13), and 50% of mixed oligoastrocytomas (3/6) were positive for amplification of at least 1 gene. CDK4, MDM2, and GAC1 were the most frequently involved genes (12/40 [30%], 12/40 [30%], and 13/40 [33%], respectively). Our findings demonstrate gene amplification in low-grade samples indicating that it is an important alteration in the early steps of oligodendroglioma development and, therefore, might be considered a molecular mechanism leading to malignant progression toward anaplastic forms.
    American Journal of Clinical Pathology 07/2005; 123(6):900-6. · 2.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We screened the TP53 gene for mutational status in 40 breast tumor cases by polymerase chain reaction, single-strand conformational polymorphism, and gene sequencing. Many mutations of this gene have been described in specific databases. In our study, a new T-->C point mutation was identified in intron 6 at position 13989 in a grade III medullary ductal carcinoma. Other variations in intron 6 have been described in patients with Li-Fraumeni syndrome. One of these variations was reported to inhibit apoptosis and prolong cell survival, thereby increasing breast cancer risk. Nevertheless, more studies are necessary to establish whether this mutation has a role in breast cancer risk.
    Cancer Genetics and Cytogenetics 07/2005; 160(2):160-3. · 1.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of the NF2 gene in the development of meningiomas has recently been documented; inactivating mutations plus allelic loss at 22q, the site of this gene (at 22q12), have been identified in both sporadic and neurofibromatosis type 2-associated tumors. Although epigenetic inactivation through aberrant CpG island methylation of the NF2 5' flanking region has been documented in schwannoma (another NF2-associated neoplasm), data on participation of this epigenetic modification in meningiomas are not yet widely available. Using methylation-specific PCR (MSP) plus sequencing, we assessed the presence of aberrant promoter NF2 methylation in a series of 88 meningiomas (61 grade I, 24 grade II, and 3 grade III), in which the allelic constitution at 22q and the NF2 mutational status also were determined by RFLP/microsatellite and PCR-SSCP analyses. Chromosome 22 allelic loss, NF2 gene mutation, and aberrant NF2 promoter methylation were detected in 49%, 24%, and 26% of cases, respectively. Aberrant NF2 methylation with loss of heterozygosity (LOH) at 22q was found in five cases, and aberrant methylation with NF2 mutation in another; LOH 22q and the mutation were found in 16 samples. The aberrant methylation of the NF2 gene also was the sole alteration in 15 samples, most of which were from grade I tumors. These results indicate that aberrant NF2 hypermethylation may participate in the development of a significant proportion of sporadic meningiomas, primarily those of grade I.
    Genes Chromosomes and Cancer 04/2005; 42(3):314-9. · 3.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Loss of 1p heterozygosity is one of the most characteristic events in oligodendrogliomas. Several genes located in this region have been previously studied to find the target gene implicated in the development of this tumor without success. Patched-2, RIZ1 and KIF1B are novel oncosuppressor genes located at 1p and involved in different kinds of tumors. We have studied these genes and p18(ink4c) using PCR/SSCP methods to detect sequence variations in a series of 40 oligodendrogliomas in which the allelic status at 1p was analyzed. Polymorphisms or no sequence changes were detected in all four genes analyzed. None of the genes analyzed seem to be the target-gene mapped at 1p involved by mutation in oligodendroglioma development.
    Oncology Reports 04/2005; 13(3):539-42. · 2.30 Impact Factor
  • M Josefa Bello, P González-Gómez, J A Rey
    [Show abstract] [Hide abstract]
    ABSTRACT: Metastases in the nervous system represent an important and growing problem in the clinical practice, being the cause of a great mortality in the developed countries. This article reviews the few data available on the molecular mechanisms involved in the pathogenesis of these tumours, leading to oncogene activation, inactivation of tumour suppressor genes, not only by the classical mechanisms, but also by the tumour cell epigenetic balance alteration. We conclude that all this knowledge will lead in the future to a better diagnosis, treatment and clinic evolution of these patients.
