Delphine Héron

Pierre and Marie Curie University - Paris 6, Lutetia Parisorum, Île-de-France, France

Are you Delphine Héron?

Claim your profile

Publications (129)644.69 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apparently balanced chromosomal rearrangements can be associated with an abnormal phenotype, including intellectual disability and autism spectrum disorder (ASD). Genome-wide microarrays reveal cryptic genomic imbalances, related or not to the breakpoints, in 25% to 50% of patients with an abnormal phenotype carrying a microscopically balanced chromosomal rearrangement. Here we performed microarray analysis of 18 patients with ASD carrying balanced chromosomal abnormalities to identify submicroscopic imbalances implicated in abnormal neurodevelopment. Eighteen patients with ASD carrying apparently balanced chromosomal abnormalities were screened using single nucleotide polymorphism (SNP) arrays. Nine rearrangements were de novo, seven inherited, and two of unknown inheritance. Genomic imbalances were confirmed by fluorescence in situ hybridization and quantitative PCR. We detected clinically significant de novo copy number variants in four patients (22%), including three with de novo rearrangements and one with an inherited abnormality. The sizes ranged from 3.3 to 4.9 Mb; three were related to the breakpoint regions and one occurred elsewhere. We report a patient with a duplication of the Wolf-Hirschhorn syndrome critical region, contributing to the delineation of this rare genomic disorder. The patient has a chromosome 4p inverted duplication deletion, with a 0.5 Mb deletion of terminal 4p and a 4.2 Mb duplication of 4p16.2p16.3. The other cases included an apparently balanced de novo translocation t(5;18)(q12;p11.2) with a 4.2 Mb deletion at the 18p breakpoint, a subject with de novo pericentric inversion inv(11)(p14q23.2) in whom the array revealed a de novo 4.9 Mb deletion in 7q21.3q22.1, and a patient with a maternal inv(2)(q14.2q37.3) with a de novo 3.3 Mb terminal 2q deletion and a 4.2 Mb duplication at the proximal breakpoint. In addition, we identified a rare de novo deletion of unknown significance on a chromosome unrelated to the initial rearrangement, disrupting a single gene, RFX3. These findings underscore the utility of SNP arrays for investigating apparently balanced chromosomal abnormalities in subjects with ASD or related neurodevelopmental disorders in both clinical and research settings.
    Molecular Autism 12/2015; 6(1):19. DOI:10.1186/s13229-015-0015-2 · 5.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cationic amino acid transporters (CATs) mediate the entry of L-type cationic amino acids (arginine, ornithine and lysine) into the cells including neurons. CAT-3, encoded by the SLC7A3 gene on chromosome X, is one of the three CATs present in the human genome, with selective expression in brain. SLC7A3 is highly intolerant to variation in humans, as attested by the low frequency of deleterious variants in available databases, but the impact on variants in this gene in humans remains undefined. In this study, we identified a missense variant in SLC7A3, encoding the CAT-3 cationic amino acid transporter, on chromosome X by exome sequencing in two brothers with autism spectrum disorder (ASD). We then sequenced the SLC7A3 coding sequence in 148 male patients with ASD and identified three additional rare missense variants in unrelated patients. Functional analyses of the mutant transporters showed that two of the four identified variants cause severe or moderate loss of CAT-3 function due to altered protein stability or abnormal trafficking to the plasma membrane. The patient with the most deleterious SLC7A3 variant had high-functioning autism and epilepsy, and also carries a de novo 16p11.2 duplication possibly contributing to his phenotype. This study shows that rare hypomorphic variants of SLC7A3 exist in male individuals and suggest that SLC7A3 variants possibly contribute to the etiology of ASD in male subjects in association with other genetic factors.
