Kevin M Hickson

French National Centre for Scientific Research, Lutetia Parisorum, Île-de-France, France

Are you Kevin M Hickson?

Claim your profile

Publications (37)162.07 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rate constants for the N((4)S) + C2((1)Σg(+)) reaction have been measured in a continuous supersonic flow reactor over the range 57 K ≤ T ≤ 296 K by the relative rate technique employing the N((4)S) + OH(X(2)Π) → H((2)S) + NO(X(2)Π) reaction as a reference. Excess concentrations of atomic nitrogen were produced by the microwave discharge method and C2 and OH radicals were created by the in situ pulsed laser photolysis of precursor molecules C2Br4 and H2O2 respectively. In parallel, quantum dynamics calculations were performed based on an accurate global potential energy surfaces for the three lowest lying quartet states of the C2N molecule. The 1(4)A'' potential energy surface is barrierless, having two deep potential wells corresponding to the NCC and CNC intermediates. Both the experimental and theoretical work show that the rate constant decreases to low temperature, although the experimentally measured values fall more rapidly than the theoretical ones except at the lowest temperatures. Astrochemical simulations indicate that this reaction could be the dominant source of CN in dense interstellar clouds.
    Physical Chemistry Chemical Physics 06/2014; · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We review the reactions involving HCN and HNC in dark molecular clouds to elucidate new chemical sources and sinks of these isomers. We find that the most important reactions for the HCN-HNC system are Dissociative Recombination (DR) reactions of HCNH+ (HCNH+ + e-), the ionic CN + H3+, HCN + C+, HCN and HNC reactions with H+/He+/H3+/H3O+/HCO+, the N + CH2 reaction and two new reactions: H + CCN and C + HNC. We test the effect of the new rate constants and branching ratios on the predictions of gas-grain chemical models for dark cloud conditions. The rapid C + HNC reaction keeps the HCN/HNC ratio significantly above one as long as the carbon atom abundance remains high. However, the reaction of HCN with H3+ followed by DR of HCNH+ acts to isomerize HCN into HNC when carbon atoms and CO are depleted leading to a HCN/HNC ratio close to or slightly greater than 1. This agrees well with observations in TMC-1 and L134N taking into consideration the overestimation of HNC abundances through the use of the same rotational excitation rate constants for HNC as for HCN in many radiative transfer models.
    06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rate constants for the C(3P) + CH3OH reaction have been measured in a continuous supersonic flow reactor over the range 50 K to 296 K. C(3P) was created by the in-situ pulsed laser photolysis of CBr4, a multiphoton process which also produced some C(1D), allowing us to investigate simultaneously the low temperature kinetics of the C(1D) + CH3OH reaction. C(1D) atoms were followed by an indirect chemiluminescent tracer method in the presence of excess CH3OH. C(3P) atoms were detected by the same chemiluminescence technique and also by direct vacuum ultra-violet laser induced fluorescence (VUV LIF). Secondary measurements of product H(2S) atom formation have been undertaken allowing absolute H atom yields to be obtained by comparison with a suitable reference reaction. In parallel, statistical calculations have been performed based on ab-initio calculations of the complexes, adducts and transition states (TSs) relevant to the title reaction. By comparison with the experimental H atom yields, the preferred reaction pathways could be determined, placing important constraints on the statistical calculations. The experimental and theoretical work are in excellent agreement, predicting a negative temperature dependence of the rate constant increasing from 2.2 x 10-11 cm3 molecule-1 s-1 at 296 K to 20.0 x 10-11 cm3 molecule-1 s-1 at 50 K. CH3 and HCO are found to be the major products under our experimental conditions. As this reaction is not considered in current astrochemical networks, its influence on interstellar methanol abundances is tested using a model of dense interstellar clouds.
    06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Analysis of recent detections of water by Herschel/HIFI-PACS and Cassini/CIRS suggest for a steep gradient of the water profile in the lower stratosphere of Titan's atmosphere (Cottini2012, Moreno2012). This result provides a good opportunity to better understand the origin of oxygen compounds. However, the current photochemical models use an incomplete oxygen chemical scheme. In the present work, we improve the photochemistry of oxygen and introduce in particular a coupling between hydrocarbon, oxygen and nitrogen chemistries. Through the use of several different scenarios, we show that some oxygen compound abundances are sensitive to the nature of oxygen atoms (O+, OH and H2O) and the source of the flux (micrometeorites ablation or Enceladus' plume activity). Our model also predicts the presence of new and as yet undetected compounds such as NO (nitric oxide), HNO (nitrosyl hydride), HNCO (isocyanic acid) and N2O (nitrous oxide). Their future putative detection will give valuable constraints to discriminate between the different hypotheses for the nature and the source of oxygen compounds in the atmosphere of Titan. Through the use of a Monte Carlo-based uncertainty propagation study and global sensitivity analysis, we identify the key reactions that should be studied in priority to improve coupled photochemical models of Titan's atmosphere.
