Bernd Schnabl

University of California, San Diego, San Diego, California, United States

Are you Bernd Schnabl?

Claim your profile

Publications (69)540.44 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Liver disease is often times associated with increased intestinal permeability. A disruption of the gut barrier allows microbial products and viable bacteria to translocate from the intestinal lumen to extraintestinal organs. The majority of the venous blood from the intestinal tract is drained into the portal circulation, which is part of the dual hepatic blood supply. The liver is therefore the first organ in the body to encounter not only absorbed nutrients, but also gut-derived bacteria and pathogen associated molecular patterns (PAMPs). Chronic exposure to increased levels of PAMPs has been linked to disease progression during early stages and to infectious complications during late stages of liver disease (cirrhosis). It is therefore important to assess and monitor gut barrier dysfunction during hepatic disease. We review methods to assess intestinal barrier disruption and discuss advantages and disadvantages. We will in particular focus on methods that we have used to measure increased intestinal permeability and bacterial translocation during experimental liver disease models. Copyright © 2015. Published by Elsevier B.V.
    Journal of immunological methods. 01/2015;
  • Sungsoon Fang, Jae Myoung Suh, Shannon M Reilly, Elizabeth Yu, Olivia Osborn, Denise Lackey, Eiji Yoshihara, Alessia Perino, Sandra Jacinto, Yelizaveta Lukasheva, [......], Bernd Schnabl, Ruth T Yu, David A Brenner, Sally Coulter, Christopher Liddle, Kristina Schoonjans, Jerrold M Olefsky, Alan R Saltiel, Michael Downes, Ronald M Evans
    [Show abstract] [Hide abstract]
    ABSTRACT: The systemic expression of the bile acid (BA) sensor farnesoid X receptor (FXR) has led to promising new therapies targeting cholesterol metabolism, triglyceride production, hepatic steatosis and biliary cholestasis. In contrast to systemic therapy, bile acid release during a meal selectively activates intestinal FXR. By mimicking this tissue-selective effect, the gut-restricted FXR agonist fexaramine (Fex) robustly induces enteric fibroblast growth factor 15 (FGF15), leading to alterations in BA composition, but does so without activating FXR target genes in the liver. However, unlike systemic agonism, we find that Fex reduces diet-induced weight gain, body-wide inflammation and hepatic glucose production, while enhancing thermogenesis and browning of white adipose tissue (WAT). These pronounced metabolic improvements suggest tissue-restricted FXR activation as a new approach in the treatment of obesity and metabolic syndrome.
    Nature medicine. 01/2015;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Translocation of bacteria and their products across the intestinal barrier is common in patients with liver disease, and there is evidence that experimental liver fibrosis depends on bacterial translocation. The purpose of our study was to investigate liver fibrosis in conventional and germ-free (GF) C57BL/6 mice. Chronic liver injury was induced by administration of thioacetamide (TAA) in the drinking water for 21 wk or by repeated intraperitoneal injections of carbon tetrachloride (CCl4). Increased liver fibrosis was observed in GF mice compared with conventional mice. Hepatocytes showed more toxin-induced oxidative stress and cell death. This was accompanied by increased activation of hepatic stellate cells, but hepatic mediators of inflammation were not significantly different. Similarly, a genetic model using Myd88/Trif-deficient mice, which lack downstream innate immunity signaling, had more severe fibrosis than wild-type mice. Isolated Myd88/Trif-deficient hepatocytes were more susceptible to toxin-induced cell death in culture. In conclusion, the commensal microbiota prevents fibrosis upon chronic liver injury in mice. This is the first study describing a beneficial role of the commensal microbiota in maintaining liver homeostasis and preventing liver fibrosis.-Mazagova, M., Wang, L., Anfora, A. T., Wissmueller, M., Lesley, S. A., Miyamoto, Y., Eckmann, L., Dhungana, S., Pathmasiri, W., Sumner, S., Westwater, C., Brenner, D. A., Schnabl, B. Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice. © FASEB.
    The FASEB Journal 12/2014; · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alcoholic liver disease is a leading cause of mortality. Chronic alcohol consumption is accompanied by intestinal dysbiosis, and development of alcoholic liver disease requires gut-derived bacterial products. However, little is known about how alterations to the microbiome contribute to pathogenesis of alcoholic liver disease.
    Gastroenterology 09/2014; · 12.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Little is known about how weight loss affects magnetic resonance imaging (MRI) of liver fat and volume or liver histology in patients with non-alcoholic steatohepatitis (NASH). We measured changes in liver fat and liver volume associated with weight loss using an advanced MRI method.