    Amino Acids 07/2015; DOI:10.1007/s00726-015-2057-3 · 3.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Infantile spasms syndrome (ISs) is characterized by clinical spasms with ictal electrodecrement, usually occurring before the age of 1 year and frequently associated with cognitive impairment. Etiology is widely heterogeneous, the cause remaining elusive in 40% of patients. We searched for de novo mutations in 10 probands with ISs and their parents using whole-exome sequencing (WES). Patients had neither consanguinity nor family history of epilepsy. Common causes of ISs were excluded by brain MRI, metabolic screening, array-CGH and testing for mutations in CDKL5, STXBP1, and for ARX duplications. We found a probably pathogenic mutation in four patients. Missense mutations in SCN2A (p.Leu1342Pro) and KCNQ2 (p.Ala306Thr) were found in two patients with no history of epilepsy before the onset of ISs. The p.Asn107Ser missense mutation of ALG13 had been previously reported in four females with ISs. The fourth mutation was an in-frame deletion (p.Phe110del) in NR2F1, a gene whose mutations cause intellectual disability, epilepsy, and optic atrophy. In addition, we found a possibly pathogenic variant in KIF3C that encodes a kinesin expressed during neural development. Our results confirm that WES improves significantly the diagnosis yield in patients with sporadic ISs. This article is protected by copyright. All rights reserved.
    Clinical Genetics 07/2015; DOI:10.1111/cge.12636 · 3.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In a large family of Algerian origin, we aimed to identify the genetic mutation segregating with simultaneous presence of adult-onset, paucisymptomatic, slowly progressive, cerebellar ataxia in 7 adults and congenital ataxia in 1 child, and then to assess the involvement of GRID2 mutations in 144 patients with congenital cerebellar ataxia. We used a combined approach of linkage analysis and whole-exome sequencing in one family, and a targeted gene panel sequencing approach in 144 congenital ataxias. In the large family with spinocerebellar ataxia, we identified a missense mutation (c.1966C>G/p.Leu656Val) in the GRID2 gene, in a heterozygous state in adults, and in a homozygous state in one child with congenital ataxia, compatible with a semidominant transmission pattern. In 144 patients affected with congenital ataxia, we identified 2 missense de novo GRID2 mutations in 2 children (c.1960G>A/p.Ala654Thr, c.1961C>A/p.Ala654Asp). They affect the same amino acid as the previously described Lurcher mutation in mice; the variant in the large family concerns a nearby amino acid. In humans, GRID2 had only been involved in ataxia through complete loss-of-function mutations due to exon deletions. We report the first point mutations in this gene, with putative gain-of-function mechanisms, and a semidominant transmission as was observed in the Lurcher mice model. Of note, cerebellar ataxia is the core phenotype, but with variable severity ranging from very mild adult-onset to congenital-onset ataxias linked to both the heterozygous and homozygous state of the variant, and the position of the mutation. © 2015 American Academy of Neurology.
    Neurology 04/2015; 84(17). DOI:10.1212/WNL.0000000000001524 · 8.30 Impact Factor
  • Archives of Cardiovascular Diseases Supplements 01/2015; 7(1):21. DOI:10.1016/S1878-6480(15)71547-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Dual-specify tyrosine phosphorylation-regulated kinase 1A (DYRK1A) gene has been extensively studied for its role in the pathophysiology of intellectual disability (ID) in Down syndrome. The rise of next generation sequencing (NGS) and array-CGH (aCGH) in diagnostic settings for the evaluation of patients with ID allowed the identification of 17 patients carrying heterozygous genetic aberrations involving DYRK1A to date. The rate of DYRK1A mutations in this population reaches >1% in published NGS studies. The current report aims at further defining the phenotype of this encephalopathy with the detailed report of two unrelated patients. Both patients were boys with developmental delay, febrile seizures, facial dysmorphism and brain atrophy on MRI. Patient #1 had autistic behaviors and micropenis