Betty M Drees

Xi'an Jiaotong University, Xi’an, Shaanxi Sheng, China

Are you Betty M Drees?

Claim your profile

Publications (22)80.82 Total impact

  • Academic medicine: journal of the Association of American Medical Colleges 09/2010; 85(9 Suppl):S316-20. · 2.34 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Osteoporosis is a major public health problem. It is mainly characterized by low bone mineral density (BMD) and/or low-trauma osteoporotic fractures (OF), both of which have strong genetic determination. The specific genes influencing these phenotypic traits, however, are largely unknown. Using the Affymetrix 500K array set, we performed a case-control genome-wide association study (GWAS) in 700 elderly Chinese Han subjects (350 with hip OF and 350 healthy matched controls). A follow-up replication study was conducted to validate our major GWAS findings in an independent Chinese sample containing 390 cases with hip OF and 516 controls. We found that a SNP, rs13182402 within the ALDH7A1 gene on chromosome 5q31, was strongly associated with OF with evidence combined GWAS and replication studies (P = 2.08x10(-9), odds ratio = 2.25). In order to explore the target risk factors and potential mechanism underlying hip OF risk, we further examined this candidate SNP's relevance to hip BMD both in Chinese and Caucasian populations involving 9,962 additional subjects. This SNP was confirmed as consistently associated with hip BMD even across ethnic boundaries, in both Chinese and Caucasians (combined P = 6.39x10(-6)), further attesting to its potential effect on osteoporosis. ALDH7A1 degrades and detoxifies acetaldehyde, which inhibits osteoblast proliferation and results in decreased bone formation. Our findings may provide new insights into the pathogenesis of osteoporosis.
    PLoS Genetics 01/2010; 6(1):e1000806. · 8.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: For females, menarche is a most significant physiological event. Age at menarche (AAM) is a trait with high genetic determination and is associated with major complex diseases in women. However, specific genes for AAM variation are largely unknown. To identify genetic factors underlying AAM variation, a genome-wide association study (GWAS) examining about 380,000 SNPs was conducted in 477 Caucasian women. A follow-up replication study was performed to validate our major GWAS findings using two independent Caucasian cohorts with 854 siblings and 762 unrelated subjects, respectively, and one Chinese cohort of 1,387 unrelated subjects--all females. Our GWAS identified a novel gene, SPOCK (Sparc/Osteonectin, CWCV, and Kazal-like domains proteoglycan), which had seven SNPs associated with AAM with genome-wide false discovery rate (FDR) q<0.05. Six most significant SNPs of the gene were selected for validation in three independent replication cohorts. All of the six SNPs were replicated in at least one cohort. In particular, SNPs rs13357391 and rs1859345 were replicated both within and across different ethnic groups in all three cohorts, with p values of 5.09 x 10(-3) and 4.37 x 10(-3), respectively, in the Chinese cohort and combined p values (obtained by Fisher's method) of 5.19 x 10(-5) and 1.02 x 10(-4), respectively, in all three replication cohorts. Interestingly, SPOCK can inhibit activation of MMP-2 (matrix metalloproteinase-2), a key factor promoting endometrial menstrual breakdown and onset of menstrual bleeding. Our findings, together with the functional relevance, strongly supported that the SPOCK gene underlies variation of AAM.
    PLoS Genetics 03/2009; 5(3):e1000420. · 8.52 Impact Factor
  • Article: Erratum.
    [show abstract] [hide abstract]
    ABSTRACT: [This corrects the article on p. e3160 in vol. 3, PMID: 18776929.].
    PLoS ONE 02/2009; 4(2). · 3.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Although copy number variation (CNV) has recently received much attention as a form of structure variation within the human genome, knowledge is still inadequate on fundamental CNV characteristics such as occurrence rate, genomic distribution and ethnic differentiation. In the present study, we used the Affymetrix GeneChip(R) Mapping 500K Array to discover and characterize CNVs in the human genome and to study ethnic differences of CNVs between Caucasians and Asians. Three thousand and nineteen CNVs, including 2381 CNVs in autosomes and 638 CNVs in X chromosome, from 985 Caucasian and 692 Asian individuals were identified, with a mean length of 296 kb. Among these CNVs, 190 had frequencies greater than 1% in at least one ethnic group, and 109 showed significant ethnic differences in frequencies (p<0.01). After merging overlapping CNVs, 1135 copy number variation regions (CNVRs), covering approximately 439 Mb (14.3%) of the human genome, were obtained. Our findings of ethnic differentiation of CNVs, along with the newly constructed CNV genomic map, extend our knowledge on the structural variation in the human genome and may furnish a basis for understanding the genomic differentiation of complex traits across ethnic groups.