    Clinical Gastroenterology and Hepatology 09/2014; · 6.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intestinal barrier dysfunction is an important contributor to alcoholic liver disease. Translocated microbial products trigger an inflammatory response in the liver and contribute to steatohepatitis. Our aim was to investigate mechanisms of barrier disruption following chronic alcohol feeding. A Lieber-DeCarli model was used to induce intestinal dysbiosis, increased intestinal permeability and liver disease in mice. Alcohol feeding for 8 weeks induced intestinal inflammation in the jejunum, which is characterized by an increased number of TNFα producing monocytes and macrophages. These findings were confirmed in duodenal biopsies from patients with chronic alcohol abuse. Intestinal decontamination with non-absorbable antibiotics restored eubiosis, decreased intestinal inflammation and permeability, and reduced alcoholic liver disease in mice. TNF-receptor I (TNFRI) mutant mice were protected from intestinal barrier dysfunction and alcoholic liver disease. To investigate whether TNFRI on intestinal epithelial cells mediates intestinal barrier dysfunction and alcoholic liver disease, we used TNFRI mutant mice carrying a conditional gain-of-function allele for this receptor. Reactivation of TNFRI on intestinal epithelial cells resulted in increased intestinal permeability and liver disease that is similar to wild type mice after alcohol feeding, suggesting that enteric TNFRI promotes intestinal barrier dysfunction. Myosin light chain kinase (MLCK) is a downstream target of TNFα and was phosphorylated in intestinal epithelial cells following alcohol administration. Using MLCK deficient mice, we further demonstrate a partial contribution of MLCK to intestinal barrier dysfunction and liver disease following chronic alcohol feeding. In conclusion, dysbiosis-induced intestinal inflammation and TNFRI signaling on intestinal epithelial cells are mediating a disruption of the intestinal barrier. Therefore, intestinal TNFRI is a crucial mediator of alcoholic liver disease. (Hepatology 2014)
    Hepatology 09/2014; · 11.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background & aims Chronic liver disease is characterized by fibrosis that may progress to cirrhosis. Nucleotide oligomerization domain 2 (Nod2), a member of the Nod-like receptor (NLR) family of intracellular immune receptors, plays an important role in the defense against bacterial infection through binding to the ligand muramyl dipeptide (MDP). Here, we investigated the role of Nod2 in the development of liver fibrosis. Methods We studied experimental cholestatic liver disease induced by bile duct ligation or toxic liver disease induced by carbon tetrachloride in wild type and Nod2-/- mice. Results Nod2 deficiency protected mice from cholestatic but not toxin-induced liver injury and fibrosis. Most notably, the hepatic bile acid concentration was lower in Nod2-/- mice than wild type mice following bile duct ligation for 3 weeks. In contrast to wild type mice, Nod2-/- mice had increased urinary excretion of bile acids, including sulfated bile acids, and an upregulation of the bile acid efflux transporters MRP2 and MRP4 in tubular epithelial cells of the kidney. MRP2 and MRP4 were downregulated by IL-1β in a Nod2 dependent fashion. Conclusions Our findings indicate that Nod2 deficiency protects mice from cholestatic liver injury and fibrosis through enhancing renal excretion of bile acids that in turn contributes to decreased concentration of bile acids in the hepatocyte.
    Journal of Hepatology 06/2014; · 9.86 Impact Factor
  • Gastroenterology 05/2014; 146(5):S-911. · 13.93 Impact Factor
  • Source
    Peng Chen, Bernd Schnabl
    [Show abstract] [Hide abstract]
    ABSTRACT: Alcoholic liver disease is a leading cause of morbidity and liver-related death worldwide. Intestinal bacterial overgrowth and dysbiosis induced by ethanol ingestion play an important role in the pathogenesis of alcoholic liver disease. After exposure to alcohol in the lumen, enteric bacteria alter their metabolism and thereby disturb intestinal homeostasis. Disruption of the mucosal barrier results in the translocation of microbial products that contribute to liver disease by inducing hepatic inflammation. In this review, we will discuss the effects of alcohol on the intestinal microbiome, and in particular, its effects on bacterial metabolism, bacterial translocation and ecological balance. A better understanding of the interactions among alcohol, the host and the microbiome will reveal new targets for therapy and lead to new treatments.
    Gut and Liver 05/2014; 8(3):237-241.