and Patient #2 had stereotypies and microcephaly. NGS analyses identified heterozygous de novo variants in DYRK1A: the c.613C>T (p.Arg205*) nonsense mutation in Patient #1 and the c.932C>T (p.Ser311Phe) missense mutation in Patient #2. Together with previously reported cases, patients with DYRK1A mutations share many clinical features and may have a recognizable phenotype that includes, by decreasing order of frequency: developmental delay or ID with behaviors suggesting autism spectrum disorder, microcephaly, epileptic seizures, facial dysmorphism including ear anomalies (large ears, hypoplastic lobes), thin lips, short philtrum and frontal bossing. Delineation of the phenotype/genotype correlation is not feasible at the moment and will be a challenge for the coming years. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
    European Journal of Medical Genetics 01/2015; 58(3). DOI:10.1016/j.ejmg.2014.12.014 · 1.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: La dystrophie myotonique de type 1 (DM 1) est une maladie neuromusculaire pouvant s’accompagner de troubles cognitifs et psychiatriques. Les études explorant ces aspects dans la forme infantile de la DM1 sont encore récentes et les données disponibles mettent en avant des résultats contradictoires, notamment en ce qui concerne la présence ou non de troubles du spectre autistique (TSA) dans cette population. La question d’une comorbidité entre la forme infantile de la DM1 et les TSA s’appuiera sur une revue de la littérature organisée selon deux axes : (1) une synthèse des travaux objectivant, d’une part, les troubles psychiatriques et cognitifs observés dans la DM1 mais aussi une analyse critique des études où la présence d’un TSA a été explorée dans cette même population et (2) une comparaison entre les profils cognitifs et le fonctionnement cérébral (données neuro-anatomiques et/ou neuro-fonctionnelles) de chacune de ces deux pathologies. La reconnaissance des signes cognitifs et psychiatriques spécifiques de la forme infanto-juvénile de la DM1, qu’ils comprennent ou non une dimension autistique propre, devrait constituer une étape fondamentale pour mieux guider les professionnels et améliorer la prise en charge.
    Neuropsychiatrie de l Enfance et de l Adolescence 12/2014; 63(2). DOI:10.1016/j.neurenf.2014.11.005
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PMM2-CDG (formerly known as CDG Ia) a deficiency in phosphomannomutase, is the most frequent congenital disorder of glycosylation. The phenotype encompasses a wide range of neurological and non-neurological manifestations comprising cerebellar atrophy and intellectual deficiency. The phenotype of the disorder is well characterized in children but the long term course of the disease is unknown and the phenotype of late onset forms has not been comprehensively described. We thus retrospectively collected the clinical, biological and radiological data of 29 French PMM2-CDG patients aged 15 years or more with a proven molecular diagnosis (16 females and 13 males). In addition, thirteen of these patients were reexamined at the time of the study to obtain detailed information. 27 of the 29 patients had a typical PMM2-CDG phenotype, with infantile hypotonia, strabismus, developmental delay followed by intellectual deficiency, epilepsy, retinitis pigmentosa and/or visceral manifestations. The main health problems for these patients as teenagers and in adulthood were primary ovarian insufficiency, growth retardation, coagulation anomalies and thrombotic events, skeletal deformities and osteopenia/osteoporosis, retinitis pigmentosa, as well as peripheral neuropathy. Three patients had never walked and three lost their ability to walk. The two remaining patients had a late-onset phenotype unreported to date. All patients (n¿=¿29) had stable cerebellar atrophy. Our findings are in line with those of previous adult PMM2-CDG cohorts and points to the need for a multidisciplinary approach to the follow up of PMM2-CDG patients to prevent late complications. Additionally, our findings add weight to the view that PMM2-CDG may be diagnosed in teenage/adult patients with cerebellar atrophy, even in the absence of intellectual deficiency or non-neurological involvement.
