Kunchi Peng

Shanxi University, Yangkü, Shanxi Sheng, China

Are you Kunchi Peng?

Claim your profile

Publications (115)277.87 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The non-measurement based coherent feedback control (CFC) is a control method without introducing any backaction noise into the controlled system, thus is specially suitable to manipulate various quantum optical systems for preparing nonclassical states of light. By simply tuning the transmissivity of an optical controller in a CFC loop attached to a non-degenerate optical parametric amplifier (NOPA), the quantum entanglement degree of the output optical entangled state of the system is improved. At the same time, the threshold pump power of the NOPA is reduced also. The experimental results are in reasonable agreement with the theoretical expectation.
    Scientific Reports 06/2015; 5. DOI:10.1038/srep11132 · 5.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Entangled state of light is one of the essential quantum resources in quantum information science and technology. Especially, when the fundamental principle experiments have been achieved in labs and the applications of continuous variable quantum information in the real world are considered, it is crucial to design and construct the generation devices of entangled states with high entanglement and compact configuration. We have designed and built an efficient and compact light source of entangled state, which is a non-degenerate optical parametric amplifier (NOPA) with the triple resonance of the pump and two subharmonic modes. A wedged type-II KTP crystal inside the NOPA is used for implementing frequency-down-conversion of the pump field to generate the optical entangled state and achieving the dispersion compensation between the pump and the subharmonic waves. The EPR entangled state of light with quantum correlations of 8.4 dB for both amplitude and phase quadratures are experimentally produced by a single NOPA under the pump power of 75 mW.
    Optics Express 02/2015; 23(4). DOI:10.1364/OE.23.004952 · 3.53 Impact Factor
  • Qiwei Yin, Huadong Lu, Kunchi Peng
    [Show abstract] [Hide abstract]
    ABSTRACT: The thermal lens effect of the TGG crystal is investigated theoretically and experimentally. The theoretical analysis is demonstrated by the experimental measurements on a home-made frequency-doubled Nd:YVO4 laser with single-frequency operation. In the presence of the thermal lens effect of the TGG crystal, the output power can be optimized by shortening the distance between the cavity mirrors of M3 and M4 (two plane-concave mirrors placed at two sides of the second-harmonic generator). Consequently, a single-frequency laser with output power of 18.7 W at 532 nm is obtained. The power stability and the beam quality M2 are better than ±0.4% for 5 hours and 1.08, respectively. Meanwhile, we observe and discuss a bistability-like phenomenon of the laser in the cases of increasing and decreasing the incident pump power.
    Optics Express 02/2015; 23(4). DOI:10.1364/OE.23.004981 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A single frequency Ti:sapphire (Ti:S) laser with continuous frequency-tuning and low intensity noise is presented, in which an extra nonlinear (NL) loss crystal is placed inside the resonator instead of the traditional etalon locking system. When a NL crystal is inserted into a home-made Ti:S laser resonator, the single frequency laser of 1.27 W at 795 nm with a continuous frequency-tuning range of 48 GHz is realized under the pump level of 11.27 W and the intensity noise at the lower frequencies is successfully suppressed.
    Optics Express 10/2014; 22(20):24551-24558. DOI:10.1364/OE.22.024551 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The preparation of multipartite entangled states is the prerequisite for exploring quantum information networks and quantum computation. In this paper, we review the experimental progress in the preparation of cluster states and multi-color entangled states with continuous variables. The preparation of lager scale multipartite entangled state provide valuable quantum resources to implement more complex quantum informational tasks.
    Science China: Physics, Mechanics and Astronomy 07/2014; 57(7). DOI:10.1007/s11433-013-5358-0 · 0.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using a six-mode continuous variable cluster state as ancillary state, we experimentally demonstrate a cascaded Gaussian quantum logic operation consisting of a single-mode squeezing gate and a two-mode CZ gate.
    Quantum Information and Measurement; 03/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Single-mode squeezing and Fourier transformation operations are two essential logical gates in continuous-variable quantum computation, which have been experimentally implemented by means of an optical four-mode cluster state. In this paper, we present a simpler and more efficient protocol based on the use of Einstein-Podolsky-Rosen two-mode entangled states to realize the same operations. The theoretical calculations and the experimental results demonstrate that the presented scheme not only decreases the requirement to the resource quantum states at the largest extent but also enhances significantly the squeezing degree and the fidelity of the resultant modes under an identical resource condition. That is because in our system the influence of the excess noises deriving from the imperfect squeezing of the resource states is degraded. The gate operations applying two-mode entanglement can be utilized as a basic element in a future quantum computer involving a large-scale cluster state.
