Timothy P Heffernan

University of Texas MD Anderson Cancer Center, Houston, Texas, United States

Are you Timothy P Heffernan?

Claim your profile

Publications (28)508.04 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The SWI/SNF multi-subunit complex modulates chromatin structure through the activity of two mutually exclusive catalytic subunits, SMARCA2 and SMARCA4, which both contain a bromodomain and an ATPase domain. Using RNAi, cancer-specific vulnerabilities have been identified in SWI/SNF mutant tumors, including SMARCA4-deficient lung cancer, however, the contribution of conserved, druggable protein domains to this anticancer phenotype is unknown. Here, we functionally deconstruct the SMARCA2/4 paralog dependence of cancer cells using bioinformatics, genetic and pharmacological tools. We evaluate a selective SMARCA2/4 bromodomain inhibitor (PFI-3) and characterize its activity in chromatin-binding and cell-functional assays focusing on cells with altered SWI/SNF complex (e.g. Lung, Synovial Sarcoma, Leukemia, and Rhabdoid tumors). We demonstrate that PFI-3 is a potent, cell-permeable probe capable of displacing ectopically expressed, GFP-tagged SMARCA2-bromodomain from chromatin, yet contrary to target knockdown, the inhibitor fails to display an antiproliferative phenotype. Mechanistically, the lack of pharmacological efficacy is reconciled by the failure of bromodomain inhibition to displace endogenous, full-length SMARCA2 from chromatin as determined by in situ cell extraction, chromatin immunoprecipitation and target gene expression studies. Further, using inducible RNAi and cDNA complementation (bromodomain- and ATPase-dead constructs), we unequivocally identify the ATPase domain, and not the bromodomain of SMARCA2, as the relevant therapeutic target with the catalytic activity suppressing defined transcriptional programs. Taken together, our complementary genetic and pharmacological studies exemplify a general strategy for multi-domain protein drug-target validation and in case of SMARCA2/4 highlight the potential for drugging the more challenging helicase/ATPase domain to deliver on the promise of synthetic-lethality therapy. Copyright © 2015, American Association for Cancer Research.
    Cancer Research 07/2015; DOI:10.1158/0008-5472.CAN-14-3798 · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The molecular underpinnings that drive the heterogeneity of KRAS-mutant lung adenocarcinoma (LUAC) are poorly characterized. We performed an integrative analysis of genomic, transcriptomic and proteomic data from early-stage and chemo-refractory LUAC and identified three robust subsets of KRAS-mutant LUAC dominated, respectively, by co-occurring genetic events in STK11/LKB1 (the KL subgroup), TP53 (KP) and CDKN2A/B inactivation coupled with low expression of the NKX2-1 (TTF1) transcription factor (KC). We further reveal biologically and therapeutically relevant differences between the subgroups. KC tumors frequently exhibited mucinous histology and suppressed mTORC1 signaling. KL tumors had high rates of KEAP1 mutational inactivation and expressed lower levels of immune markers, including PD-L1. KP tumors demonstrated higher levels of somatic mutations, inflammatory markers, immune checkpoint effector molecules and improved relapse-free survival. Differences in drug sensitivity patterns were also observed; notably, KL cells showed increased vulnerability to HSP90-inhibitor therapy. This work provides evidence that co-occurring genomic alterations identify subgroups of KRAS-mutant LUAC with distinct biology and therapeutic vulnerabilities. Copyright © 2015, American Association for Cancer Research.