    Orphanet Journal of Rare Diseases 12/2014; 9(1):207. DOI:10.1186/s13023-014-0207-4 · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Array comparative genomic hybridization (array CGH) has proven its utility in uncovering cryptic rearrangements in patients with X-linked intellectual disability. In 2009, Giorda et al. identified inherited and de novo recurrent Xp11.23p11.22 microduplications in two males and six females from a wide cohort of patients presenting with syndromic intellectual disability. To date, 14 females and 5 males with an overlapping microduplication have been reported in the literature. To further characterize this emerging syndrome, we collected clinical and microarray data from 17 new patients, 10 females, and 7 males. The Xp11.23p11.2 microduplications detected by array CGH ranged in size from 331 Kb to 8.9 Mb. Five patients harbored 4.5 Mb recurrent duplications mediated by non-allelic homologous recombination between segmental duplications and 12 harbored atypical duplications. The chromosomal rearrangement occurred de novo in eight patients and was inherited in six affected males from three families. Patients shared several common major characteristics including moderate to severe intellectual disability, early onset of puberty, language impairment, and age related epileptic syndromes such as West syndrome and focal epilepsy with activation during sleep evolving in some patients to continuous spikes-and-waves during slow sleep. Atypical microduplications allowed us to identify minimal critical regions that might be responsible for specific clinical findings of the syndrome and to suggest possible candidate genes: FTSJ1 and SHROOM4 for intellectual disability along with PQBP1 and SLC35A2 for epilepsy. Xp11.23p11.22 microduplication is a recently-recognized syndrome associated with intellectual disability, epilepsy, and early onset of puberty in females. In this study, we propose several genes that could contribute to the phenotype. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 11/2014; 167(1). DOI:10.1002/ajmg.a.36807 · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Homozygous mutations in WWOX were reported in eight individuals of two families with autosomal recessive spinocerebellar ataxia type 12 and in two siblings with infantile epileptic encephalopathy (IEE), including one who deceased prior to DNA sampling. By combining array comparative genomic hybridisation, targeted Sanger sequencing and next generation sequencing, we identified five further patients from four families with IEE due to biallelic alterations of WWOX. We identified eight deleterious WWOX alleles consisting in four deletions, a four base-pair frameshifting deletion, one missense and two nonsense mutations. Genotype-phenotype correlation emerges from the seven reported families. The phenotype in four patients carrying two predicted null alleles was characterised by (1) little if any psychomotor acquisitions, poor spontaneous motility and absent eye contact from birth, (2) pharmacoresistant epilepsy starting in the 1st weeks of life, (3) possible retinal degeneration, acquired microcephaly and premature death. This contrasted with the less severe autosomal recessive spinocerebellar ataxia type 12 phenotype due to hypomorphic alleles. In line with this correlation, the phenotype in two siblings carrying a null allele and a missense mutation was intermediate. Our results obtained by a combination of different molecular techniques undoubtedly incriminate WWOX as a gene for recessive IEE and illustrate the usefulness of high throughput data mining for the identification of genes for rare autosomal recessive disorders. The structure of the WWOX locus encompassing the FRA16D fragile site might explain why constitutive deletions are recurrently reported in genetic databases, suggesting that WWOX-related encephalopathies, although likely rare, may not be exceptional. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
    Journal of Medical Genetics 11/2014; 52(1). DOI:10.1136/jmedgenet-2014-102748 · 5.64 Impact Factor
  • Human Molecular Genetics 11/2014; 23(22):6069-6080. DOI:10.1093/hmg/ddu306 · 6.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in interleukin-1 receptor accessory protein like 1 (IL1RAPL1) gene have been associated with non-syndromic intellectual disability and autism spectrum disorder. This protein interacts with synaptic partners like PSD-95 and PTPδ, regulating the formation and function of excitatory synapses. The aim of this work is to characterize the synaptic consequences of three IL1RAPL1 mutations, two novel causing the deletion of exon 6 (Δex6) and one point mutation (C31R), identified in patients with intellectual disability. Using immunofluorescence and electrophysiological recordings we examined the effects of IL1RAPL1 mutants over-expression on synapse formation and function in cultured rodent hippocampal neurons. Δex6 but not C31R mutation leads to IL1RAPL1 protein instability and mislocalization within dendrites. Analysis of different markers of excitatory synapses and sEPSC recording revealed that both mutants fail to induce pre- and post-synaptic differentiation, contrary to WT IL1RAPL1 protein. Cell aggregation and immunoprecipitation assays in HEK293 cells showed a reduction of the interaction between IL1RAPL1 mutants and PTPδ that could explain the observed synaptogenic defect in neurons. However, these mutants do not affect all cellular signaling since their over-expression still activates JNK pathway. We conclude that both mutations described in this study lead to a partial loss of function of the IL1RAPL1 protein through different mechanisms. Our work highlights the important function of the trans-synaptic PTPδ/ IL1RAPL1 interaction in synaptogenesis and as such, in intellectual disability in the patients.