    Physical Review A 03/2014; 89(3). DOI:10.1103/PhysRevA.89.032311 · 2.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The optimal physical conditions of single-longitudinal-mode (SLM) operation for continuous-wave all-solid-state lasers with high output powers are investigated theoretically and experimentally. The dependence of the operation conditions on the linear and nonlinear intracavity losses of the laser is numerically calculated. The theoretical analysis is demonstrated by the experimental measurements on a home-made Nd:YVO<sub>4</sub> laser. The stable SLM output up to 33.7 W with optical-optical conversion efficiency of 44.9% at 1064 nm wavelength is recorded for over 7 h. The experimental results are in good agreement with the theoretical expectation.
    Optics Letters 03/2014; 39(5):1117-20. DOI:10.1364/OL.39.001117 · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-lived and high-fidelity memory for photonic polarization qubit (PPQ) is crucial for constructing quantum networks. Here we present an EIT-based millisecond storage system in which a moderate magnetic field is applied on a cold-atom cloud to lift Zeeman degeneracy. PPQ states are stored as two magnetic-field-insensitive spin waves. Especially, the influence of magnetic-field-sensitive spin waves on the storage performances is almost totally avoided. The measured average fidelities of polarization states are 98.6% at 200 us and 78.4% at 4.5 ms, respectively.
    Physical Review Letters 12/2013; 111(24):240503. DOI:10.1103/PhysRevLett.111.240503 · 7.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Measurement-based one-way quantum computation using cluster states as resources provides an efficient model to perform computation and information processing of quantum codes. Arbitrary Gaussian quantum computation can be implemented sufficiently by long single-mode and two-mode gate sequences. However, continuous variable gate sequences have not been realized so far due to an absence of cluster states larger than four submodes. Here we present the first continuous variable gate sequence consisting of a single-mode squeezing gate and a two-mode controlled-phase gate based on a six-mode cluster state. The quantum property of this gate sequence is confirmed by the fidelities and the quantum entanglement of two output modes, which depend on both the squeezing and controlled-phase gates. The experiment demonstrates the feasibility of implementing Gaussian quantum computation by means of accessible gate sequences.
    Nature Communications 11/2013; 4:2828. DOI:10.1038/ncomms3828 · 10.74 Impact Factor
  • Source
    Wenzhe Wang, Huadong Lu, Jing Su, Kunchi Peng
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a diode-pumped broadband tunable single-frequency and frequency-doubling Nd:YVO<sub>4</sub>/LBO laser with high output power of 10.5 W in all tuning ranges around 532 nm. An etalon placed inside the resonator and the laser gain medium in a wedge shape are used for the coarse- and fine-tuning elements, respectively. By independently scanning the temperatures of the two tuning elements, broadband tunable ranges of 12 and 24 GHz have been achieved, respectively, for the fundamental and the second-harmonic waves.
    Applied Optics 04/2013; 52(11):2279-85. DOI:10.1364/AO.52.002279 · 1.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multi-color entangled states of light including low-loss optical fiber transmission and atomic resonance frequencies are essential resources for future quantum information network. We present the experimental achievement on the three-color entanglement generation at 852 nm, 1550 nm and 1440 nm wavelengths for optical continuous variables. The entanglement generation system consists of two cascaded non-degenerated optical parametric oscillators (NOPOs). The flexible selectivity of nonlinear crystals in the two NOPOs and the tunable property of NOPO provide large freedom for the frequency selection of three entangled optical beams, so the present system is possible to be developed as practical devices used for quantum information networks with atomic storage units and long fiber transmission lines.
    Physical Review Letters 12/2012; 109(25):253604. DOI:10.1103/PhysRevLett.109.253604 · 7.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The preparation of multipartite entangled states is the prerequisite for exploring quantum information networks and quantum computation. In this letter, we present the first experimental demonstration of eight-partite spatially separated CV entangled states. The initial resource quantum states are eight squeezed states of light, through the linearly optical transformation of which two types of the eight-partite cluster entangled states are prepared, respectively. The generated eight entangled photonic qumodes are spatially separated, which provide valuable quantum resources to implement more complicated quantum information task.