    Icarus 01/2014; 228:324–346. · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We review the reactions between carbon chain molecules and radicals, namely Cn, CnH, CnH2, C2n+1O, CnN, HC2n+1N, with C, N and O atoms. Rate constants and branching ratios for these processes have been re-evaluated using experimental and theoretical literature data. In total 8 new species have been introduced, 41 new reactions have been proposed and 122 rate coefficients from kida.uva.2011 (Wakelam et al. 2012) have been modified. We test the effect of the new rate constants and branching ratios on the predictions of gas-grain chemical models for dark cloud conditions using two different C/O elemental ratios. We show that the new rate constants produce large differences in the predicted abundances of carbon chains since the formation of long chains is less effective. The general agreement between the model predictions and observed abundances in the dark cloud TMC-1 (CP) is improved by the new network and we find that C/O ratios of 0.7 and 0.95 both produce a similar agreement for different times. The general agreement for L134N (N) is not significantly changed. The current work specifically highlights the importance of O + CnH and N + CnH reactions. As there are very few experimental or theoretical data for the rate constants of these reactions we highlight the need for experimental studies of the O + CnH and N + CnH reactions, particularly at low temperature.
    Monthly Notices of the Royal Astronomical Society 11/2013; 437(1). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Predictions of astrochemical models depend strongly on the reaction rate coefficients used in the simulations. We reviewed a number of key reactions for the chemistry of nitrogen-bearing species in the dense interstellar medium and proposed new reaction rate coefficients for those reactions. The details of the reviews are given in the form of a datasheet associated with each reaction. The new recommended rate coefficients are given with an uncertainty and a temperature range of validity and will be included in KIDA (http://kida.obs.u-bordeaux1.fr).
    10/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Water is an important reservoir species for oxygen in interstellar space and plays a key role in the physics of star formation through cooling by far-infrared emission. Whilst water vapour is present at high abundances in the outflows of protostars, its contribution to the chemical evolution of these regions is a minor one due to its limited low temperature reactivity in the gas-phase. Here, we performed kinetic experiments on the barrierless CH + H2O reaction in a supersonic flow reactor down to 50 K. The measured rate increases rapidly below room temperature, confirming and extending the predictions of earlier statistical calculations. The open product channels for this reaction suggest that this process could be an important gas-phase route for formaldehyde formation in protostellar envelopes.
    The Journal of Physical Chemistry Letters. 08/2013; 4(17).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rate constants for the potentially important interstellar N((4)S) + CH(X(2)Πr) reaction have been measured in a continuous supersonic flow reactor over the range 56 K ≤ T ≤ 296 K using the relative rate technique employing both the N((4)S) + OH(X(2)Πi) and N((4)S) + CN(X(2)Σ(+)) reactions as references. Excess concentrations of atomic nitrogen were produced by the microwave discharge method upstream of the Laval nozzle and CH and OH radicals were created by the in situ pulsed laser photolysis of suitable precursor molecules. In parallel, quantum dynamics calculations of the title reaction have been performed based on accurate global potential energy surfaces for the 1(3)A' and 1(3)A'' states of HCN and HNC, brought about through a hierarchical construction scheme. Both adiabatic potential energy surfaces are barrierless, each one having two deep potential wells suggesting that this reaction is dominated by a complex-forming mechanism. The experimental and theoretical work are in excellent agreement, predicting a positive temperature dependence of the rate constant, in contrast to earlier experimental work at low temperature. The effects of the new low temperature rate constants on interstellar N2 formation are tested using a dense cloud model, yielding N2 abundances 10-20% lower than previously predicted.
    Physical Chemistry Chemical Physics 07/2013; · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Presentation of the talk given during the KIDA workshop (Floirac, France).