    PLoS ONE 01/2009; 4(11):e7958. · 3.73 Impact Factor
  • Source
    01/2009;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Osteoporosis, a highly heritable disease, is characterized mainly by low bone-mineral density (BMD), poor bone geometry, and/or osteoporotic fractures (OF). Copy-number variation (CNV) has been shown to be associated with complex human diseases. The contribution of CNV to osteoporosis has not been determined yet. We conducted case-control genome-wide CNV analyses, using the Affymetrix 500K Array Set, in 700 elderly Chinese individuals comprising 350 cases with homogeneous hip OF and 350 matched controls. We constructed a genomic map containing 727 CNV regions in Chinese individuals. We found that CNV 4q13.2 was strongly associated with OF (p = 2.0 x 10(-4), Bonferroni-corrected p = 0.02, odds ratio = 1.73). Validation experiments using PCR and electrophoresis, as well as real-time PCR, further identified a deletion variant of UGT2B17 in CNV 4q13.2. Importantly, the association between CNV of UGT2B17 and OF was successfully replicated in an independent Chinese sample containing 399 cases with hip OF and 400 controls. We further examined this CNV's relevance to major risk factors for OF (i.e., hip BMD and femoral-neck bone geometry) in both Chinese (689 subjects) and white (1000 subjects) samples and found consistently significant results (p = 5.0 x 10(-4) -0.021). Because UGT2B17 encodes an enzyme catabolizing steroid hormones, we measured the concentrations of serum testosterone and estradiol for 236 young Chinese males and assessed their UGT2B17 copy number. Subjects without UGT2B17 had significantly higher concentrations of testosterone and estradiol. Our findings suggest the important contribution of CNV of UGT2B17 to the pathogenesis of osteoporosis.
    The American Journal of Human Genetics 12/2008; 83(6):663-74. · 11.20 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Areal BMD (aBMD) and areal bone size (ABS) are biologically correlated traits and are each important determinants of bone strength and risk of fractures. Studies showed that aBMD and ABS are genetically correlated, indicating that they may share some common genetic factors, which, however, are largely unknown. To study the genetic factors influencing both aBMD and ABS, bivariate whole genome linkage analyses were conducted for aBMD-ABS at the femoral neck (FN), lumbar spine (LS), and ultradistal (UD)-forearm in a large sample of 451 white pedigrees made up of 4498 individuals. We detected significant linkage on chromosome Xq27 (LOD = 4.89) for LS aBMD-ABS. In addition, we detected suggestive linkages at 20q11 (LOD = 3.65) and Xp11 (LOD = 2.96) for FN aBMD-ABS; at 12p11 (LOD = 3.39) and 17q21 (LOD = 2.94) for LS aBMD-ABS; and at 5q23 (LOD = 3.54), 7p15 (LOD = 3.45), Xq27 (LOD = 2.93), and 12p11 (LOD = 2.92) for UD-forearm aBMD-ABS. Subsequent discrimination analyses indicated that quantitative trait loci (QTLs) at 12p11 and 17q21 may have pleiotropic effects on aBMD and ABS. This study identified several genomic regions that may contain QTLs important for both aBMD and ABS. Further endeavors are necessary to follow these regions to eventually pinpoint the genetic variants affecting bone strength and risk of fractures.
    Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 08/2008; 23(11):1806-14. · 6.04 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Obesity is a major public health problem with strong genetic determination; however, the genetic factors underlying obesity are largely unknown. In this study, we performed a genome-wide association scan for obesity by examining approximately 500 000 single-nucleotide polymorphisms (SNPs) in a sample of 1000 unrelated US Caucasians. We identified a novel gene, CTNNBL1, which has multiple SNPs associated with body mass index (BMI) and fat mass. The most significant SNP, rs6013029, achieved experiment-wise P-values of 2.69 x 10(-7) for BMI and of 4.99 x 10(-8) for fat mass, respectively. The SNP rs6013029 minor allele T confers an average increase in BMI and fat mass of 2.67 kg/m(2) and 5.96 kg, respectively, compared with the alternative allele G. We further genotyped the five most significant CTNNBL1 SNPs in a French case-control sample comprising 896 class III obese adults (BMI > or = 40 kg/m(2)) and 2916 lean adults (BMI < 25 kg/m(2)). All five SNPs showed consistent associations with obesity (8.83 x 10(-3) < P < 6.96 x 10(-4)). Those subjects who were homozygous for the rs6013029 T allele had 1.42-fold increased odds of obesity compared with those without the T allele. The protein structure of CTNNBL1 is homologous to beta-catenin, a family of proteins containing armadillo repeats, suggesting similar biological functions. beta-Catenin is involved in the Wnt/beta-catenin-signaling pathway which appears to contribute to maintaining the undifferentiated state of pre-adipocytes by inhibiting adipogenic gene expression. Our study hence suggests a novel mechanism for the development of obesity, where CTNNBL1 may play an important role. Our study also provided supportive evidence for previously identified associations between obesity and INSIG2 and PFKP, but not FTO.