    Cancer Discovery 06/2015; DOI:10.1158/2159-8290.CD-14-1236 · 19.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myelodysplastic syndrome (MDS) risk correlates with advancing age, therapy-induced DNA damage, and/or shorter telomeres, but whether telomere erosion directly induces MDS is unknown. Here, we provide the genetic evidence that telomere dysfunction-induced DNA damage drives classical MDS phenotypes and alters common myeloid progenitor (CMP) differentiation by repressing the expression of mRNA splicing/processing genes, including SRSF2. RNA-seq analyses of telomere dysfunctional CMP identified aberrantly spliced transcripts linked to pathways relevant to MDS pathogenesis such as genome stability, DNA repair, chromatin remodeling, and histone modification, which are also enriched in mouse CMP haploinsufficient for SRSF2 and in CD34(+) CMML patient cells harboring SRSF2 mutation. Together, our studies establish an intimate link across telomere biology, aberrant RNA splicing, and myeloid progenitor differentiation. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cancer cell 05/2015; 27(5):644-657. DOI:10.1016/j.ccell.2015.04.007 · 23.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutated KRAS (KRAS*) is a fundamental driver in the majority of pancreatic ductal adenocarcinomas (PDAC). Using an inducible mouse model of KRAS*-driven PDAC, we compared KRAS* genetic extinction with pharmacologic inhibition of MEK1 in tumor spheres and in vivo. KRAS* ablation blocked proliferation and induced apoptosis, whereas MEK1 inhibition exerted cytostatic effects. Proteomic analysis evidenced that MEK1 inhibition was accompanied by a sustained activation of the PI3K-AKT-MTOR pathway and by the activation of AXL, PDGFRa, and HER1-2 receptor tyrosine kinases (RTK) expressed in a large proportion of human PDAC samples analyzed. Although single inhibition of each RTK alone or plus MEK1 inhibitors was ineffective, a combination of inhibitors targeting all three coactivated RTKs and MEK1 was needed to inhibit proliferation and induce apoptosis in both mouse and human low-passage PDAC cultures. Importantly, constitutive AKT activation, which may mimic the fraction of AKT2-amplified PDAC, was able to bypass the induction of apoptosis caused by KRAS* ablation, highlighting a potential inherent resistance mechanism that may inform the clinical application of MEK inhibitor therapy. This study suggests that combinatorial-targeted therapies for pancreatic cancer must be informed by the activation state of each putative driver in a given treatment context. In addition, our work may offer explanative and predictive power in understanding why inhibitors of EGFR signaling fail in PDAC treatment and how drug resistance mechanisms may arise in strategies to directly target KRAS. Cancer Res; 75(6); 1-11. ©2014 AACR. ©2014 American Association for Cancer Research.
    Cancer Research 03/2015; 75(6). DOI:10.1158/0008-5472.CAN-14-1854 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in western countries, with a median survival of 6 months and an extremely low percentage of long-term surviving patients. KRAS mutations are known to be a driver event of PDAC, but targeting mutant KRAS has proved challenging. Targeting oncogene-driven signalling pathways is a clinically validated approach for several devastating diseases. Still, despite marked tumour shrinkage, the frequency of relapse indicates that a fraction of tumour cells survives shut down of oncogenic signalling. Here we explore the role of mutant KRAS in PDAC maintenance using a recently developed inducible mouse model of mutated Kras (Kras(G12D), herein KRas) in a p53(LoxP/WT) background. We demonstrate that a subpopulation of dormant tumour cells surviving oncogene ablation (surviving cells) and responsible for tumour relapse has features of cancer stem cells and relies on oxidative phosphorylation for survival. Transcriptomic and metabolic analyses of surviving cells reveal prominent expression of genes governing mitochondrial function, autophagy and lysosome activity, as well as a strong reliance on mitochondrial respiration and a decreased dependence on glycolysis for cellular energetics. Accordingly, surviving cells show high sensitivity to oxidative phosphorylation inhibitors, which can inhibit tumour recurrence. Our integrated analyses illuminate a therapeutic strategy of combined targeting of the KRAS pathway and mitochondrial respiration to manage pancreatic cancer.
    Nature 08/2014; 514(7524). DOI:10.1038/nature13611 · 42.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glioma sphere-forming cells (GSCs) derived from surgical specimens are a fundamental resource to study glioblastoma (GBM) biology. Mesenchymal-expressing GSCs have been proposed as a source of treatment resistance and mesenchymal tumors correlate with poorer survival. Recently, we found that the anti-angiogensis drug bevacizumab appeared to provide no benefit to patients with mesenchymal tumors, in contradiction to expectations that a mesenchymal microenvironment may benefit from anti-angiogenesis therapy. We have developed a collection of GSCs that have undergone comprehensive genomic characterization, similar to that performed by the Cancer Genome Atlas (TCGA) for whole tumor specimens. We hypothesized that the genomic landscape of GSCs would recapitulate what was observed by TCGA.
