R J Flower

University of London, Londinium, England, United Kingdom

Are you R J Flower?

Claim your profile

Publications (182)1052.23 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Endogenous glucocorticoids are pro-resolving mediators, an example of which is the endogenous glucocorticoid-regulated protein Annexin A1 (AnxA1). Since silicosis is an occupational lung disease characterized by unabated inflammation and fibrosis, in this study we tested the therapeutic properties of the N-terminal AnxA1-derived peptide Ac2-26 on experimental silicosis. Swiss-Webster mice received silica particles intranasally and were subsequently treated with intranasal peptide Ac2-26 (200 μg.mouse(-1) ) or dexamethasone (25 μg.mouse(-1) ) for 7 days, starting 6 h post-challenge. Peptide Ac2-26 abolished leukocyte infiltration, collagen deposition, granuloma formation and the generation of pro-inflammatory cytokines following silica provocation, readouts only partially inhibited by dexamethasone. A clear exacerbation of these pathological changes was observed in AnxA1 knockout mice as compared to the wild-type littermate controls. Lung fibroblasts from WT mice, but not from formyl peptide receptor (Fpr) type 1 knockout, had the IL-13 or TGFβ-induced production of CCL2/MCP-1 and collagen reduced after incubation with peptide Ac2-26 in vitro. This compound also inhibited the production of CCL2/MCP-1 from fibroblasts of Fpr2 knockout mice. Collectively, our findings unveil novel protective properties of the AnxA1 derivative peptide Ac2-26 on the inflammatory and fibrotic responses promoted by silica, and suggest that AnxA1 mimetic agents might be a promising strategy in innovative anti-fibrotic approaches for treatment of silicosis. This article is protected by copyright. All rights reserved.
    British Journal of Pharmacology 02/2015; · 4.99 Impact Factor
  • R Flower
    QJM: monthly journal of the Association of Physicians 06/2012; 105(9):823-30. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Annexin-A1 (Anx-A1) is a glucocorticoid-regulated 37kDa protein with powerful anti-inflammatory actions: enhanced release from target cells occurs following addition of the anti-allergic cromone drugs. Anx-A1 is inactivated by proteolytic cleavage of the N-terminus and increased amounts of the cleaved 33kDa product correlate with inflammatory responses. Aim: To investigate if Anx-A1 is detectable in human tear specimens from patients with vernal keratoconjunctivitis (VKC). Methods: Tear specimens were collected from patients affected by active VKC (n=23) before and after therapy with Alomide (equivalent to Lodoxamide) 0.1%(n=11) for 10 daysand non-inflammatory control tear specimens from healthy volunteers (n=17) who gave informed consent. Anx-A1 protein levels were measured by ELISA and by Western blotting. Results: In cell-free tear specimens from healthy donors, the concentration of Anx-A1 was 433.6 ± 54.3 pg/ ml (n=17) and >90% was in the intact form. In tears from VKC patients however, total Anx-A1 increased to 1908 ± 319.3pg/ml (n=23; p<0.05) but only 48% (921.5 ± 193.5 pg/ml) of this was the intact biologically active species. Proteolytic cleavage of the protein was reduced in the group treated with Alomide (>80% is intact form, n=11, p<0.01). Conclusion: Anx-A1 is constitutively present in normal human tears and is proteolytically cleaved to inactivation during chronic allergic disease. Alomide treatment decreased the proportion of cleaved protein in VKC patients, and this is perhaps related to its therapeutic action.
    Journal of Allergy and Therapy. 01/2012;
  • Samir S. Ayoub, Roderick Flower, Michael Seed
    Methods in Molecular Biology, Vol. 644 edited by Ayoub, Samir S.; Flower, Roderick; Seed, Michael, 01/2010; Humana Press., ISBN: 978-1-58829-953-6
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The glucocorticoid-regulated protein annexin A1 is a potent inhibitor of hormone exocytosis in the neuroendocrine system, acting in a paracrine/juxtacrine manner. The signaling mechanism employed by annexin A1 in this process is uncertain, although we have recently presented evidence for a role of the formyl peptide receptor in vivo. We sought to characterize the mechanism of action of annexin A1 on exocytosis using the release of adrenocorticotrophin from the corticotroph-like cell line AtT20 as an in vitro model system. Through the comparison of adrenocorticotrophin release from cells expressing either wild-type annexin A1 or mutant forms, we show a critical involvement of phosphorylation on serine 27 and 45 in the translocation of the protein to the membrane and its inhibitory action on exocytosis. Moreover, we show, for the first time, that annexin A1-dependent inhibition of adrenocorticotrophin release involves the enhancement of actin polymerization to prevent exocytosis via formyl peptide receptor and Rho kinase signaling pathways. This finding has significant implications for the inhibitory actions of annexin A1 on exocytosis in other endocrine and immune contexts.