    Neurocirugia (Asturias, Spain) 01/2005; 15(6):590-5. · 0.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Primarily involved in cell proliferation and differentiation processes, the plasma membrane-bound ErbB tyrosine kinase receptor family is formed by four members: erbB1/EGFR, erbB2/HER2/Neu, erbB3/HER3 and erbB4/HER4. Calmodulin (CaM) is a Ca2+-binding protein involved in the regulation of multiple intracellular processes that binds directly to EGFR in the presence of Ca2+, inhibiting its tyrosine kinase activity. Two main regions in the receptor have been implicated in this relationship: the calmodulin-binding domain (CaM-BD) and the calmodulin-like domain (CaM-LD); their sequences are highly conserved in other members of this family of receptors. The presence of mutations, amplification and/or overexpression and genomic rearrangement of these domains was investigated for all four erbB family genes in a series of 89 glial tumors, including 44 WHO grade IV glioblastomas, 21 WHO grade III anaplastic astrocytomas, and 24 WHO grade II astrocytomas. Gene alterations were only found in the regions of interest in EGFR. One glioblastoma showed an in frame tandem duplication of the intracellular region including CaM-LD (exons 18-25). CaM-BD gene overdose was evidenced in 18 tumors that showed EGFR amplification in other domains. Over-expression of CaM-BD and CaM-LD was detected in 6 and 17 cases, respectively, of the 19 tumors in which this study was performed. The other three genes coding for the ErbB receptors did not present point mutations, or rearrangements, and only a very low amplification rate was found for erbB2 (1 case) and erbB3 (4 cases). No overexpression of erbB2, erbB3 or erbB4 was detected. These findings suggest that EGFR is the main erbB gene family member non-randomly involved in malignant glioma development, and that the two domains under study, due to their high conservation and wide separation in the EGFR sequence, are good marker regions for evaluating EGFR/erbB1 gene amplification, as well as for analysing the presence of transcripts corresponding to truncated cytosolic forms of the receptor in these tumors.
    International Journal of Oncology 12/2004; 25(5):1489-94. · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this research was to examine the DNA methylation profile of meningiomas. Accordingly, we examined the DNA methylation status of ten tumor-related genes (RB1, p16(INK4a), p73, MGMT, ER, DAPK, TIMP-3, p14(ARF), THBS1, and Caspase-8) in 98 meningiomas (68 grade I; 27 grade II; and 3 grade III samples) using methylation-specific PCR and sequencing. The most frequently methylated genes were THBS1 (30%), TIMP-3 (24%), p16(INK4a) (17%), MGMT (16%), p73 (15%), ER (15%), and p14(ARF) (13%), whereas methylation was relatively rare in the other genes (<10%). Methylation occurred in at least one gene in 77.5% of the cases and in three or more genes in 25.5%. Methylation was tumor specific since it was absent in the controls: two non-neoplastic meningeal samples and two non-neoplastic brain samples. The frequency of aberrant gene methylation in grade I versus grade II-III tumors showed some differences for TIMP-3, THBS1, MGMT, p16(INK4a) and p73; these differences reached statistical significance for TIMP-3: 18% in grade I versus 40% in grade II-III (P < 0.02). Our previous loss of heterozygosity studies provided the allelic constitution at 1p and 22q for 60 of the 98 meningiomas included in this report. The level of aberrant promoter methylation increased in tumors (30 samples) displaying 1p loss (either isolated or as concurrent deletion at 1p/22q; P = 0.014). These meningiomas primarily accumulated the epigenetic changes of THBS1 (14/30; 47%; P < 0.005), TIMP-3 (12/30; 40%; P < 0.05), p73 (10/30; 26%; P < 0.02) and p14(ARF) /p16(INK4a)(7/30 each one; 23%; not significant). Our findings indicate that aberrant DNA methylation of promoter-associated CpG islands in meningiomas contributes to the development of these tumors.
    Acta Neuropathologica 11/2004; 108(5):413-21. · 9.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant methylation of promoter CpG islands in human genes is an alternative genetic inactivation mechanism that contributes to the development of human tumors. Nevertheless, few studies have analyzed methylation in medulloblastomas. We determined the frequency of aberrant CpG island methylation for Caspase 8 (CASP8) in a group of 24 medulloblastomas arising in 8 adult and 16 pediatric patients. Complete methylation of CASP8 was found in 15 tumors (62%) and one case displayed hemimethylation. Three samples amplified neither of the two primer sets for methylated or unmethylated alleles, suggesting that genomic deletion occurred in the 5' flanking region of CASP8. Our findings suggest that methylation commonly contributes to CASP8 silencing in medulloblastomas and that homozygous deletion or severe sequence changes involving the promoter region may be another mechanism leading to CASP8 inactivation in this neoplasm.
    Oncology Reports 10/2004; 12(3):663-6. · 2.30 Impact Factor

Publication Stats

2k Citations
243.77 Total Impact Points

Institutions

  • 1992–2008
    • Instituto de Investigaciones Biomedicas de Barcelona
      Barcino, Catalonia, Spain
  • 1994–2007
    • Hospital Universitario La Paz
      Madrid, Madrid, Spain
    • Hospital Universitario de La Princesa
      Madrid, Madrid, Spain
  • 1999
    • Spanish National Research Council
      Hispalis, Andalusia, Spain
  • 1993
    • Universidad Autónoma de Madrid
      Madrid, Madrid, Spain
  • 1985–1992
    • Fundación Jiménez Díaz
      Madrid, Madrid, Spain
  • 1989–1990
    • Institute for Biomedical Research “Alberto Sols“
      Madrid, Madrid, Spain