Ren Miao

Texas A&M University, College Station, TX, United States

Are you Ren Miao?

Claim your profile

Publications (9)31.51 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mmt1 and Mmt2 are highly homologous yeast proteins that are the only members of the cation diffusion facilitator transporter family localized to mitochondria. Overexpression of MMT1/2 led to changes in cellular metal homeostasis (increased iron sensitivity, decreased cobalt sensitivity, increased sensitivity to copper), oxidant generation and increased sensitivity to H2O2. The phenotypes due to overexpression of MMT1&2 were similar to that seen in cells with deletions in MRS3 and MRS4, genes that encode the mitochondrial iron importers. Overexpression of MMT1&/2 resulted in induction of the low iron transcriptional response, similar to that seen in mrs3mr4 cells. This low iron transcriptional response was suppressed by deletion of CCC1, the gene that encodes the vacuolar iron importer. Measurement of the activity of the iron-dependent gentisate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans expressed in yeast cytosol, showed that changes in Mmt1/2 levels affected cytosol iron concentration even in the absence of Ccc1. Overexpression of MMT1 resulted in increased cytosolic iron while deletion of MMT1/MMT2 led to decreased cytosolic iron. These results support the hypothesis that Mmt1/2 function as mitochondrial iron exporters.
    Journal of Biological Chemistry 05/2014; · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Yeast respond to increased cytosolic iron by activating the transcription factor Yap5 increasing transcription of CCC1, which encodes a vacuolar iron importer. Using a genetic screen to identify genes involved in Yap5 iron sensing, we discovered that a mutation in SSQ1, which encodes a mitochondrial chaperone involved in iron-sulfur cluster synthesis, prevented expression of Yap5 target genes. We demonstrated that mutation or reduced expression of other genes involved in mitochondrial iron-sulfur cluster synthesis (YFH1, ISU1) prevented induction of the Yap5 response. We took advantage of the iron-dependent catalytic activity of Pseudaminobacter salicylatoxidans gentisate 1,2-dioxygenase expressed in yeast to measure changes in cytosolic iron. We determined that reductions in iron-sulfur cluster synthesis did not affect the activity of cytosolic gentisate 1,2-dioxygenase. We show that loss of activity of the cytosolic iron-sulfur cluster assembly complex proteins or deletion of cytosolic glutaredoxins did not reduce expression of Yap5 target genes. These results suggest that the high iron transcriptional response, as well as the low iron transcriptional response, senses iron-sulfur clusters.
    Journal of Biological Chemistry 08/2012; 287(42):35709-21. · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aft1p is a major iron regulator in budding yeast Saccharomyces cerevisiae. It indirectly senses cytosolic Fe status and responds by activating or repressing iron regulon genes. Aft1p within the Aft1-1(up) strain has a single amino acid mutation which causes it to constitutively activate iron regulon genes regardless of cellular Fe status. This leads to elevated Fe uptake under both low and high Fe growth conditions. Ferredoxin Yah1p is involved in Fe/S cluster assembly, and Aft1p-targeted iron regulon genes are also upregulated in Yah1p-depleted cells. In this study Mössbauer, EPR, and UV-vis spectroscopies were used to characterize the Fe distribution in Aft1-1(up) and Yah1p-depleted cells. Aft1-1(up) cells grown in low Fe medium contained more Fe than did WT cells. A basal level of Fe in both WT and Aft1-1(up) cells was located in mitochondria, primarily in the form of Fe/S clusters and heme centers. The additional Fe in Aft1-1(up) cells was present as mononuclear HS Fe(III) species. These species are in a nonmitochondrial location, assumed here to be vacuolar. Aft1-1(up) cells grown in high Fe medium contained far more Fe than found in WT cells. The extra Fe was present as HS Fe(III) ions, probably stored in vacuoles, and as Fe(III) phosphate nanoparticles, located in mitochondria. Yah1p-deficent cells also accumulated nanoparticles in their mitochondria, but they did not contain HS Fe(III) species. Results are interpreted by a proposed model involving three homeostatic regulatory systems, including the Aft1 system, a vacuolar iron regulatory system, and a mitochondrial Fe regulatory system.