    Optics Letters 12/2012; 37(24):5178-80. DOI:10.1364/OL.37.005178 · 3.18 Impact Factor
  • Source
    Hai Wang, ChangDe Xie, KunChi Peng
    [Show abstract] [Hide abstract]
    ABSTRACT: Electromagnetically induced transparency (EIT) techniques are important tools for the storage of the quantum states of light fields in atomic ensembles and for enhancement of the interaction between photons. In this paper, we briefly summarize the recent experimental studies conducted by our group on enhanced cross-phase modulation based on double EIT effects, the quantum interference of stored dual-channel spin-wave excitations and the coherent manipulation of the spin wave vector for the polarization of photons in a single tripod atomic system. The work presented here has potential application in the developing field of quantum information processing.
    Chinese Science Bulletin 06/2012; 57(16). DOI:10.1007/s11434-012-5090-6 · 1.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The superactivation of multipartite bound entanglement (BE) is a special protocol proposed by Shor et al. in 2003, which can distill Einstein-Podolsky-Rosen (EPR) entanglement states between two subsystems of two multipartite BE states. Here we present the first experimental realization of the superactivation of the BE state, in which two copies of the four-partite unlockable BE state in a continuous-variable regime are used. Coupling two thermal states with Gaussian noises into two submodes of an EPR entangled state on two 50-50 beam splitters respectively, the four output optical modes form a four-partite unlocklable BE state. Using two EPR entangled states, we experimentally produce two BE states first. Then through a superactivation operation involving measurements and feedback on the two BE states, an EPR entangled state is distilled out between two designated parties of the two four-partite BE states. The experiment demonstrates the superadditivity of quantum entanglement as the individual BE state cannot be distilled, only two BE states together can be distilled.
    Physical Review Letters 05/2012; 108(19):190501-. DOI:10.1103/PhysRevLett.108.190501 · 7.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cluster state is the essential resource for one-way quantum computing. Here, we present the latest experimental achievement on the preparation of eight-partite linear and two-diamond shape cluster states with continuous variable entanglement.
    Quantum Information and Measurement; 03/2012
  • Aihong Tan, Changde Xie, Kunchi Peng
    [Show abstract] [Hide abstract]
    ABSTRACT: We propose a generation system of continuous-variable (CV) three-color entangled state of bright optical beams based on two cascaded standard nondegenerate optical parametric oscillators (NOPOs) above the threshold. One of signal and idler beams produced by the first NOPO is used for the pump light of the second NOPO. The three-color entanglement among signal and idler beams produced by the second NOPO and the retained another beam of the first NOPO is theoretically demonstrated. The symplectic eigenvalues of the partial transposition covariance matrix of the generated optical entangled state are numerically calculated in terms of experimentally reachable system parameters. The optimal operation conditions of the cascaded NOPOs system for obtaining high entanglement are found. The calculated results explicitly demonstrate that the OPO action can transfer entanglement. Due to that the cavity parameters and the nonlinear crystals of the two NOPOs can be freely chosen, the flexibility of the proposed protocol is relatively good and the system can be also extended to prepare entangled states with more parts easily.
    Physical Review A 01/2012; 85(1). DOI:10.1103/PhysRevA.85.013819 · 2.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a cascaded system consisting of three non-degenerate optical parametric amplifiers (NOPAs) for the generation and the enhancement of quantum entanglement of continuous variables. The entanglement of optical fields produced by the first NOPA is successively enhanced by the second and the third NOPAs from -5.3 $dB$ to -8.1 $dB$ below the quantum noise limit. The dependence of the enhanced entanglement on the physical parameters of the NOPAs and the reachable entanglement limitation for a given cascaded NOPA system are calculated. The calculation results are in good agreement with the experimental measurements.
    Physical Review A 01/2012; 85(4). DOI:10.1103/PhysRevA.85.040305 · 2.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coherent feedback control (CFC) of multipartite optical entangled states produced by a non-degenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.
    Physical Review A 01/2012; 84(6). DOI:10.1103/PhysRevA.84.062304 · 2.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We experimentally demonstrate the cascaded entanglement enhancement of continuous variables. The quantum correlations are successively enhanced by two nondegenerate optical parametric amplifiers from -5.3 dB to -8.1 dB below quantum noise limit.
    Lasers and Electro-Optics (CLEO), 2012 Conference on; 01/2012