    KIDA Workshop; 05/2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The description of C3 hydrocarbon chemistry in current photochemical models of Titan’s atmosphere is found to be far from complete. We have carefully investigated the photochemistry involving C3Hp compounds in the atmosphere of Titan (considering both photolysis and neutral reactions), which considerably impacts the abundances of many other hydrocarbon species (including C2 compounds). Model results indicate that three species (C3, c–C3H2 and C3H3) could be abundant enough to be present in the Cassini/INMS data. Because the error bars on predicted C3-hydrocarbon abundances are considerably larger than those of the observational data, new experimental and theoretical studies targeting the measurement of low-temperature reaction rate constants and product branching ratios are required to reduce current model uncertainties. In particular, we highlight 30 “key reactions”, the uncertainty factors of which should be lowered to improve the quality of photochemical models involving C3Hp molecules.
    Astronomy and Astrophysics 04/2013; 552:A132. · 5.08 Impact Factor
  • Source
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: The gas phase reaction of the hydroxyl radical with allene has been studied theoretically and experimentally in a continuous supersonic flow reactor over the range 50 ≤ T/K ≤ 224. This reaction has been found to exhibit a negative temperature dependence over the entire temperature range investigated, varying between (0.75 and 5.0) × 10(-11) cm(3) molecule(-1) s(-1). Product formation from the reaction of OH and OD radicals with allene (C(3)H(4)) has been investigated in a fast flow reactor through time-of-flight mass spectrometry, at pressures between 0.8 and 2.4 Torr. The branching ratios for adduct formation (C(3)H(4)OH) in this pressure range are found to be equal to 34 ± 16% and 48 ± 16% for the OH and OD + allene reactions, respectively, the only other channel being the formation of CH(3) or CH(2)D + H(2)CCO (ketene). Moreover, the rate constant for the OD + C(3)H(4) reaction is also found to be 1.4 times faster than the rate constant for the OH + C(3)H(4) reaction at 1.5 Torr and at 298 K. The experimental results and implications for atmospheric chemistry have been rationalized by quantum chemical and RRKM calculations.
    The Journal of Physical Chemistry A 11/2012; · 2.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report integral cross sections for the S(^{1}D_{2})+HD(j=0)→DS+H and HS+D reaction channels obtained through crossed-beam experiments reaching collision energies as low as 0.46 meV and from adiabatic time-independent quantum-mechanical calculations. While good overall agreement with experiment at energies above 10 meV is observed, neither the product channel branching ratio nor the low-energy resonancelike features in the HS+D channel can be theoretically reproduced. A nonadiabatic treatment employing highly accurate singlet and triplet potential energy surfaces is clearly needed to resolve the complex nature of the reaction dynamics.
    Physical Review Letters 09/2012; 109(13):133201. · 7.73 Impact Factor
  • Kevin M Hickson, Astrid Bergeat
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in Earth and satellite based observations of molecules in interstellar environments and in planetary atmospheres have highlighted the lack of information regarding many important gas-phase formation mechanisms involving neutral species at low temperatures. Whilst significant progress has been made towards a better understanding of radical-molecule reactions in these regions, the inherent difficulties involved in the investigation of reactions between two unstable radical species have hindered progress in this area. This perspective article provides a brief review of the most common techniques applied to study radical-radical reactions below room temperature, before outlining the developments in our laboratory that have allowed us to extend such measurements to temperatures relevant to astrochemical environments. These developments will be discussed with particular emphasis on our recent investigations of the reactions of atomic nitrogen with diatomic radicals.
    Physical Chemistry Chemical Physics 08/2012; 14(35):12057-69. · 3.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on crossed-beam experiments and quantum-mechanical calculations performed on the CO(j=0)+H_{2}(j=0)→CO(j=1)+H_{2}(j=0) system. The experimental cross sections determined in the threshold region of the CO(j=0→j=1) transition at 3.85  cm^{-1} show resonance structures in good qualitative agreement with the theoretical ones. These results suggest that the potential energy surface which describes the CO-H_{2} van der Waals interaction should be reinvestigated for good quantitative agreement.
