P Maurer

University of Cologne, Köln, North Rhine-Westphalia, Germany

Are you P Maurer?

Claim your profile

Publications (35)164.53 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We performed a detailed investigation of N-glycan structures on BM-40 purified from different sources including human bone, human platelets, mouse Engelbreth-Holm-Swarm (EHS) tumor, and human BM-40 recombinantly expressed in 293 and osteosarcoma cells. These preparations were digested with endoglycosidases and N-glycans were further characterized by sequential exoglycosidase digestion and high-performance liquid chromatography (HPLC) analyses. Bone BM-40 carries high-mannose structures as well as biantennary complex type N-glycans, whereas the protein from platelets and 293 cells has exclusively bi- and triantennary complex type structures. BM-40 derived from the EHS tumor carries biantennary complex type and additional hybrid structures. Using the osteosarcoma-derived MHH-ES1 cell line we successfully expressed a recombinant BM-40 that bears at least in part the bone-specific high-mannose N-glycosylation in addition to complex type and hybrid structures. Using chromatography on Concanavalin-A Sepharose, we further purified a fraction enriched in high-mannose structures. This array of differentially glycosylated BM-40 proteins was assayed by surface plasmon resonance measurements to investigate the binding to collagen I. BM-40 carrying high-mannose structures binds collagen I with higher affinity, suggesting that differentially glycosylated forms may have different functional roles in vivo.
    Glycobiology 08/2004; 14(7):609-19. · 3.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The N-terminal NC4 domain of collagen IX is a globular structure projecting away from the surface of the cartilage collagen fibril. Several interactions have been suggested for this domain, reflecting its location and its characteristic high isoelectric point. In an attempt to characterize the NC4 domain in more detail, we set up a prokaryotic expression system to produce the domain. The purified 27.5-kDa product was analyzed for its glycosaminoglycan-binding potential by surface plasmon resonance and solid-state assays. The results show that the NC4 domain of collagen IX specifically binds heparin with a K(d) of 0.6 microm, and the full-length recombinant collagen IX has an even stronger interaction with heparin, with an apparent K(d) of 3.6 nm. The heparin-binding site of the NC4 domain was located in the extreme N terminus, containing a heparin-binding consensus sequence, whereas electron microscopy suggested the presence of at least three additional heparin-binding sites on full-length collagen IX. The NC4 domain was also shown to bind cartilage oligomeric matrix protein. This interaction and the association of cartilage oligomeric matrix protein with other regions of collagen IX were found to be heparin-competitive. Circular dichroism analyses of the NC4 domain indicated the presence of stabilizing disulfide bonds and a thermal denaturation point of about 80 degrees C. The pattern of disulfide bond formation within the NC4 domain was identified by tryptic peptide mass mapping of the NC4 in native and reduced states. A similar pattern was demonstrated for the NC4 domain of full-length recombinant collagen IX.
    Journal of Biological Chemistry 07/2004; 279(23):24265-73. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recombinant forms of the glycoprotein TSC-36/Flik were expressed in human cells and used to compare their structural and functional properties with those described for other members of the BM-40/SPARC/osteonectin protein family. TSC-36 was found to occur in two charge isoforms that differ in the extent of sialylation of otherwise identical N-linked, complex type oligosaccharides. Conformational analysis with both circular dichroism and intrinsic fluorescence spectroscopy showed a lack of significant structural changes upon calcium addition or depletion. This finding is in contrast to results obtained for several other BM-40 family members and indicates that the extracellular calcium-binding domain in TSC-36 is non-functional. The lack of conservation of important functional features common to several other members of the BM-40 family indicates that TSC-36, despite its sequence homology to BM-40, has evolved clearly distinct properties.