    Human Molecular Genetics 07/2008; 17(12):1803-13. · 7.69 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Total body fat mass (TBFM) and total body lean mass (TBLM) are the major components of the human body. Although these highly correlated phenotypic traits are frequently used to characterize obesity, the specific shared genetic factors that influence both traits remain largely unknown. Our study was aimed at identifying common quantitative trait loci (QTLs) contributing to both TBFM and TBLM. We performed a whole genome-linkage scan study in a large sample of 3255 subjects from 420 Caucasian pedigrees. Bivariate linkage analysis was carried out in both the entire sample and gender-specific subsamples. Several potentially important genomic regions that may harbour QTLs important for TBFM and TBLM were identified. For example, 20p12-11 achieved a LOD score of 2.04 in the entire sample and, in the male subsample, two genomic regions, 20p12 (LOD=2.08) and 3p26-25 (LOD=1.92), showed suggestive linkage. In addition, two-point linkage analyses for chromosome X showed suggestive linkages on Xp22 in the entire sample (LOD=2.14) and significant linkage on Xp22 in the female subsample (LOD=3.05). Complete pleiotropy was suggested for 20p12 and 3p26-25 in males. Our results suggest that QTLs on chromosomes 20p12, 3p26-25 and Xp22 may jointly influence TBFM and TBLM. Further fine mapping and gene identification studies for these pleiotropic effects are needed.
    Genetics Research 07/2008; 90(3):259-68. · 2.00 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Traditional whole genome linkage scans for obesity were usually performed for a number of correlated obesity related phenotypes separately without considering their correlations. The purpose of this study was to identify quantitative trait loci (QTLs) underlying variations in multiple correlated obesity phenotypes. We performed principal component analysis (PCA) for four highly correlated obesity phenotypes (body mass index [BMI], fat mass, percentage of fat mass [PFM], and lean mass) in a sample of 427 pedigrees (comprising 3,273 individuals) and generated two independent principal components (PC1 and PC2). A whole genome linkage scan (WGS) was then conducted for PC1 and PC2. For PC1, the strongest linkage signal was identified on chromosome 20p12 (LOD = 2.67). For PC2, two suggestive linkages were found on 5q35 (LOD = 2.03) and 7p22 (LOD = 2.18). This study provided evidence supporting several previously identified linkage regions for obesity (e.g., 1p36, 6p23 and 7q34). In addition, our approach by linear combination of highly correlated obesity phenotypes identified several novel QTLs which were not found in genome linkage scans for individual phenotypes.
    Annals of Human Genetics 06/2008; 72(Pt 3):319-26. · 2.22 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We conducted a whole genome linkage scan for quantitative trait loci (QTLs) underlying peak bone mineral density (PBMD). Our efforts identified several potential genomic regions for PBMD and highlighted the importance of epistatic interaction and sex-specific analyses in identifying genetic regions underlying PBMD variation. Peak bone mineral density (PBMD) is an important clinical risk predictor of osteoporosis and explains a large part of bone mineral density (BMD) variation. To detect susceptive quantitative trait loci (QTLs) for PBMD variation including consideration of epistatic and sex-specific effects, we conducted a whole genome linkage scan (WGLS) for PBMD using 2,200 Caucasians from 207 pedigrees, aged 20-50 years. All the individuals were genotyped with 410 microsatellite markers. In addition to WGLS in the total combined sample of males and females, we conducted epistatic interaction analyses, and sex-specific subgroup linkage analyses. We identified several potential genomic regions that met the criteria for suggestive linkage. The most impressing region is 12p12 for hip PBMD (LOD = 2.79) in the total sample. Epistatic interaction analyses found a significant epistatic interaction between 12p12 and 22q13 (p = 0.0021) for hip PBMD. Additionally, we detected suggestive linkage evidence at 15q26 (LOD = 2.93), 2p13 (LOD = 2.64), and Xq27 (LOD = 2.64). Sex-specific analyses suggested the presence of sex-specific QTLs for PBMD variation. Our efforts identified several potential regions for PBMD and highlighted the importance of epistatic interaction and sex-specific analyses in identifying genetic regions underlying PBMD variation.