    The FASEB Journal 08/2009; 23(11):4000-10. · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using biochemical, epifluorescence and electron microscopic techniques in a U937 model system, we investigated the effect of anti-allergic drugs di-sodium cromoglycate and sodium nedocromil on the trafficking and release of the anti-inflammatory protein Annexin-A1 (Anx-A1) when this was triggered by glucocorticoid (GC) treatment. GCs alone produced a rapid (within 5min) concentration-dependent activation of PKCalpha/beta (Protein Kinase C; EC 2.7.11.13) and phosphorylation of Anx-A1 on Ser(27). Both phosphoproteins accumulated at the plasma membrane and Anx-A1 was subsequently externalised thereby inhibiting thromboxane (Tx) B(2) generation. When administered alone, cromoglycate or nedocromil had little effect on this pathway however, in the presence of a fixed sub-maximal concentration of GCs, increasing amounts of the cromoglycate-like drugs caused a striking concentration-dependent enhancement of Anx-A1 and PKCalpha/beta phosphorylation, membrane recruitment and Anx-A1 release from cells resulting in greatly enhanced inhibition of TxB(2) generation. GCs also stimulated phosphatase accumulation at the plasma membrane of U937 cells. Both cromoglycate and nedocromil inhibited this enzymatic activity as well as that of a highly purified PP2A phosphatase preparation. We conclude that stimulation by the cromoglycate-like drugs of intracellular Anx-A1 trafficking and release (hence inhibition of eicosanoid release) is secondary to inhibition of a phosphatase PP2A (phosphoprotein phosphatase; EC 3.1.3.16), which probably forms part of a control loop to limit Anx-A1 release. These experiments provide a basis for a novel mechanism of action for the cromolyns, a group of drugs that have long puzzled investigators.
    Biochemical pharmacology 07/2009; 77(12):1814-26. · 4.25 Impact Factor
  • Source
    F D'Acquisto, M Perretti, R J Flower
    [Show abstract] [Hide abstract]
    ABSTRACT: The glucocorticoids are the most potent anti-inflammatory drugs that we possess and are effective in a wide variety of diseases. Although their action is known to involve receptor mediated changes in gene transcription, the exact mechanisms whereby these bring about their pleiotropic action in inflammation are yet to be totally understood. Whilst many different genes are regulated by the glucocorticoids, we have identified one particular protein-annexin A1 (Anx-A1)-whose synthesis and release is strongly regulated by the glucocorticoids in many cell types. The biology of this protein, as revealed by studies using transgenic animals, peptide mimetics and neutralizing antibodies, speaks to its role as a key modulator of both of the innate and adaptive immune systems. The mechanism whereby this protein exerts its effects is likely to be through the FPR receptor family-a hitherto rather enigmatic family of G protein coupled receptors, which are increasingly implicated in the regulation of many inflammatory processes. Here we review some of the key findings that have led up to the elucidation of this key pathway in inflammatory resolution.
    British Journal of Pharmacology 09/2008; 155(2):152-69. · 4.99 Impact Factor
  • Source
    S S Ayoub, S Yazid, R J Flower
    [Show abstract] [Hide abstract]
    ABSTRACT: Annexin-A1 (ANXA1), a glucocorticoid-regulated protein, mediates several of the anti-inflammatory actions of the glucocorticoids. Previous studies demonstrated that ANXA1 is involved in pain modulation. The current study, using ANXA1 knockout mice (ANXA1-/-), is aimed at addressing the site and mechanism of the modulatory action of ANXA1 as well as possible involvement of ANXA1 in mediating the analgesic action of glucocorticoids. The acetic acid-induced writhing response was performed in ANXA1-/- and wild-type (ANXA1+/+) mice with spinal and brain levels of prostaglandin E2 (PGE2) examined in both genotypes. The effect of the ANXA1 peptomimetic Ac2-26 as well as methylprednisolone on the writhing response and on spinal cord PGE2 of ANXA1+/+ and ANXA1-/- was compared. The expression of proteins involved in PGE2 synthesis, cytosolic phospholipase A2 (cPLA2) and cyclooxygenases (COXs), in the spinal cord of ANXA1+/+ and ANXA1-/- was also compared.Key results:ANXA1-/- mice exhibited a significantly greater writhing response and increased spinal cord levels of PGE2 compared with ANXA1+/+ mice. Ac2-26 produced analgesia and reduced spinal PGE2 levels in ANXA1+/+ and ANXA1-/- mice, whereas methylprednisolone reduced the writhing response and spinal PGE2 levels in ANXA1+/+, but not in ANXA1-/- mice. The expression of cPLA2, COX-1, COX-2 and COX-3 in spinal cord tissues was upregulated in ANXA1-/-compared with ANXA1+/+. We conclude that ANXA1 protein modulates nociceptive processing at the spinal level, by reducing synthesis of PGE2 by modulating cPLA2 and/or COX activity. The analgesic activity of methylprednisolone is mediated by spinal ANXA1.