    Journal of Biological Chemistry 04/2004; 279(12):11727-35. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have introduced a pseudoachondroplasia-associated mutation (His(587)-->Arg) into the C-terminal collagen-binding domain of COMP (cartilage oligomeric matrix protein) and recombinantly expressed the full-length protein as well as truncated fragments in HEK-293 cells. CD spectroscopy revealed only subtle differences in the overall secondary structure of full-length proteins. Interestingly, the mutant COMP did not aggregate in the presence of calcium, as does the wild-type protein. The binding site for collagens was recently mapped to amino acids 579-595 and it was assumed that the His(587)-->Arg mutation influences collagen binding. However full-length mutant COMP bound to collagens I, II and IX, and the binding was not significantly different from that of wild-type COMP. Also a COMP His(587)-->Arg fragment encompassing the calcium-binding repeats and the C-terminal collagen-binding domain bound collagens equally well as the corresponding wild-type protein. The recombinant fragments encompassing the C-terminal domain alone showed multiple bands following SDS/PAGE, although their theoretical molecular masses could be verified by MS. A temperature-induced conformational change was observed in CD spectroscopy, and negative-staining electron microscopy demonstrated that both wild-type and mutant proteins formed defined elongated aggregates after heating to 60 degrees C. Our results suggest that the His(587)-->Arg mutation is not itself deleterious to the structure and collagen-binding of COMP.
    Biochemical Journal 01/2004; 377(Pt 2):479-87. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have isolated the novel gene SMOC-2, which encodes a secreted modular protein containing an EF-hand calcium-binding domain homologous to that in BM-40. It further consists of two thyroglobulin-like domains, a follistatin-like domain and a novel domain found only in the homologous SMOC-1. Phylogenetic analysis of the calcium-binding domain sequences showed that SMOC-1 and -2 form a separate group within the BM-40 family. The human and mouse SMOC-2 sequences are coded for by genes consisting of 13 exons located on chromosomes 6 and 17, respectively. Analysis of recombinantly expressed protein showed that SMOC-2 is a glycoprotein with a calcium-dependent conformation. Results from Northern blots and reverse transcription PCR revealed a widespread expression in many tissues.
    Biochemical Journal 09/2003; 373(Pt 3):805-14. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: SC1, a member of the BM-40 family of extracellular matrix proteins, was recombinantly expressed in a eukaryotic expression system. The full-length protein as well as truncated versions were purified to homogeneity under non-denaturing conditions. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry of full-length SC1 revealed a mass of 87.8 kDa of which 16.8 kDa is contributed by posttranslational modifications. In electron microscopy, after negative staining, SC1 was revealed as a globule attached to a thread-like structure. A calcium dependence of the SC1 conformation could be demonstrated by fluorescence spectroscopy. In the extracellular matrix of cultured osteosarcoma cells SC1 was found associated with collagen I-containing fibrils, and binding of SC1 to reconstituted collagen I fibrils could be demonstrated by immunogold labeling and electron microscopy. SC1 showed a broad expression in a variety of tissues.
    Journal of Biological Chemistry 04/2003; 278(13):11351-8. · 4.65 Impact Factor
  • Article: SC1/Hevin
    [Show abstract] [Hide abstract]
    ABSTRACT: SC1, a member of the BM-40 family of extracellular matrix proteins, was recombinantly expressed in a eukaryotic expression system. The full-length protein as well as truncated versions were purified to homogeneity under non-denaturing conditions. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry of full-length SC1 revealed a mass of 87.8 kDa of which 16.8 kDa is contributed by posttranslational modifications. In electron microscopy, after negative staining, SC1 was revealed as a globule attached to a thread-like structure. A calcium dependence of the SC1 conformation could be demonstrated by fluorescence spectroscopy. In the extracellular matrix of cultured osteosarcoma cells SC1 was found associated with collagen I-containing fibrils, and binding of SC1 to reconstituted collagen I fibrils could be demonstrated by immunogold labeling and electron microscopy. SC1 showed a broad expression in a variety of tissues.