    Physical Review Letters 07/2012; 109(2):023201. · 7.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many chemical models of dense interstellar clouds predict that the majority of gas-phase elemental nitrogen should be present as N(2), with an abundance approximately five orders of magnitude less than that of hydrogen. As a homonuclear diatomic molecule, N(2) is difficult to detect spectroscopically through infrared or millimeter-wavelength transitions. Therefore, its abundance is often inferred indirectly through its reaction product N(2)H(+). Two main formation mechanisms, each involving two radical-radical reactions, are the source of N(2) in such environments. Here we report measurements of the low temperature rate constants for one of these processes, the N + CN reaction, down to 56 K. The measured rate constants for this reaction, and those recently determined for two other reactions implicated in N(2) formation, are tested using a gas-grain model employing a critically evaluated chemical network. We show that the amount of interstellar nitrogen present as N(2) depends on the competition between its gas-phase formation and the depletion of atomic nitrogen onto grains. As the reactions controlling N(2) formation are inefficient, we argue that N(2) does not represent the main reservoir species for interstellar nitrogen. Instead, elevated abundances of more labile forms of nitrogen such as NH(3) should be present on interstellar ices, promoting the eventual formation of nitrogen-bearing organic molecules.
    Proceedings of the National Academy of Sciences 06/2012; 109(26):10233-8. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a novel chemical database for gas-phase astrochemistry. Named the KInetic Database for Astrochemistry (KIDA), this database consists of gas-phase reactions with rate coefficients and uncertainties that will be vetted to the greatest extent possible. Submissions of measured and calculated rate coefficients are welcome, and will be studied by experts before inclusion into the database. Besides providing kinetic information for the interstellar medium, KIDA is planned to contain such data for planetary atmospheres and for circumstellar envelopes. Each year, a subset of the reactions in the database (kida.uva) will be provided as a network for the simulation of the chemistry of dense interstellar clouds with temperatures between 10 K and 300 K. We also provide a code, named Nahoon, to study the time-dependent gas-phase chemistry of zero-dimensional and one-dimensional interstellar sources.
    The Astrophysical Journal Supplement Series 02/2012; 199(1):21. · 16.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The association reaction S + CO {\to} OCS + hnu has been identified as being particularly important for the prediction of gas-phase OCS abundances by chemical models of dark clouds. We performed detailed ab-initio calculations for this process in addition to undertaking an extensive review of the neutral-neutral reactions involving this species which might be important in such environments. The rate constant for this association reaction was estimated to be several orders of magnitude smaller than the one present in current astrochemical databases. The new rate for this reaction and the introduction of other processes, notably OH + CS {\to} OCS + H and C + OCS {\to} CO + CS, dramatically changes the OCS gas-phase abundance predicted by chemical models for dark clouds. The disagreement with observations in TMC-1 (CP) and L134N (N), suggests that OCS may be formed on grain surfaces as is the case for methanol. The observation of solid OCS on interstellar ices supports this hypothesis.
    Monthly Notices of the Royal Astronomical Society 01/2012; 421(2). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims. Following the first detection of hydrogen isocyanide (HNC) in Titan's atmosphere, we have devised a new neutral chemical scheme for hydrogen cyanide (HCN) and HNC in the upper atmosphere of Titan. Methods. Our updated chemical scheme contains 137 compounds (with C, H, O and N elements) and 788 reactions (including 91 photolysis processes). To improve the chemistry of HNC and HCN, a careful review of the literature has been performed to retrieve critical reaction rates and to evaluate their uncertainty factors. We have also estimated the reaction rates of 48 new reactions using simple capture theory. Results. Our photochemical model gives abundances of HNC and HCN in reasonable agreement with observations. An uncertainty propagation study shows large uncertainties for HNC and relatively moderate uncertainties for HCN. A global sensitivity analysis pinpoints some key reactions to study as a priority to improve the predictivity of the model. Conclusions. In particular, our knowledge of the isomerization of HNC via the reaction H + HNC → HCN + H and the chemistry of H 2 CN needs to be improved. This study of the neutral chemistry taking place in the upper atmosphere of Titan is a prerequisite for future ionospheric models since ion-neutral reactions may also contribute significantly to HNC and HCN production.
    Astronomy and Astrophysics 01/2012; 541(21). · 5.08 Impact Factor

Publication Stats

175 Citations
162.07 Total Impact Points

Institutions

  • 2009–2014
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France
  • 2008–2014
    • Université Bordeaux 1
      • UMR ISM - Institut des Sciences Moléculaires
      Talence, Aquitaine, France
    • Università degli Studi di Perugia
      • Department of Chemistry
      Perugia, Umbria, Italy
  • 2013
    • University of Bordeaux
      Burdeos, Aquitaine, France
  • 2012
    • Universidad Autónoma de Madrid
      • Departamento de Química Física Aplicada
      Madrid, Madrid, Spain
  • 2010–2011
    • Université de Rennes 1
      • Institut de Physique de Rennes (IPR)
      Rennes, Brittany, France