    Human Molecular Genetics 10/2014; 24(4). DOI:10.1093/hmg/ddu523 · 6.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice.
    PLoS Genetics 09/2014; 10(9):e1004580. DOI:10.1371/journal.pgen.1004580 · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epileptic encephalopathy (EE) refers to a clinically and genetically heterogeneous group of severe disorders characterized by seizures, abnormal interictal electro-encephalogram, psychomotor delay, and/or cognitive deterioration. We ascertained two multiplex families (including one consanguineous family) consistent with an autosomal-recessive inheritance pattern of EE. All seven affected individuals developed subclinical seizures as early as the first day of life, severe epileptic disease, and profound developmental delay with no facial dysmorphism. Given the similarity in clinical presentation in the two families, we hypothesized that the observed phenotype was due to mutations in the same gene, and we performed exome sequencing in three affected individuals. Analysis of rare variants in genes consistent with an autosomal-recessive mode of inheritance led to identification of mutations in SLC13A5, which encodes the cytoplasmic sodium-dependent citrate carrier, notably expressed in neurons. Disease association was confirmed by cosegregation analysis in additional family members. Screening of 68 additional unrelated individuals with early-onset epileptic encephalopathy for SLC13A5 mutations led to identification of one additional subject with compound heterozygous mutations of SLC13A5 and a similar clinical presentation as the index subjects. Mutations affected key residues for sodium binding, which is critical for citrate transport. These findings underline the value of careful clinical characterization for genetic investigations in highly heterogeneous conditions such as EE and further highlight the role of citrate metabolism in epilepsy.
    The American Journal of Human Genetics 07/2014; 95(1):113-20. DOI:10.1016/j.ajhg.2014.06.006 · 10.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although considerable evidence suggests that the chemical synapse is a lynchpin underlying affective disorders, how molecular insults differentially affect specific synaptic connections remains poorly understood. For instance, Neurexin 1a and 2 (NRXN1 and NRXN2) and CNTNAP2 (also known as CASPR2), all members of the neurexin superfamily of transmembrane molecules, have been implicated in neuropsychiatric disorders. However, their loss leads to deficits that have been best characterized with regard to their effect on excitatory cells. Notably, other disease-associated genes such as BDNF and ERBB4 implicate specific interneuron synapses in psychiatric disorders. Consistent with this, cortical interneuron dysfunction has been linked to epilepsy, schizophrenia and autism. Using a microarray screen that focused upon synapse-associated molecules, we identified Cntnap4 (contactin associated protein-like 4, also known as Caspr4) as highly enriched in developing murine interneurons. In this study we show that Cntnap4 is localized presynaptically and its loss leads to a reduction in the output of cortical parvalbumin (PV)-positive GABAergic (γ-aminobutyric acid producing) basket cells. Paradoxically, the loss of Cntnap4 augments midbrain dopaminergic release in the nucleus accumbens. In Cntnap4 mutant mice, synaptic defects in these disease-relevant neuronal populations are mirrored by sensory-motor gating and grooming endophenotypes; these symptoms could be pharmacologically reversed, providing promise for therapeutic intervention in psychiatric disorders.