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial infections are very common and represent one of the most important reasons of progression of liver failure, development of liver-related complications, and mortality in patients with cirrhosis. In fact, bacterial infections may be a triggering factor for the occurrence of gastrointestinal bleeding, hypervolemic hyponatremia, hepatic encephalopathy, kidney failure, and development of acute-on-chronic liver failure. Moreover, infections are a very common cause of repeated hospitalizations, impaired health-related quality of life, and increased healthcare costs in cirrhosis. Bacterial infections develop as a consequence of immune dysfunction that occurs progressively during the course of cirrhosis. In a significant proportion of patients, infections are caused by gramnegative bacteria from intestinal origin, yet grampositive bacteria are a frequent cause of infection, particularly in hospitalized patients. In recent years, infections caused by multidrug-resistant bacteria are becoming an important clinical problem in many countries. The reduction of the negative clinical impact of infections in patients with cirrhosis may be achieved by a combination of prophylactic measures, such as administration of antibiotics, to reduce the occurrence of infections in high-risk groups together with early identification and management of infection once it has developed. Investigation on the mechanisms of altered gut microflora, translocation of bacteria, and immune dysfunction may help develop more effective and safe methods of prevention compared to those that are currently available. Moreover, research on biomarkers of early infection may be useful in early diagnosis and treatment of infections. The current manuscript reports and in-depth review and a position statement on bacterial infections in cirrhosis.
    Journal of Hepatology 02/2014; · 9.86 Impact Factor
  • Source
    Bernd Schnabl, David A Brenner
    [Show abstract] [Hide abstract]
    ABSTRACT: The human intestine harbors a diverse community of microbes that promote metabolism and digestion in their symbiotic relationship with the host. Disturbance of its homeostasis can result in disease. We review factors that disrupt intestinal homeostasis and contribute to non-alcoholic fatty liver disease (NAFLD), steatohepatitis (NASH), alcoholic liver disease, and cirrhosis. Liver disease has long been associated with qualitative and quantitative (overgrowth) dysbiotic changes in the intestinal microbiota. Extrinsic factors, such as the Western diet and alcohol, contribute to these changes. Dysbiosis results in intestinal inflammation, a breakdown of the intestinal barrier, and translocation of microbial products in animal models. However, the contribution of the intestinal microbiome to liver disease goes beyond simple translocation of bacterial products that promote hepatic injury and inflammation. Microbial metabolites produced in a dysbiotic intestinal environment and host factors are equally important in the pathogenesis of liver disease. We review how the combination of liver insult and disruptions in intestinal homeostasis contribute to liver disease.
    Gastroenterology 01/2014; · 12.82 Impact Factor
  • Bernd Schnabl
    Hepatology 10/2013; · 11.19 Impact Factor
  • Bernd Schnabl
    [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE OF REVIEW: Interactions of the gut microbiome with the host are important in health and disease. Microbial translocation releases bacterial products that play a key role in progression of chronic liver disease by promoting hepatic injury and inflammation. Although this has long been recognized, we are just beginning to understand the circumstances under which the gut becomes leaky and to discover bacterial metabolites that promote liver disease. In this review, we will summarize recent findings from the last 2 years. RECENT FINDINGS: Chronic liver disease is associated with an altered microbiome with both qualitative (dysbiosis) and quantitative (overgrowth) differences. This can be viewed as a loss of the symbiotic relationship between the microflora and the host. An imbalanced intestinal homeostasis results in a breach of the gut barrier and subsequent microbial translocation. However, the contribution of the intestinal microflora is beyond simple microbial translocation as a pathogenic factor. Bacterial metabolites resulting from an imbalanced homeostasis and dysbiosis play also a crucial role in liver disease. SUMMARY: A combination between an initiating liver insult and a disturbance of the gut-host symbiosis synergize in progression of liver disease.