    British Journal of Pharmacology 08/2008; 154(5):1135-42. · 4.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Annexin-1 (Anx-A1) has been recently shown to play a key role in T-cell activation and to be highly expressed in T cells from RA patients. Here, we investigated the effects of glucocorticoids (GCs) on Anx-A1 expression in T cells in vitro and in vivo. To evaluate the effects of dexamethasone (Dex) on Anx-A1 expression, human peripheral blood T cells were incubated with Dex and then analysed by real-time PCR and western blotting. Similar experiments were carried out in vivo by measuring Anx-A1 levels in T cells from patients with RA before and after administration of steroids. Incubation of T cells with Dex decreased Anx-A1 levels in a time-dependent fashion and almost abolished its expression after 12 h. Stimulation of T cells pre-incubated with Dex for 12 h with anti-CD3/CD28 led to significant reduction of IL-2 production. Addition of human recombinant Anx-A1 to Dex-treated cells reversed the inhibitory effects of the steroids on anti-CD3/CD28-induced IL-2 production. Treatment of RA patients with steroid decreased Anx-A1 expression in T cells. GCs suppress Anx-A1 expression in T cells in vitro and in vivo. These results provide evidence for a novel pathway by which steroids regulate the adaptive immune response and suggest that Anx-A1 may represent a target for the treatment of autoimmune diseases.
    Rheumatology (Oxford, England) 06/2008; 47(5):636-9. · 4.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously reported a role for annexin-A1 in liver proliferation and tumorogenicity as well as its action as an acute phase protein in a model of endotoxemia in interleukin-6 null mice. In this study, we have investigated the analysis of the gene and protein expression in annexin-A1 null mice and the wild type livers during foetal and adult life, and in the presence of a proinflammatory stimulus. The data indicate a link between the expression of the annexin-A1 as serine-phosphorylated-protein during early events of the inflammatory response and as tyrosine-phosphorylated-form at later time-points, during the resolution of inflammation. The study of annexin-A1 post-translation modification may promote a new annexin-A1 peptide discovery programme to treat specific pathologies.
    Inflammation Research 04/2008; 57(3):97-103. · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The N-formyl peptide receptors (FPRs) are a family of G-protein coupled receptors that respond to proinflammatory N-formylated bacterial peptides (e.g., formyl-Met-Leu-Phe, fMLF) and, thus, contribute to the host response to bacterial infection. Paradoxically, a growing body of evidence suggests that some members of this receptor family may also be targets for certain anti-inflammatory molecules, including annexin A1 (ANXA1), which is an important mediator of glucocorticoid (GC) action. To explore further the potential role of FPRs in mediating ANXA1 actions, we have focused on the pituitary gland, where ANXA1 has a well-defined role as a cell-cell mediator of the inhibitory effects of GCs on the secretion of corticotrophin (ACTH), and used molecular, genetic, and pharmacological approaches to address the question in well-established rodent models. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis identified mRNAs for four FPR family members in the mouse anterior pituitary gland, Fpr-rs1, Fpr-rs2, Fpr-rs6, and Fpr-rs7. Functional studies confirmed that, like dexamethasone, ANXA1 and two ANXA1-derived peptides (ANXA1(1-188) and ANXA1(Ac2-26)) inhibit the evoked release of ACTH from rodent anterior pituitary tissue in vitro. Fpr1 gene deletion failed to modify the pituitary responses to dexamethasone or ANXA1(Ac2-26). However, lipoxin A4 (LXA4, 0.02-2 microM, a lipid mediator with high affinity for Fpr-rs1) mimicked the inhibitory effects of ANXA1 on ACTH release as also did fMLF in high (1-100 microM) but not lower (10-100 nM) concentrations. Additionally, a nonselective FPR antagonist (Boc1, 100 microM) overcame the effects of dexamethasone, ANXA1(1-188), ANXA1(Ac2-26), fMLF, and LXA4 on ACTH release, although at a lower concentration (50 microM), it was without effect. Together, the results suggest that the actions of ANXA1 in the pituitary gland are independent of Fpr1 but may involve other FPR family members, in particular, Fpr-rs1 or a closely related receptor. They thus provide the first evidence for a role of the FPR family in the regulation of neuroendocrine function.