    Osteoporosis International 04/2008; 19(3):303-10. · 4.04 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: It was previously believed that obesity and osteoporosis were two unrelated diseases, but recent studies have shown that both diseases share several common genetic and environmental factors. Body fat mass, a component of body weight, is one of the most important indices of obesity, and a substantial body of evidence indicates that fat mass may have beneficial effects on bone. Contrasting studies, however, suggest that excessive fat mass may not protect against osteoporosis or osteoporotic fracture. Differences in experimental design, sample structure, and even the selection of covariates may account for some of these inconsistent or contradictory results. Despite the lack of a clear consensus regarding the impact of effects of fat on bone, a number of mechanistic explanations have been proposed to support the observed epidemiologic and physiologic associations between fat and bone. The common precursor stem cell that leads to the differentiation of both adipocytes and osteoblasts, as well the secretion of adipocyte-derived hormones that affect bone development, may partially explain these associations. Based on our current state of knowledge, it is unclear whether fat has beneficial effects on bone. We anticipate that this will be an active and fruitful focus of research in the coming years.
    Journal of Bone and Mineral Research 02/2008; 23(1):17-29. · 6.13 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Osteoporosis is a common disease with strong genetic control. We performed an autosomal linkage scan in a large pedigree-based sample of 4,498 subjects for a composite osteoporosis phenotype that combines osteoporotic fracture (OF) and low bone mineral density (BMD). All of the subjects were U.S. Caucasians recruited in the Omaha area of Nebraska. Sex-specific linkage analyses and autosomal imprinting analyses were also conducted. For conventional linkage analyses in the total sample, we identified suggestive linkage on chromosomes 14q32 (LOD = 2.61), 7p14 (LOD = 2.42), and 11q25 (LOD = 2.09). In female subjects a significant linkage signal was detected on chromosome 14q22 (LOD = 3.53) and another two peaks were detected on chromosomes 7p14 (LOD = 3.07) and 9p21 (LOD = 2.29). Suggestive evidence of imprinted loci was found with paternally derived alleles on chromosomes 1q42 (LOD = 2.12) and 9q34 (LOD = 1.88). Some evidence of linkage to maternally derived alleles was found on chromosome 7q22 (LOD = 1.67). Our study provides new clues to osteoporosis genetic research and for the first time suggests that genomic imprinting effects may play a role in the etiology of osteoporosis.
    Human Biology 01/2008; 79(6):593-608. · 1.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Osteoporosis, the most prevalent metabolic bone disease among older people, increases risk for low trauma hip fractures (HF) that are associated with high morbidity and mortality. Hip bone size (BS) has been identified as one of the key measurable risk factors for HF. Although hip BS is highly genetically determined, genetic factors underlying the trait are still poorly defined. Here, we performed the first genome-wide association study (GWAS) of hip BS interrogating approximately 380,000 SNPs on the Affymetrix platform in 1,000 homogeneous unrelated Caucasian subjects, including 501 females and 499 males. We identified a gene, PLCL1 (phospholipase c-like 1), that had four SNPs associated with hip BS at, or approaching, a genome-wide significance level in our female subjects; the most significant SNP, rs7595412, achieved a p value of 3.72x10(-7). The gene's importance to hip BS was replicated using the Illumina genotyping platform in an independent UK cohort containing 1,216 Caucasian females. Two SNPs of the PLCL1 gene, rs892515 and rs9789480, surrounded by the four SNPs identified in our GWAS, achieved p values of 8.62x10(-3) and 2.44x10(-3), respectively, for association with hip BS. Imputation analyses on our GWAS and the UK samples further confirmed the replication signals; eight SNPs of the gene achieved combined imputed p values<10(-5) in the two samples. The PLCL1 gene's relevance to HF was also observed in a Chinese sample containing 403 females, including 266 with HF and 177 control subjects. A SNP of the PLCL1 gene, rs3771362 that is only approximately 0.6 kb apart from the most significant SNP detected in our GWAS (rs7595412), achieved a p value of 7.66x10(-3) (odds ratio = 0.26) for association with HF. Additional biological support for the role of PLCL1 in BS comes from previous demonstrations that the PLCL1 protein inhibits IP3 (inositol 1,4,5-trisphosphate)-mediated calcium signaling, an important pathway regulating mechanical sensing of bone cells. Our findings suggest that PLCL1 is a novel gene associated with variation in hip BS, and provide new insights into the pathogenesis of HF.