    Journal of Biological Chemistry 03/2003; 278(13):11351-11358. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Matrilin-2 is a component of extracellular filamentous networks. To study the interactions by which it can be integrated into such assemblies, full-length and truncated forms of matrilin-2 were recombinantly expressed in HEK-293 cells and purified from conditioned medium. The recombinant proteins, when used in interaction assays, showed affinity to matrilin-2 itself, but also to other collagenous and non-collagenous extracellular matrix proteins. The interaction between matrilin-2 and collagen I was studied in greater detail and could be shown to occur at distinct sites on the collagen I molecule and to have a K (D) of about 3 x 10(-8) M. Interactions with some non-collagenous protein ligands were even stronger, with matrilin-2 binding to fibrillin-2, fibronectin and laminin-1-nidogen-1 complexes, with K (D) values in the range of 10(-8)-10(-11) M. Co-localization of matrilin-2 with these ligands in the dermal-epidermal basement membrane, in the microfibrils extending from the basement membrane into the dermis, and in the dermal extracellular matrix, indicates a physiological relevance of the interactions in the assembly of supramolecular extracellular matrix structures.
    Biochemical Journal 12/2002; 367(Pt 3):715-21. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have isolated the novel gene SMOC-1 that encodes a secreted modular protein containing an EF-hand calcium-binding domain homologous to that in BM-40. It further consists of two thyroglobulin-like domains, a follistatin-like domain and a novel domain. Recombinant expression in human cells showed that SMOC-1 is a glycoprotein with a calcium-dependent conformation. Results from Northern blots, reverse transcriptase-PCR, and immunoblots revealed a widespread expression in many tissues. Immunofluorescence studies with an antiserum directed against recombinant human SMOC-1 demonstrated a basement membrane localization of the protein and additionally its presence in other extracellular matrices. Immunogold electron microscopy confirmed the localization of SMOC-1 within basement membranes in kidney and skeletal muscle as well as its expression in the zona pellucida surrounding the oocyte.
    Journal of Biological Chemistry 11/2002; 277(41):37977-86. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Integrins are alpha/beta heterodimeric cell surface receptors devoid of enzymatic activity. Signal transduction therefore requires the association of cytosolic and cytoskeletal proteins with the integrin subunit intracellular regions. This association is initiated upon ligand binding to the integrin receptor and includes clustering of the integrins and recruitment of focal adhesion-associated proteins. Whether integrin clustering is solely dependent on ligand binding to the integrin extracellular parts or involves also interactions between the intracellular tails of integrins is so far unknown. To investigate intracellular events in integrin clustering, we have used peptides corresponding to the integrin beta1 cytoplasmic region. Loading of cells with the peptides results in a decreased cell adhesion and in an inhibition of cell spreading in agreement with the previously reported dominant negative effect of the beta1 integrin cytoplasmic tail on integrin clustering. Direct protein-protein interaction studies by surface plasmon resonance demonstrate that integrin beta1 cytoplasmic peptides self-associate in contrast to integrin beta3 cytoplasmic tails. Size exclusion chromatography and SDS-PAGE analysis of the peptides further show that the integrin beta1 cytoplasmic parts form oligomers and that they assume alpha helical conformation to the extent of about 13% and that this fraction is increased upon aggregation. Thus self-association of the integrin beta1 subunit cytoplasmic regions may be central to beta1 integrin clustering.
    Biology of the Cell 11/2002; 94(6):375-87. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pseudoachondroplasia is a dominantly inherited chondrodysplasia associated with mutations in cartilage oligomeric matrix protein (COMP). Investigations into the pathogenesis of pseudoachondroplasia are hampered by its rarity. We developed a cell culture model by expressing mutant COMP in bovine primary chondrocytes using a gutless adenoviral vector. We show that mutant COMP exerts its deleterious effects through both intra- and extracellular pathogenic pathways. Overexpression of mutant COMP led to a dose-dependent decrease in cellular viability. The secretion of mutant COMP was markedly delayed, presumably due to a prolonged association with chaperones in the endoplasmic reticulum (ER). The ECM lacked organized collagen fibers and showed amorphous aggregates formed by mutant COMP. Thus, pseudoachondroplasia appears to be an ER storage disease, most likely caused by improper folding of mutant COMP. The growth failure of affected patients may be explained by an increased cell death of growth-plate chondrocytes. Dominant interference of the mutant protein on collagen fiber assembly could contribute to the observed failure of the ECM of cartilage and tendons.