    The FASEB Journal 05/2007; 21(4):1037-46. · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is accumulating and convincing evidence indicating a role for glutamate in the pathogenesis of the human demyelinating disease multiple sclerosis (MS). Studies in experimental autoimmune encephalomyelitis (EAE), the animal model of MS, demonstrate that pharmacological inhibition of specific glutamate receptors suppresses neurological symptoms and prevents blood-brain barrier (BBB) breakdown. The mechanisms through which glutamate influences BBB function during EAE remain unclear. Glutamate triggers the production of nitric oxide and superoxide, which can lead to the formation of peroxynitrite (ONOO(-)). Recent studies have implicated ONOO(-) in the loss of neurovascular integrity during EAE. We propose that glutamate contributes to BBB breakdown via the actions of ONOO(-). The present investigation examined glutamate-induced ONOO(-) formation in the b.End3 brain-derived endothelial cell line. b.End3 cells were incubated with a concentration range of glutamate and ONOO(-) production was assessed over time. Results showed a concentration- and time-dependent increase in ONOO(-) levels in glutamate-treated cells that were suppressed by selective and non-selective inhibitors of ONOO(-)-mediated reactions. Specific activation of b.End3-associated NMDA receptors also resulted in a concentration-dependent increase in ONOO(-) production. The ability of b.End3 cells to respond to the presence of glutamate was confirmed through the detection of NMDA receptor immnuoreactivity in cell extracts. In addition, the use of the NMDA receptor antagonists MK-801 and memantine reduced glutamate-mediated ONOO(-) generation from b.End3 cells. The data reinforce the important relationship between glutamate and the NMDA receptor, positioned at neurovascular sites, which may be of particular relevance to the pathogenesis of demyelinating disease.
    Biochemical Pharmacology 02/2007; 73(2):228-36. · 4.65 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Annexin 1 (ANXA1) is a member of the annexin family of phospholipid- and calcium-binding proteins with a well demonstrated role in early delayed (30 min to 3 h) inhibitory feedback of glucocorticoids in the pituitary. We have examined corticotrophs in wild-type and ANXA1 knockout mice to determine the effects of lack of ANXA1 in male and female animals. Anterior pituitary tissue from ANXA1 wild-type, heterozygote and null mice was fixed and examined (i) by confocal immunocytochemistry to determine the number of corticotrophs and (ii) by electron microscopy to examine the size, secretory granule population and secretory machinery of corticotrophs. No differences in these parameters were detected in female mice. In male ANXA1 null mice, there were approximately four-fold more corticotrophs than in wild-type animals. However, the corticotrophs in ANXA1 null mice were smaller and had reduced numbers of secretory granules (the reduction in granules paralleled the reduction in cell size). No differences in the numerical density of folliculo-stellate, gonadotroph, lactotroph or somatotroph cells were detected in male ANXA1 null mice. Plasma corticosterone, adrenocorticotrophic hormone (ACTH) and pituitary pro-opiomelanocortin mRNA were unchanged but pituitary ACTH content was increased in male ANXA1 null mice. Interleukin (IL)-6 pituitary content was significantly elevated in male and reduced in female ANXA1 null mice compared to wild-type. In conclusion, these data indicate that ANXA1 deficiency is associated with gender-specific changes in corticotroph number and structure, via direct actions of ANXA1 and/or indirect changes in factors such as IL-6.