    Nature 05/2014; 511(7508). DOI:10.1038/nature13248 · 42.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We describe four patients from three independent families with the m.1644G > A in the MT-TV gene, previously reported without demonstration of its deleterious impact. Very high mutation proportion co-segregated with cytochrome oxidase defect in single muscle fibers and respiratory defect and in cybrids as shown by spectrophotometric assays and polarography. The mutation appeared to have a very steep threshold effect with asymptomatic life with proportions up to 70% mutation, progressive encephalopathy above 80% and severe Leigh-like syndrome above 95% mutation. One patient did not fit within that frame but presented with characteristics suggesting the presence of an additional disease.
    Mitochondrion 03/2014; 15. DOI:10.1016/j.mito.2014.03.010 · 3.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myhre syndrome is characterized by short stature, brachydactyly, facial features, pseudomuscular hypertrophy, joint limitation and hearing loss. We identified SMAD4 mutations as the cause of Myhre syndrome. SMAD4 mutations have also been identified in laryngotracheal stenosis, arthropathy, prognathism and short stature syndrome (LAPS). This study aimed to review the features of Myhre and LAPS patients to define the clinical spectrum of SMAD4 mutations. We included 17 females and 15 males ranging in age from 8 to 48 years. Thirty were diagnosed with Myhre syndrome and two with LAPS. SMAD4 coding sequence was analyzed by Sanger sequencing. Clinical and radiological features were collected from a questionnaire completed by the referring physicians. All patients displayed a typical facial gestalt, thickened skin, joint limitation and muscular pseudohypertrophy. Growth retardation was common (68.7%) and was variable in severity (from -5.5 to -2 SD), as was mild-to-moderate intellectual deficiency (87.5%) with additional behavioral problems in 56.2% of the patients. Significant health concerns like obesity, arterial hypertension, bronchopulmonary insufficiency, laryngotracheal stenosis, pericarditis and early death occurred in four. Twenty-nine patients had a de novo heterozygous SMAD4 mutation, including both patients with LAPS. In 27 cases mutation affected Ile500 and in two cases Arg496. The three patients without SMAD4 mutations had typical findings of Myhre syndrome. Myhre-LAPS syndrome is a clinically homogenous condition with life threatening complications in the course of the disease. Our identification of SMAD4 mutations in 29/32 cases confirms that SMAD4 is the major gene responsible for Myhre syndrome.European Journal of Human Genetics advance online publication, 15 January 2014; doi:10.1038/ejhg.2013.288.
    European journal of human genetics: EJHG 01/2014; 22(11). DOI:10.1038/ejhg.2013.288 · 4.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-syndromic arthrogryposis multiplex congenita (AMC) is characterized by multiple congenital contractures resulting from reduced fetal mobility. Genetic mapping and whole exome sequencing were performed in 31 multiplex and/or consanguineous undiagnosed AMC families. Although this approach identified known AMC genes, we here report pathogenic mutations in two new genes. Homozygous frameshift mutations in CNTNAP1 were found in four unrelated families. Patients showed a marked reduction in motor nerve conduction velocity (<10 m/sec) and transmission electron microscopy (TEM) of sciatic nerve in the index cases revealed severe abnormalities of both nodes of Ranvier width and myelinated axons. CNTNAP1 encodes CASPR, an essential component of node of Ranvier domains which underly saltatory conduction of action potentials along myelinated axons, an important process for neuronal function. A homozygous missense mutation in Adenylate Cyclase 6 gene (ADCY6) was found in another family characterized by a lack of myelin in the Peripheral Nervous System (PNS) as determined by TEM. Morpholino knockdown of the zebrafish orthologs led to severe and specific defects in peripheral myelin in spite of the presence of Schwann cells. ADCY6 encodes a protein that belongs to adenylate cyclase family responsible for the synthesis of cAMP. Elevation of cAMP can mimic axonal contact in vitro and upregulates myelinating signals. Our data indicate an essential and so far unknown role of ADCY6 in PNS myelination likely through the cAMP pathway. Mutations of genes encoding proteins of Ranvier domains or involved in myelination of Schwann cells are responsible for novel and severe human axoglial diseases.