    Journal of Clinical Investigation 09/2002; 110(4):505-13. · 12.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human bone sialoprotein (BSP) comprises 15% of the total noncollagenous proteins in bone and is thought to be involved in bone mineralization and remodeling. Recent data suggest a role for BSP in breast cancer and the development of bone metastases. We have produced full-length recombinant BSP in a human cell line and purified the protein from human bone retaining the native structure with proper folding and post-translational modifications. Mass spectrometry of bone-derived BSP revealed an average mass of 49 kDa and for recombinant BSP 57 kDa. The post-translational modifications contribute 30-40%. Carbohydrate analysis revealed 10 different complex-type N-glycans on both proteins and eight different O-glycans on recombinant BSP, four of those were found on bone-derived BSP. We could identify eight threonines modified by O-glycans, leaving the C terminus of the protein free of glycans. The recombinant protein showed similar secondary structures as bone-derived BSP. BSP was visualized in electron microscopy as a globule linked to a thread-like structure. The affinity for hydroxyapatite was higher for bone-derived BSP than for recombinant BSP. Cell adhesion assays showed that the binding of BSP to cells can be reversibly diminished by denaturation.
    Journal of Biological Chemistry 10/2001; 276(39):36839-48. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary chondrocytes dedifferentiate in serial monolayer with respect to their morphological and biosynthetic phenotype. They change from a round to a flattened fibroblast-like shape, and collagen I is secreted instead of the cartilage-specific collagen II. We analysed in detail the time course of dedifferentiation of mature bovine articular chondrocytes in monolayer for up to 32 weeks. Assessment of RNA expression by reverse transcription-PCR led to the identification of two novel phenotypical markers, the cartilage oligomeric matrix protein (COMP) and collagen IX, which are down-regulated faster than the widely accepted marker, collagen II. The different kinetics of COMP and collagen expression suggest differential regulation at the level of transcription. Immunostaining and metabolic labelling experiments confirmed the switch in the collagen expression pattern and the rapid down-regulation of de novo synthesis of COMP and collagen IX. Culture of chondrocytes in a three-dimensional matrix is known to stabilize the chondrocytic phenotype. We maintained cells for up to 28 weeks in an alginate bead system, which prevented dedifferentiation and led to a stabilization of collagen and COMP expression. Immunohistochemical analysis of the alginate beads revealed a similar distribution of matrix proteins to that found in vivo. Chondrocytes were transferred after a variable length of monolayer culture into the alginate matrix and the potential for redifferentiation was investigated. The re-expression of COMP and collagen IX was differentially regulated. The expression of COMP was re-induced within days after transfer into the three-dimensional matrix, while the expression of collagen IX was irreversibly down-regulated. In summary, these results demonstrate that the potential for redifferentiation decreases with increasing length of monolayer culture and show that the alginate bead system represents an attractive in vitro model to study the chondrocyte de- and re-differentiation processes, as well as extracellular matrix assembly.
    Biochemical Journal 09/2001; 358(Pt 1):17-24. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Different gene transfer approaches to achieve long-term transgene expression in cultured primary bovine chondrocytes were compared using enhanced green fluorescent protein (EGFP) as a reporter. Transduction with a high-capacity adenoviral vector was 82% efficient when analysed by fluorescence microscopy, while up to 42% of plasmid-transfected cells were EGFP positive with FuGene as a transfection reagent. Rapid dominant marker selection of plasmid-transfected cells was achieved in monolayer culture. With either method of gene transfer, a high proportion of the chondrocytes remained transgene positive during prolonged alginate culture. Transgene transcription in single cells was quantified with a confocal laser scanning microscope. Detection of EGFP expression was more sensitive with this method, identifying more transgene-expressing cells than conventional fluorescence microscopy. Long-term EGFP expression was higher in adenovirally transduced chondrocytes embedded in alginate as compared to plasmid-transfected cells cultured in monolayer or in alginate. Both the adenoviral and the plasmid-based approach appear suited for studies of the molecular and cellular mechanisms by which mutations in cartilage matrix proteins cause disease.