    Biochemistry 02/2011; 50(13):2660-71. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The distributions of Fe in mitochondria isolated from respiring, respiro-fermenting, and fermenting yeast cells were determined with an integrative biophysical approach involving Mossbauer and electronic absorption spectroscopies, electron paramagnetic resonance, and inductively coupled plasma emission mass spectrometry. Approximately 40% of the Fe in mitochondria from respiring cells was present in respiration-related proteins. The concentration and distribution of Fe in respiro-fermenting mitochondria, where both respiration and fermentation occur concurrently, were similar to those of respiring mitochondria. The concentration of Fe in fermenting mitochondria was also similar, but the distribution differed dramatically. Here, levels of respiration-related Fe-containing proteins were diminished approximately 3-fold, while non-heme HS Fe(II) species, non-heme mononuclear HS Fe(III), and Fe(III) nanoparticles dominated. These changes were rationalized by a model in which the pool of non-heme HS Fe(II) ions serves as feedstock for Fe-S cluster and heme biosynthesis. The integrative approach enabled us to estimate the concentration of respiration-related proteins.
    Biochemistry 07/2010; 49(26):5436-44. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mössbauer spectroscopy was used to detect pools of Fe in mitochondria from fermenting yeast cells, including those consisting of nonheme high-spin (HS) Fe(II) species, Fe(III) nanoparticles, and mononuclear HS Fe(III) species. At issue was whether these species were located within mitochondria or on their exterior. None could be removed by washing mitochondria extensively with ethylene glycol tetraacetic acid or bathophenanthroline sulfonate (BPS), Fe(II) chelators that do not appear to penetrate mitochondrial membranes. However, when mitochondrial samples were sonicated, BPS coordinated the Fe(II) species, forming a low-spin Fe(II) complex. This treatment also diminished the levels of both Fe(III) species, suggesting that all of these Fe species are encapsulated by mitochondrial membranes and are protected from chelation until membranes are disrupted. 1,10-Phenanthroline is chemically similar to BPS but is membrane soluble; it coordinated nonheme HS Fe(II) in unsonicated mitochondria. Further, the HS Fe(III) species and nanoparticles were not reduced by dithionite until the detergent deoxycholate was added to disrupt membranes. There was no correlation between the percentage of nonheme HS Fe(II) species in mitochondrial samples and the level of contaminating proteins. These results collectively indicate that the observed Fe species are contained within mitochondria. Mossbauer spectra of whole cells were dominated by HS Fe(III) features; the remainder displayed spectral features typical of isolated mitochondria, suggesting that the Fe in fermenting yeast cells can be coarsely divided into two categories: mitochondrial Fe and (mostly) HS Fe(III) ions in one or more non-mitochondrial locations.
    Biochemistry 05/2010; 49(19):4227-34. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atm1p is an ABC transporter localized in the mitochondrial inner membrane; it functions to export an unknown species into the cytosol and is involved in cellular iron metabolism. Depletion or deletion of Atm1p causes Fe accumulation in mitochondria and a defect in cytosolic Fe/S cluster assembly but reportedly not a defect in mitochondrial Fe/S cluster assembly. In this study the nature of the accumulated Fe was examined using Mossbauer spectroscopy, EPR, electronic absorption spectroscopy, X-ray absorption spectroscopy, and electron microscopy. The Fe that accumulated in aerobically grown cells was in the form of iron(III) phosphate nanoparticles similar to that which accumulates in yeast frataxin Yfh1p-deleted or yeast ferredoxin Yah1p-depleted cells. Relative to WT mitochondria, Fe/S cluster and heme levels in Atm1p-depleted mitochondria from aerobic cells were significantly diminished. Atm1p depletion also caused a buildup of nonheme Fe(II) ions in the mitochondria and an increase in oxidative damage. Atm1p-depleted mitochondria isolated from anaerobically grown cells exhibited WT levels of Fe/S clusters and hemes, and they did not hyperaccumulate Fe. Atm1p-depleted cells lacked Leu1p activity, regardless of whether they were grown aerobically or anaerobically. These results indicate that Atm1p does not participate in mitochondrial Fe/S cluster assembly and that the species exported by Atm1p is required for cytosolic Fe/S cluster assembly. The Fe/S cluster defect and the Fe-accumulation phenotype, resulting from the depletion of Atm1p in aerobic cells (but not in anaerobic cells), may be secondary effects that are observed only when cells are exposed to oxygen during growth. Reactive oxygen species generated under these conditions might degrade iron-sulfur clusters and lower heme levels in the organelle.