    Journal of Neuroendocrinology 12/2006; 18(11):835-46. · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Annexin A1 (ANXA1) has an important role in cell-cell communication in the host defense and neuroendocrine systems. In both systems, its actions are exerted extracellularly via membrane-bound receptors on adjacent sites after translocation of the protein from the cytoplasm to the cell surface of adjacent cells. This study used molecular, microscopic, and pharmacological approaches to explore the mechanisms underlying the cellular exportation of ANXA1 in TtT/GF (pituitary folliculo-stellate) cells. LPS caused serine-phosphorylation of ANXA1 (ANXA1-S27-PO4) and translocation of the phosphorylated protein to the cell membrane. The fundamental requirement of phosphorylation for membrane translocation was confirmed by immunofluorescence microscopy on cells transfected with wild-type or mutated (S27/A) ANXA1 constructs tagged with enhanced green fluorescence protein. The trafficking of ANXA1-S27-PO4 to the cell surface was dependent on PI3-kinase and MAP-kinase. It also required HMG-coenzyme A and myristoylation. The effects of HMG-coenzyme A blockade were overcome by mevalonic acid (the product of HMG-coenzyme A) and farnesyl-pyrophosphate but not by geranyl-geranylpyrophosphate or cholesterol. Together, these results suggest that serine-27 phosphorylation is essential for the translocation of ANXA1 across the cell membrane and also identify a role for isoprenyl lipids. Such lipids could target consensus sequences in ANXA1. Alternatively, they may target other proteins in the signal transduction cascade (e.g., transporters).
    The FASEB Journal 08/2006; 20(9):1498-500. · 5.48 Impact Factor
  • Source
    R J Flower
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of the British Pharmacological Society coincided almost exactly with a series of ground-breaking studies that ushered in an entirely new field of research--that of lipid mediator pharmacology. For many years following their chemical characterisation, lipids were considered only to be of dietary or structural importance. From the 1930s, all this changed--slowly at first and then more dramatically in the 1970s and 1980s with the emergence of the prostaglandins (PGs), the first intercellular mediators to be clearly derived from lipids, in a dynamic on-demand system. The PGs exhibit a wide range of biological activities that are still being evaluated and their properties underlie the action of one of the world's all-time favourite medicines, aspirin, as well as its more modern congeners. This paper traces the development of the PG field, with particular emphasis on the skillfull utilisation of the twin techniques of bioassay and analytical chemistry by U.K. and Swedish scientists, and the intellectual interplay between them that led to the award of a joint Nobel Prize to the principal researchers in the PG field, half a century after the first discovery of these astonishingly versatile mediators.
    British Journal of Pharmacology 02/2006; 147 Suppl 1:S182-92. · 4.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Historical data suggested that a soluble protein, since identified as annexin-A1 (Anx-A1) was released from macrophages following glucocorticoid stimulation and could modulate eicosanoid production and other functions of these cells. Here, we review some recent findings using a line of Anx-A1(-/-) mice to explore the impact of Anx-A1 gene deletion on macrophage biology. The absence of Anx-A1 selectively alters phagocytic capacity of rodent resident peritoneal macrophages apparently through changes in surface adhesion molecule expression. Anx-A1 is also apparently important in the tonic down-regulation of other macrophage functions such as COX-2 induction, PGE(2) release and the production of reactive oxygen species.
    Prostaglandins Leukotrienes and Essential Fatty Acids 03/2005; 72(2):95-103. · 1.98 Impact Factor
  • R. J. Flower
    [Show abstract] [Hide abstract]
    ABSTRACT: Without Abstract
    Inflammopharmacology 12/2004; 12(5):447-448.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our previous studies have identified a role for annexin 1 (ANXA1), a protein produced by the pituitary folliculostellate cells, as a paracrine/juxtacrine mediator of the acute regulatory effects of glucocorticoids on the release of adrenocorticotropic hormone and other pituitary hormones. In the present study, we focused on the secretion of thyroid stimulating hormone (TSH) and luteinizing hormone (LH) and used a battery of ANXA1-derived peptides to identify the key domains in the ANXA1 molecule that are critical to the inhibition of peptide release. In addition, as ANXA1 is a substrate for protein kinase C (PKC) and tyrosine kinase, we examined the roles of these kinases in the manifestation of the ANXA1-dependent inhibitory actions of dexamethasone on TSH and LH release. Dexamethasone suppressed the forskolin-induced release of TSH and LH from rat anterior pituitary tissue in vitro. Its effects were mimicked by human recombinant ANXA1 (hrANXA1) and a truncated protein, ANXA1(1-188). ANXA1(Ac2-26), also suppressed stimulated peptide release but it lacked both the potency and the efficacy of the parent protein. Shorter N-terminal ANXA1 sequences were without effect. The PKC inhibitor PKC(19-36) abolished the inhibitory actions of dexamethasone on the forskolin-evoked release of TSH and LH; it also attenuated the inhibitory actions of ANXA1(Ac2-26). Similar effects were produced by annexin 5 (ANXA5) which sequesters PKC in other systems. By contrast, the tyrosine kinase inhibitors, p60v-src (137-157) and genistein, had no effect on the secretion of TSH or LH alone or in the presence of forskolin and/or dexamethasone. Dexamethasone caused the translocation of a tyrosine-phosphorylated species of ANXA1 to the surface of pituitary cells. The total amount of ANXA1 exported from the cells in response to the steroid was unaffected by tyrosine kinase blockade. However, the degree of tyrosine-phosphorylation of the exported protein was markedly reduced by genistein. These results suggest that (i) the ANXA1-dependent inhibitory actions of dexamethasone on the release of TSH and LH require PKC and sequences in the N-terminal domain of ANXA1, but are independent of tyrosine kinase, and (ii) while dexamethasone induces the cellular exportation of a tyrosine-phosphorylated species of ANXA1, tyrosine phosphorylation per se is not critical to the steroid-induced passage of ANXA1 across the membrane.
