Trine Christensen

Duke University, Durham, NC, United States

Are you Trine Christensen?

Claim your profile

Publications (7)33.5 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Elastin-like polypeptides (ELPs) are thermally sensitive peptide polymers that undergo thermally triggered phase separation and this behavior is imparted to soluble proteins when they are fused to an ELP. The transition temperature of the ELP fusion protein is observed to be different than that of a free ELP, indicating that the surface properties of the fused protein modulate the thermal behavior of ELPs. Understanding this effect is important for the rational design of applications that exploit the phase transition behavior of ELP fusion proteins. We had previously developed a biophysical model that explained the effect of hydrophobic proteins on depressing the transition temperature of ELP fusion proteins relative to free ELP. Here, we extend the model to elucidate the effect of hydrophilic proteins on the thermal behavior of ELP fusion proteins. A linear correlation was found between overall residue composition of accessible protein surface weighted by a characteristic transition temperature for each residue and the difference in transition temperatures between the ELP protein fusion and the corresponding free ELP. In breaking down the contribution of residues to polar, nonpolar, and charged, the model revealed that charged residues are the most important parameter in altering the transition temperature of an ELP fusion relative to the free ELP.
    Biomacromolecules 04/2013; · 5.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper reports a general in situ method to grow a polymer conjugate solely from the C terminus of a recombinant protein. GFP was fused at its C terminus with an intein; cleavage of the intein provided a unique thioester moiety at the C terminus of GFP that was used to install an atom transfer radical polymerization (ATRP) initiator. Subsequent in situ ATRP of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) yielded a site-specific (C-terminal) and stoichiometric conjugate with high yield and good retention of protein activity. A GFP-C-poly(OEGMA) conjugate (hydrodynamic radius (R(h)): 21 nm) showed a 15-fold increase in its blood exposure compared to the protein (R(h): 3.0 nm) after intravenous administration to mice. This conjugate also showed a 50-fold increase in tumor accumulation, 24 h after intravenous administration to tumor-bearing mice, compared to the unmodified protein. This approach for in situ C-terminal polymer modification of a recombinant protein is applicable to a large subset of recombinant protein and peptide drugs and provides a general methodology for improvement of their pharmacological profiles.
    Proceedings of the National Academy of Sciences 09/2010; 107(38):16432-7. · 9.74 Impact Factor
  • Source
    Wafa Hassouneh, Trine Christensen, Ashutosh Chilkoti
    [Show abstract] [Hide abstract]
    ABSTRACT: This unit presents a recombinant protein purification method that employs an elastin-like polypeptide (ELP) as a purification tag. ELPs undergo a sharp and reversible phase transition when heated above their lower critical solution temperature. ELPs retain this behavior when they are fused to a protein, and thereby provide a simple method to isolate a recombinant ELP fusion protein from cell contaminants by cycling the solution through the insoluble and soluble phase of the ELP fusion protein using a procedure that is termed Inverse Transition Cycling. This method does not require the use of chromatography, so it is cost-effective, easy to scale up, and easy to multiplex.
    Current protocols in protein science / editorial board, John E. Coligan ... [et al.] 08/2010; Chapter 6:Unit 6.11.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously developed a method to purify recombinant proteins, termed inverse transition cycling (ITC) that eliminates the need for column chromatography. ITC exploits the inverse solubility phase transition of an elastin-like polypeptide (ELP) that is fused to a protein of interest. In ITC, a recombinant ELP fusion protein is cycled through its phase transition, resulting in separation of the ELP fusion protein from other Escherichia coli contaminants. Herein, we examine the role of the position of the ELP in the fusion protein on the expression levels and yields of purified protein for four recombinant ELP fusion proteins. Placing the ELP at the C-terminus of the target protein (protein-ELP) results in a higher expression level for the four ELP fusion proteins, which also translates to a greater yield of purified protein. The position of the fusion protein also has a significant impact on its specific activity, as ELP-protein constructs have a lower specific activity than protein-ELP constructs for three out of the four proteins. Our results show no difference in mRNA levels between protein-ELP and ELP-protein fusion constructs. Instead, we suggest two possible explanations for these results: first, the translational efficiency of mRNA may differ between the fusion protein in the two orientations and second, the lower level of protein expression and lower specific activity is consistent with a scenario that placement of the ELP at the N-terminus of the fusion protein increases the fraction of misfolded, and less active conformers, which are also preferentially degraded compared to fusion proteins in which the ELP is present at the C-terminal end of the protein.
    Protein Science 06/2009; 18(7):1377-87. · 2.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The modulation of the lower critical solution temperature (LCST) of two elastin-like polypeptides (ELPs) was investigated in the presence of 11 sodium salts that span the Hofmeister series for anions. It was found that the hydrophobic collapse/aggregation of these ELPs generally followed the series. Specifically, kosmotropic anions decreased the LCST by polarizing interfacial water molecules involved in hydrating amide groups on the ELPs. On the other hand, chaotropic anions lowered the LCST through a surface tension effect. Additionally, chaotropic anions showed salting-in properties at low salt concentrations that were related to the saturation binding of anions with the biopolymers. These overall mechanistic effects were similar to those previously found for the hydrophobic collapse and aggregation of poly(N-isopropylacrylamide), PNIPAM. There is, however, a crucial difference between PNIPAM and ELPs. Namely, PNIPAM undergoes a two-step collapse process as a function of temperature in the presence of sufficient concentrations of kosmotropic salts. By contrast, ELPs undergo collapse in a single step in all cases studied herein. This suggests that the removal of water molecules from around the amide moieties triggers the removal of hydrophobic hydration waters in a highly coupled process. There are also some key differences between the LCST behavior of the two ELPs. Specifically, the more hydrophilic ELP V5A2G(3)-120 construct displays collapse/aggregation behavior that is consistent with a higher concentration of anions partitioning to polymer/aqueous interface as compared to the more hydrophobic ELP V(5)-120. It was also found that larger anions could bind with ELP V5A2G(3)-120 more readily in comparison with ELP V(5)-120. These latter results were interpreted in terms of relative binding site accessibility of the anion for the ELP.
    The Journal of Physical Chemistry B 11/2008; 112(44):13765-71. · 3.61 Impact Factor
  • Source
    Analytical Biochemistry 02/2007; 360(1):166-8. · 2.58 Impact Factor
  • Source
    Ashutosh Chilkoti, Trine Christensen, J Andrew MacKay
    [Show abstract] [Hide abstract]
    ABSTRACT: Elastin-like polypeptides (ELPs) are artificial polypeptides, derived from Val-Pro-Gly-Xaa-Gly (VPGXG) pentapeptide repeats found in human tropoelastin, that reversibly coacervate above a critical temperature. Genetically encodable ELPs are monodisperse, stimuli responsive, and biocompatible, properties that make them attractive for drug delivery and tissue engineering. The potential of ELPs to self-assemble into nanostructures in response to environmental triggers is another interesting feature of these polypeptides that promises to lead to a host of new applications.
    Current Opinion in Chemical Biology 01/2007; 10(6):652-7. · 9.47 Impact Factor