    PLoS ONE 01/2008; 3(9):e3160. · 3.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: BMDs at different skeletal sites share some common genetic determinants. Using PCA and bivariate linkage analysis, we identified a QTL on chromosome 2q32 with significant pleiotropic effects on BMDs at different skeletal sites. BMDs at the hip, spine, and forearm are genetically correlated, suggesting the existence of quantitative trait loci (QTLs) with concurrent effects on BMDs at these three skeletal sites. Consequently, it is important to identify these QTLs in the human genome and, for those implicated QTLs, it is important to differentiate between pleiotropic effects, caused by a single gene that concurrently effects these traits, and co-incident linkage, caused by multiple, closely linked, genes that independently effect these traits. For a sample of 451 American white pedigrees made up of 4,498 individuals, we evaluated the correlations between BMDs at the three skeletal sites. We carried out principal component analysis (PCA) for the three correlated traits and obtained a major component, PC1, which accounts for >75% of the co-variation of BMDs at the three sites. We subsequently conducted a whole genome linkage scan for PC1 and performed bivariate linkage analysis for pairs of the three traits (i.e., forearm/spine BMD, hip/forearm BMD, and hip/spine BMD). Chromosome region 2q32, near the marker GATA65C03M, showed strong linkage to PC1 (LOD = 3.35). Subsequent bivariate linkage analysis substantiated linkage at 2q32 for each trait pair (LOD scores were 2.65, 2.42, and 2.13 for forearm/spine BMD, hip/forearm BMD, and hip/spine BMD, respectively). Further analyses rejected the hypothesis of co-incident linkage (p(0)[forearm/spine] = 0.0005, p(0)[hip/forearm] = 0.004, p(0)(hip/spine] = 0.001) but failed to reject the hypothesis of pleiotropy (p(1)[forearm/spine] = 0.35, p(1)[hip/forearm] = 0.07, p(1)[hip/spine] = 0.15). Our results strongly support the conclusion that chromosome region 2q32 may harbor a QTL with pleiotropic effects on BMDs at different skeletal sites.
    Journal of Bone and Mineral Research 11/2007; 22(11):1672-8. · 6.13 Impact Factor
  • Betty M Drees, Louise Arnold, Harry S Jonas
    [show abstract] [hide abstract]
    ABSTRACT: The University of Missouri-Kansas City (UMKC) School of Medicine is a public medical school that opened in 1971 in response to a need to train more physicians in Missouri. As a six-year, integrated, combined-degree program leading to the baccalaureate and medical degrees, the school offers an innovative, nontraditional approach to medical education. In the past 35 years, UMKC has graduated over 2,400 physicians who are successful according to outcomes measures used at other medical schools. With recent interest in reforming medical education to prepare physicians for a changing world, a review of alternative models may be especially instructive.UMKC's academic plan offers a blueprint for the curriculum plan and governance of the school. The plan is built on four hallmarks: (1) a combined baccalaureate/MD program, (2) early exposure to clinical medicine, (3) small-group learning through the docent system, and (4) a continuing ambulatory care clinic experience for four years. This article catalogs the results of this plan including student, faculty, and graduates' perceptions of and satisfaction with the school's educational approach, students' achievement on licensing examinations and in the residency match, graduates' performance in residency programs, and their subsequent career patterns. The authors also discuss lessons learned and adjustments made in response to local needs in the context of a changing environment in education, health care, and health care delivery while continually improving the school's nontraditional approach to medical education. These include changes in basic and clinical science instruction, student assessment, faculty development, and funding and governance.
    Academic Medicine 05/2007; 82(4):361-9. · 3.29 Impact Factor
  • Betty M Drees
    Missouri medicine 100(5):488-9.
  • Betty M Drees
    Missouri medicine 107(2):78-81.
  • Betty M Drees
    Missouri medicine 104(3):206-7.

Publication Stats

411 Citations
84 Downloads
1k Views
80.82 Total Impact Points

Institutions

  • 2007–2010
    • Xi'an Jiaotong University
      • Key Laboratory of Biomedical Information Engineering of Ministry of Education
      Xi’an, Shaanxi Sheng, China
    • University of Missouri - Kansas City
      • • School of Medicine
      • • Department of Internal Medicine
      Kansas City, MO, United States