    Current opinion in gastroenterology 03/2013; · 4.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The intestinal mucus layer protects the epithelium from noxious agents, viruses, and pathogenic bacteria present in the gastrointestinal tract. It is composed of mucins, predominantly mucin-2 (Muc2), secreted by goblet cells of the intestine. Experimental alcoholic liver disease requires translocation of bacterial products across the intestinal barrier into the systemic circulation, which induces an inflammatory response in the liver and contributes to steatohepatitis. We investigated the roles of the intestinal mucus layer, and in particular Muc2, in development of experimental alcohol-associated liver disease in mice. We studied experimental alcohol-induced liver disease, induced by the Tsukamoto-French method (which involves continuous intragastric feeding of an isocaloric diet or alcohol) in wild-type and Muc2(-/-) mice. Muc2(-/-) mice showed less alcohol-induced liver injury and steatosis that developed in wild-type mice. Most notably, Muc2(-/-) mice had significantly lower plasma levels of lipopolysaccharide than wild-type mice after alcohol feeding. In contrast to wild-type mice, Muc2(-/-) mice were protected from alcohol-associated microbiome changes that are dependent on intestinal mucins. The anti-microbial proteins Reg3b and Reg3g were expressed at significantly higher levels in the jejunum of Muc2(-/-) mice fed the isocaloric diet or alcohol, compared with wild-type mice. Consequently, Muc2(-/-) mice showed increased killing of commensal bacteria and prevented intestinal bacterial overgrowth. Conclusion: Muc2(-/-) mice are protected from intestinal bacterial overgrowth and dysbiosis in response to alcohol feeding. Subsequently, lower amounts of bacterial products such as endotoxin translocate into the systemic circulation, decreasing liver disease. (HEPATOLOGY 2013.).
    Hepatology 02/2013; · 11.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background. Ectopic fat deposition in the pancreas and its relationship with hepatic steatosis and insulin resistance have not been compared between patients with nonalcoholic fatty liver disease (NAFLD) and healthy controls. Aim. Using a novel magnetic resonance imaging (MRI) based biomarker, the proton-density-fat-fraction (MRI-PDFF), we compared pancreatic fat content in patients with biopsy-proven NAFLD to healthy controls and determined whether it is associated with insulin resistance and liver fat content. Methods. This nested case-control study was derived from two prospective studies including 43 patients with biopsy-proven NAFLD and 49 healthy controls who underwent biochemical testing and MRI. Results. Compared to healthy controls, patients with NAFLD had significantly higher pancreatic MRI-PDFF (3.6% versus 8.5%, P value <0.001), and these results remained consistent in multivariable-adjusted models including age, sex, body mass index, and diabetes (P value =0.03). We found a strong correlation between hepatic and pancreatic MRI-PDFF (Spearman correlation, P = 0.57, P value <0.001). Participants with increased insulin resistance determined by homeostatic-model-of-insulin-resistance (HOMA-IR) greater than 2.5 had higher pancreatic (7.3% versus 4.5%, P value =0.015) and liver (13.5% versus 4.0%, P value <0.001) MRI-PDFF. Conclusion. Patients with NAFLD have greater pancreatic fat than normal controls. Insulin resistance is associated with liver and pancreatic fat accumulation.
    Gastroenterology Research and Practice 01/2013; 2013:498296. · 1.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Approximately 2% of colorectal cancer is linked to pre-existing inflammation known as colitis-associated cancer, but most develops in patients without underlying inflammatory bowel disease. Colorectal cancer often follows a genetic pathway whereby loss of the adenomatous polyposis coli (APC) tumour suppressor and activation of β-catenin are followed by mutations in K-Ras, PIK3CA and TP53, as the tumour emerges and progresses. Curiously, however, 'inflammatory signature' genes characteristic of colitis-associated cancer are also upregulated in colorectal cancer. Further, like most solid tumours, colorectal cancer exhibits immune/inflammatory infiltrates, referred to as 'tumour-elicited inflammation'. Although infiltrating CD4(+) T(H)1 cells and CD8(+) cytotoxic T cells constitute a positive prognostic sign in colorectal cancer, myeloid cells and T-helper interleukin (IL)-17-producing (T(H)17) cells promote tumorigenesis, and a 'T(H)17 expression signature' in stage I/II colorectal cancer is associated with a drastic decrease in disease-free survival. Despite its pathogenic importance, the mechanisms responsible for the appearance of tumour-elicited inflammation are poorly understood. Many epithelial cancers develop proximally to microbial communities, which are physically separated from immune cells by an epithelial barrier. We investigated mechanisms responsible for tumour-elicited inflammation in a mouse model of colorectal tumorigenesis, which, like human colorectal cancer, exhibits upregulation of IL-23 and IL-17. Here we show that IL-23 signalling promotes tumour growth and progression, and development of a tumoural IL-17 response. IL-23 is mainly produced by tumour-associated myeloid cells that are likely to be activated by microbial products, which penetrate the tumours but not adjacent tissue. Both early and late colorectal neoplasms exhibit defective expression of several barrier proteins. We propose that barrier deterioration induced by colorectal-cancer-initiating genetic lesions results in adenoma invasion by microbial products that trigger tumour-elicited inflammation, which in turn drives tumour growth.