    Journal of Neuroendocrinology 11/2003; 15(10):946-57. · 3.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Addition to the prednisolone structure of a chemical moiety (linker+nitric ester) that releases NO species yielded a novel glucocorticoid (nitro-prednisolone or NCX-1015) with enhanced anti-inflammatory activities. Nitro-prednisolone was much more potent than prednisolone and the derivative devoid of the nitric ester in an acute peritonitis model (higher impact on neutrophil migration and soluble mediator generation) as well as in models of chronic inflammation (air-pouch granuloma and collagen II-induced arthritis). In the collagen II-induced arthritis model, NCX-1015 abrogated the plasma levels of a catabolite of cartilage and bone metabolism, indication of a disease modifying action. In an in vitro assay of bone resorption, NCX-1015 did not activate osteoclast activity, whereas prednisolone did. This lack of effect of NCX-1015 was chiefly due to NO. We propose that NCX-1015 is the prototype of a new class of glucocorticoids, the nitro-steroids, endowed with enhanced anti-inflammatory properties and reduced side effects. These and other experimental observations here reviewed may prompt the assessment of the clinical impact of the nitro-steroids on rheumatoid arthritis and inflammatory bowel disease.
    Digestive and Liver Disease 06/2003; 35 Suppl 2:S41-8. · 2.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The 37kDa protein annexin 1 (Anx-1; lipocortin 1) is a glucocorticoid-regulated protein that has been implicated in the regulation of phagocytosis, cell signalling and proliferation, and postulated to be a mediator of glucocorticoids action in inflammation and in the control of anterior pituitary hormone release. Immuno-neutralisation or antisense strategies support this hypothesis as they can reverse the effect of glucocorticoids in several systems. We recently generated a line of mice lacking the Anx-1 gene noting that some tissues taken from such animals exhibited an increased expression of several proteins including COX-2 and cPLA2. In models of experimental inflammation, Anx-1(-/-) mice exhibit an exaggerated response and a partial or complete resistance to the anti-inflammatory effects of glucocorticoids. Several other anomalies were noted including abnormal leukocyte adhesion molecule expression, an increased spontaneous migratory behaviour of PMN in Anx-1(-/-) mice and a resistance in Anx-1(-/-) macrophages to glucocorticoid inhibition of superoxide generation. This paper reviews these and other data in the light of the development of the 'second messenger' hypothesis of glucocorticoid action.
    Journal of physiology and pharmacology: an official journal of the Polish Physiological Society 01/2003; 53(4 Pt 1):541-53. · 2.72 Impact Factor

Publication Stats

10k Citations
1,052.23 Total Impact Points

Institutions

  • 2012
    • University of London
      Londinium, England, United Kingdom
  • 1992–2009
    • William Harvey Research Institute
      Londinium, England, United Kingdom
  • 1998–2007
    • Imperial College London
      • Faculty of Medicine
      London, ENG, United Kingdom
  • 1997
    • Cincinnati Children's Hospital Medical Center
      • Division of Critical Care Medicine
      Cincinnati, OH, United States
  • 1996
    • Westfield State College
      Franklin Square, New York, United States
  • 1993
    • University of Naples Federico II
      • Department of Pharmacy
      Napoli, Campania, Italy
  • 1991
    • University of Aberdeen
      Aberdeen, Scotland, United Kingdom
  • 1985–1991
    • University of Bath
      • Department of Pharmacy and Pharmacology
      Bath, England, United Kingdom
  • 1981–1984
    • Università degli Studi di Napoli L'Orientale
      Napoli, Campania, Italy