    Biochemistry 09/2009; 48(40):9556-68. · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Methods are presented to aid in the study of iron metabolism in isolated mitochondria. The "iron-ome" of mitochondria, including the type and concentration of all Fe-containing species in the organelle, is evaluated by integrating the results of four spectroscopic methods, including Mössbauer spectroscopy, electron paramagnetic resonance, electronic absorption spectroscopy, and inductively coupled plasma mass spectrometry. Although this systems biology approach only allows groups of Fe centers to be assessed, rather than individual species, it affords new and useful information. There are many considerations in executing this approach, and this chapter focuses on the practical methods that we have developed for this purpose. First, large quantities of mitochondria are required, and so published isolation methods must be scaled up. Second, mitochondria are isolated under strict anaerobic conditions to allow control of redox state and to protect O(2)-sensitive Fe-containing proteins from degradation. Third, the importance of packing mitochondria for both spectroscopic and analytical characterizations is developed. By measuring the volume of packed samples and the percentage of mitochondria contained within that volume, absolute Fe and protein concentrations within the organelle can be obtained. Packing samples into spectroscopy holders also affords maximal signal intensities, which are critical for these studies. Custom inserts designed for this purpose are described. Also described are the designs of a 25-L glass bioreactor, a mechanical cell homogenizer, a device for inserting short EPR tubes into the standard Oxford Instruments EPR cryostat, and a device for transferring samples from Mössbauer holders to EPR tubes while maintaining samples at liquid N(2) temperatures. A brief summary of what we have learned by use of these methods is included.
    Methods in enzymology 02/2009; 456:267-85. · 1.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Yah1p, an [Fe 2S 2]-containing ferredoxin located in the matrix of Saccharomyces cerevisiae mitochondria, functions in the synthesis of Fe/S clusters and heme a prosthetic groups. EPR, Mossbauer spectroscopy, and electron microscopy were used to characterize the Fe that accumulates in Yah1p-depleted isolated intact mitochondria. Gal- YAH1 cells were grown in standard rich media (YPD and YPGal) under O 2 or argon atmospheres. Mitochondria were isolated anaerobically, then prepared in the as-isolated redox state, the dithionite-treated state, and the O 2-treated state. The absence of strong EPR signals from Fe/S clusters when Yah1p was depleted confirms that Yah1p is required in Fe/S cluster assembly. Yah1p-depleted mitochondria, grown with O 2 bubbling through the media, accumulated excess Fe (up to 10 mM) that was present as 2-4 nm diameter ferric nanoparticles, similar to those observed in mitochondria from yfh1Delta cells. These particles yielded a broad isotropic EPR signal centered around g = 2, characteristic of superparamagnetic relaxation. Treatment with dithionite caused Fe (3+) ions of the nanoparticles to become reduced and largely exported from the mitochondria. Fe did not accumulate in mitochondria isolated from cells grown under Ar; a significant portion of the Fe in these organelles was in the high-spin Fe (2+) state. This suggests that the O 2 used during growth of Gal- YAH1 cells is responsible, either directly or indirectly, for Fe accumulation and for oxidizing Fe (2+) --> Fe (3+) prior to aggregation. Models are proposed in which the accumulation of ferric nanoparticles is caused either by the absence of a ligand that prevents such precipitation in wild-type mitochondria or by a more oxidizing environment within the mitochondria of Yah1p-depleted cells exposed to O 2. The efficacy of reducing accumulated Fe along with chelating it should be considered as a strategy for its removal in diseases involving such accumulations.
    Biochemistry 10/2008; 47(37):9888-99. · 3.38 Impact Factor
  • Mitochondrion 12/2007; 7(6):430-430. · 3.52 Impact Factor