    Histochemie 08/2001; 116(1):69-77. · 2.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in type 3 repeats of cartilage oligomeric matrix protein (COMP) cause two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). We expressed recombinant wild-type COMP that showed structural and functional properties identical to COMP isolated from cartilage. A fragment encompassing the eight type 3 repeats binds 14 calcium ions with moderate affinity and high cooperativity and presumably forms one large disulfide-bonded folding unit. A recombinant PSACH mutant COMP in which Asp-469 was deleted (D469 Delta) and a MED mutant COMP in which Asp-361 was substituted by Tyr (D361Y) were both secreted into the cell culture medium of human cells. Circular dichroism spectroscopy revealed only small changes in the secondary structures of D469 Delta and D361Y, demonstrating that the mutations do not dramatically affect the folding and stability of COMP. However, the local conformations of the type 3 repeats were disturbed, and the number of bound calcium ions was reduced to 10 and 8, respectively. In addition to collagen I and II, collagen IX also binds to COMP with high affinity. The PSACH and MED mutations reduce the binding to collagens I, II, and IX and result in an altered zinc dependence. These interactions may contribute to the development of the patient phenotypes and may explain why MED can also be caused by mutations in collagen IX genes.
    Journal of Biological Chemistry 04/2001; 276(9):6083-92. · 4.65 Impact Factor
  • Ursula Hartmann, Patrik Maurer
    [Show abstract] [Hide abstract]
    ABSTRACT: Large numbers of different proteoglycans are expressed in tightly regulated spatio-temporal patterns by both the nerve cells (neurons) and the supporting glial cells of the nervous system. Several of these proteoglycans have been shown by studies in vitro to affect the migration of neural precursor cells, the elongation and pathfinding of neurites and the formation and stabilization of synapses. Such processes are important for the accurate wiring of the nervous system, and so it has been postulated that proteoglycans play an essential role during neural development. However, with few exceptions, the phenotypes of null mutations in mice and some human genetic diseases have provided little support for this view. Here we will review recent data from both in vitro and in vivo studies analyzing the function of proteoglycans in the nervous system in order to provide possible explanations for their apparent lack of function.
    Matrix Biology 03/2001; 20(1):23-35. · 3.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Full-length and truncated forms of rat thrombospondin-4 (TSP-4) were expressed recombinantly in a mammalian cell line and purified to homogeneity. Biochemical analysis revealed a limited proteolytic processing, which detaches the N-terminal heparin-binding domain from the rest of the molecule and confirmed the importance of the heptad-repeat domain for pentamerization. In electron microscopy the uncleaved TSP-4 was seen as a large central particle to which five smaller globules are attached by elongated linker regions. Binding of TSP-4 to collagens and to non-collagenous proteins could be detected in enzyme-linked immunosorbent assay-style ligand binding assays, by surface plasmon resonance spectroscopy, and in rotary shadowing electron microscopy. Although the binding of TSP-4 to solid-phase collagens was enhanced by Zn(2+), that to non-collagenous proteins was not. The interactions of TSP-4 with both classes of proteins are mediated by C-terminal domains of the TSP-4 subunits but do not require an oligomeric structure. Major binding sites for TSP-4 are located in or close to the N- and C-terminal telopeptides in collagen I, but additional sites are detected in more central regions of the molecule.
    Journal of Biological Chemistry 12/2000; 275(47):37110-7. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The structure and function of cytosolic Ca(2+)-binding proteins containing EF-hands are well understood. Recently, the presence of EF-hands in an extracellular protein was for the first time proven by the structure determination of the EC domain of BM-40 (SPARC (for secreted protein acidic and rich in cysteine)/osteonectin) (Hohenester, E., Maurer, P., Hohenadl, C., Timpl, R., Jansonius, J. N., and Engel, J. (1996) Nat. Struct. Biol. 3, 67-73). The structure revealed a pair of EF-hands with two bound Ca(2+) ions. Two unusual features were noted that distinguish the extracellular EF-hands of BM-40 from their cytosolic counterparts. An insertion of one amino acid into the loop of the first EF-hand causes a variant Ca(2+) coordination, and a disulfide bond connects the helices of the second EF-hand. Here we show that the extracellular EF-hands in the BM-40 EC domain bind Ca(2+) cooperatively and with high affinity. The EC domain is thus in the Ca(2+)-saturated form in the extracellular matrix, and the EF-hands play a structural rather than a regulatory role. Deletion mutants demonstrate a strong interaction between the EC domain and the neighboring FS domain, which contributes about 10 kJ/mol to the free energy of binding and influences cooperativity. This interaction is mainly between the FS domain and the variant EF-hand 1. Certain mutations of Ca(2+)-coordinating residues changed affinity and cooperativity, but others inhibited folding and secretion of the EC domain in a mammalian cell line. This points to a function of EF-hands in extracellular proteins during biosynthesis and processing in the endoplasmic reticulum or Golgi apparatus.