    Nature 10/2012; · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Progression of liver fibrosis in experimental models depends on gut-derived bacterial products, but little is known about mechanisms of disruption of the mucosal barrier or translocation. We used a mouse model of cholestatic liver disease to investigate mechanisms of intestinal barrier disruption following liver injury. Liver fibrosis and bacterial translocation were assessed in Toll-like receptor 2 (TLR2)-deficient and tumor necrosis factor receptor I (TNFRI)-deficient mice subjected to bile duct ligation. Epithelial and lamina propria cells were isolated and analyzed by immunoblot analyses and flow cytometry. We analyzed bone marrow chimeras and mice with a conditional gain-of-function allele for the TNFRI receptor. By crossing TNFRI(flxneo/flxneo) mice with mice that expressed the VillinCre transgene specifically in intestinal epithelial cells, we created mice that express functional TNFRI specifically on intestinal epithelial cells (VillinCreTNFRI(flxneo/flxneo) mice). Following bile duct ligation, TLR2-deficient mice had less liver fibrosis and intestinal translocation of bacteria and bacterial products than wild-type mice. Mice with hematopoietic cells that did not express TLR2 also had reduced bacterial translocation, indicating that TLR2 expression by hematopoietic cells regulates intestinal barrier function. The number of TLR2(+) monocytes that produce tumor necrosis factor α increased in the intestinal lamina propria of wild-type mice following bile duct ligation; bacterial translocation was facilitated by TNFRI-mediated signals on intestinal epithelial cells. Intestinal inflammation and bacterial translocation contribute to liver fibrosis via TLR2 signaling on monocytes in the lamina propria and TNFRI signaling on intestinal epithelial cells in mice. Therefore, enteric TNFRI is an important mediator of cholestatic liver fibrosis.
    Gastroenterology 07/2012; 143(5):1330-1340.e1. · 12.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using an environmentally sensitized genetic screen we identified mutations that cause inflammatory colitis in mice. The X-linked Klein-Zschocher (KLZ) mutation created a null allele of Yipf6, a member of a gene family believed to regulate vesicular transport in yeast, but without known functions in mammals. Yipf6 is a five transmembrane-spanning protein associated with Golgi compartments. Klein-Zschocher mutants were extremely sensitive to colitis induced by dextran sodium sulfate (DSS) and developed spontaneous ileitis and colitis after 16 mo of age in specific pathogen-free housing conditions. Electron microscopy, gene expression, and immunocytochemistry analyses provided evidence that impaired intestinal homeostasis stemmed from defective formation and secretion of large secretory granules from Paneth and goblet cells. These studies support a tissue- and organ-specific function for Yipf6 in the maintenance of intestinal homeostasis and implicate the orthologous human gene as a disease susceptibility locus.
    Proceedings of the National Academy of Sciences 07/2012; 109(31):12650-5. · 9.81 Impact Factor
  • Source
    Bernd Schnabl, David A Brenner
    Gut 06/2012; · 13.32 Impact Factor

Publication Stats

2k Citations
540.44 Total Impact Points


  • 2008–2014
    • University of California, San Diego
      • Department of Medicine
      San Diego, California, United States
  • 2007–2013
    • Universität Regensburg
      • Department of Internal Medicine I
      Ratisbon, Bavaria, Germany
  • 2012
    • J. Craig Venter Institute
      Maryland, United States
    • University of Southern California
      • Department of Medicine
      Los Angeles, CA, United States
  • 2009–2012
    • The Scripps Research Institute
      • Department of Genetics
      La Jolla, CA, United States
  • 2011
    • CSU Mentor
      Long Beach, California, United States
    • University Hospital Regensburg
      • Klinik und Poliklinik für Innere Medizin I
      Regensburg, Bavaria, Germany
    • Yonsei University Hospital
      • Department of Internal Medicine
      Seoul, Seoul, South Korea
  • 2007–2011
    • University Hospital RWTH Aachen
      • Division of Internal Medicine
      Aachen, North Rhine-Westphalia, Germany
  • 2004–2007
    • Columbia University
      • Department of Medicine
      New York City, NY, United States
    • Florida State University
      • Department of Biomedical Sciences
      Tallahassee, FL, United States
  • 2002–2004
    • University of North Carolina at Chapel Hill
      • Department of Medicine
      North Carolina, United States