    Human Molecular Genetics 12/2013; 23(9). DOI:10.1093/hmg/ddt618 · 6.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Creatine and guanidinoacetate are biomarkers of creatine metabolism. Their assays in body fluids may be used for detecting patients with primary creatine deficiency disorders (PCDD), a class of inherited diseases. Their laboratory values in blood and urine may vary with age, requiring that reference normal values are given within the age range. Despite the long known role of creatine for muscle physiology, muscle signs are not necessarily the major complaint expressed by PCDD patients. These disorders drastically affect brain function inducing, in patients, intellectual disability, autistic behavior and other neurological signs (delays in speech and language, epilepsy, ataxia, dystonia and choreoathetosis), being a common feature the drop in brain creatine content. For this reason, screening of PCDD patients has been repeatedly carried out in populations with neurological signs. This report is aimed at providing reference laboratory values and related age ranges found for a large scale population of patients with neurological signs (more than 6 thousand patients) previously serving as a background population for screening French patients with PCDD. These reference laboratory values and age ranges compare rather favorably with literature values for healthy populations. Some differences are also observed, and female participants are discriminated from male participants as regards to urine but not blood values including creatine on creatinine ratio and guanidinoacetate on creatinine ratio values. Such gender differences were previously observed in healthy populations; they might be explained by literature differential effects of testosterone and estrogen in adolescents and adults, and by estrogen effects in prepubertal age on SLC6A8 function. Finally, though they were acquired on a population with neurological signs, the present data might reasonably serve as reference laboratory values in any future medical study exploring abnormalities of creatine metabolism and transport.
    Molecular Genetics and Metabolism 09/2013; 110(3). DOI:10.1016/j.ymgme.2013.09.005 · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kabuki syndrome (KS) is a rare syndrome associating malformations with intellectual deficiency and numerous visceral, orthopedic, endocrinological, immune and autoimmune complications. The early establishment of a diagnostic of KS leads to better care of the patients and therefore prevents complications such as perception deafness, severe complications of auto-immune diseases or obesity. However, the diagnosis of KS remains difficult because based on the appreciation of facial features combined with other highly variable features. We describe a novel sign, namely the attenuation and/or congenital absence of the IPD crease of the third and fourth fingers associated with limitation of flexion of the corresponding joints, which seems to be specific of KS and could help the clinician to diagnose KS.
    European journal of medical genetics 08/2013; 56(10). DOI:10.1016/j.ejmg.2013.07.005 · 1.49 Impact Factor

Publication Stats

3k Citations
644.69 Total Impact Points

Institutions

  • 2015
    • Pierre and Marie Curie University - Paris 6
      Lutetia Parisorum, Île-de-France, France
  • 2006–2015
    • Hôpitaux Universitaires La Pitié salpêtrière - Charles Foix
      Lutetia Parisorum, Île-de-France, France
  • 2014
    • UPMC
      Pittsburgh, Pennsylvania, United States
  • 2011–2014
    • Polytech Paris-UPMC
      Lutetia Parisorum, Île-de-France, France
  • 1998–2014
    • Hôpital La Pitié Salpêtrière (Groupe Hospitalier "La Pitié Salpêtrière - Charles Foix")
      Lutetia Parisorum, Île-de-France, France
  • 2013
    • Hôpital Universitaire Robert Debré
      Lutetia Parisorum, Île-de-France, France
    • Hospices Civils de Lyon
      Lyons, Rhône-Alpes, France
  • 2012
    • L'Institut du Cerveau et de la Moelle Épinière
      Lutetia Parisorum, Île-de-France, France
    • University of Lorraine
      • Faculty of Medicine
      Nancy, Lorraine, France
  • 2007–2009
    • Assistance Publique – Hôpitaux de Paris
      Lutetia Parisorum, Île-de-France, France