    Journal of Biological Chemistry 09/2000; 275(33):25508-15. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have screened a human cDNA library using an expressed sequence tag related to the BM-40/secreted protein, acidic and rich in cysteine (SPARC)/osteonectin family of proteins and isolated a novel cDNA. It encodes a protein precursor of 424 amino acids that consists of a signal peptide, a follistatin-like domain, a Ca2+-binding domain, a thyroglobulin-like domain, and a C-terminal region with two putative glycosaminoglycan attachment sites. The protein is homologous to testican-1 and was termed testican-2. Testican-1 is a proteoglycan originally isolated from human seminal plasma that is also expressed in brain. Northern blot hybridization of testican-2 showed a 6.1-kb mRNA expressed mainly in CNS but also found in lung and testis. A widespread expression in multiple neuronal cell types in olfactory bulb, cerebral cortex, thalamus, hippocampus, cerebellum, and medulla was detected by in situ hybridization. A recombinant fragment consisting of the Ca2+-binding EF-hand domain and the thyroglobulin-like domain of testican-2 showed a reversible Ca2+-dependent conformational change in circular dichroism studies. Testican-1 and -2 form a novel Ca2+-binding proteoglycan family built of modular domains with the potential to participate in diverse steps of neurogenesis.
    Journal of Neurochemistry 08/1999; 73(1):12-20. · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A large protein was purified from bovine kidney, using selective extraction with EDTA to solubilize proteins anchored by divalent cation-dependent interactions. An antiserum raised against the purified protein labeled the apical cell surface of the epithelial cells in proximal tubules and the luminal surface of small intestine. Ten peptide sequences, derived from the protein, all matched the recently published sequences for rat (Moestrup, S. K., Kozyraki, R., Kristiansen, M., Kaysen, J. H., Holm Rasmussen, H., Brault, D., Pontillon, F., Goda, F. O., Christensen, E. I., Hammond, T. G., and Verroust, P. J. (1998) J. Biol. Chem. 273, 5235-5242) and human cubilin, a receptor for intrinsic factor-vitamin B12 complexes, identifying the protein as bovine cubilin. In electron microscopy, a three-armed structure was seen, indicating an oligomerization of three identical subunits. This model was supported by the Mr values of about 1,500,000 for the intact protein and 440,000 for its subunits obtained by analytical ultracentrifugation. In a search for a potential assembly domain, we identified a region of heptad repeats in the N-terminal part of the cubilin sequence. Computer-assisted analysis supported the presence of a coiled-coil alpha-helix between amino acids 103 and 132 of the human cubilin sequence and predicted the formation of a triple coiled-coil. We therefore conclude that cubilin forms a noncovalent trimer of identical subunits connected by an N-terminal coiled-coil alpha-helix.
    Journal of Biological Chemistry 04/1999; 274(10):6374-80. · 4.65 Impact Factor

Publication Stats

2k Citations
164.53 Total Impact Points

Institutions

  • 1994–2004
    • University of Cologne
      • • Center for Biochemistry
      • • Institute of Biochemistry
      • • Department of Dermatology and Venerology
      Köln, North Rhine-Westphalia, Germany
  • 1999
    • Lund University
      Lund, Skåne, Sweden
  • 1997
    • Max Planck Institute of Biochemistry
      • Department of Molecular Medicine
      München, Bavaria, Germany
    • Birkbeck, University of London
      Londinium, England, United Kingdom
  • 1993–1996
    • Universität Basel
      • Department of Biophysical Chemistry
      Basel, BS, Switzerland