    Neuro-oncology; 07/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activating mutations in KRAS are among the most frequent events in diverse human carcinomas and are particularly prominent in human pancreatic ductal adenocarcinoma (PDAC). An inducible Kras(G12D)-driven mouse model of PDAC has established a critical role for sustained Kras(G12D) expression in tumor maintenance, providing a model to determine the potential for and the underlying mechanisms of Kras(G12D)-independent PDAC recurrence. Here, we show that some tumors undergo spontaneous relapse and are devoid of Kras(G12D) expression and downstream canonical MAPK signaling and instead acquire amplification and overexpression of the transcriptional coactivator Yap1. Functional studies established the role of Yap1 and the transcriptional factor Tead2 in driving Kras(G12D)-independent tumor maintenance. The Yap1/Tead2 complex acts cooperatively with E2F transcription factors to activate a cell cycle and DNA replication program. Our studies, along with corroborating evidence from human PDAC models, portend a novel mechanism of escape from oncogenic Kras addiction in PDAC.
    Cell 06/2014; 158(1). DOI:10.1016/j.cell.2014.06.003 · 33.12 Impact Factor
  • T. Dogruluk · Y. H. Tsang · N. Nair · J. Zhang · T. Heffernan · L. Chin · G. Mills · K. L. Scott
    Molecular Cancer Therapeutics 01/2014; 12(11_Supplement):B131-B131. DOI:10.1158/1535-7163.TARG-13-B131 · 6.11 Impact Factor
  • Lawrence N Kwong · Timothy P Heffernan · Lynda Chin
    [Show abstract] [Hide abstract]
    ABSTRACT: The identification of evidence-based, efficacious drug combinations for each cancer, among thousands of potential permutations, is a daunting task. In this perspective, we propose a systematic approach to defining such combinations by molecularly benchmarking a drug against a desired state of efficacy using model systems. Cancer Discov; 3(12); 1339-44. ©2013 AACR.
    Cancer Discovery 12/2013; 3(12):1339-44. DOI:10.1158/2159-8290.CD-13-0394 · 19.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melanoma is a highly lethal malignancy notorious for its aggressive clinical course and eventual resistance to existing therapies. Currently, we possess a limited understanding of the genetic events driving melanoma progression, and much effort is focused on identifying pro-metastatic aberrations or perturbed signaling networks that constitute new therapeutic targets. In this study, we validate and assess the mechanism by which homeobox transcription factor A1 (HOXA1), a pro-invasion oncogene previously identified in a metastasis screen by our group, contributes to melanoma progression. Transcriptome and pathway profiling analyses of cells expressing HOXA1 reveals upregulation of factors involved in diverse cytokine pathways that include the transforming growth factor beta (TGFβ) signaling axis, which we further demonstrate to be required for HOXA1-mediated cell invasion in melanoma cells. Transcriptome profiling also shows HOXA1's ability to potently downregulate expression of microphthalmia-associated transcription factor (MITF) and other genes required for melanocyte differentiation, suggesting a mechanism by which HOXA1 expression de-differentiates cells into a pro-invasive cell state concomitant with TGFβ activation. Our analysis of publicly available data sets indicate that the HOXA1-induced gene signature successfully categorizes melanoma specimens based on their metastatic potential and, importantly, is capable of stratifying melanoma patient risk for metastasis based on expression in primary tumors. Together, these validation data and mechanistic insights suggest that patients whose primary tumors express HOXA1 are among a high-risk metastasis subgroup that should be considered for anti-TGFβ therapy in adjuvant settings. Moreover, further analysis of HOXA1 target genes in melanoma may reveal new pathways or targets amenable to therapeutic intervention.Oncogene advance online publication, 25 February 2013; doi:10.1038/onc.2013.30.
    Oncogene 02/2013; 73(8 Supplement). DOI:10.1038/onc.2013.30 · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melanoma is notable for its metastatic propensity, lethality in the advanced setting and association with ultraviolet exposure early in life. To obtain a comprehensive genomic view of melanoma in humans, we sequenced the genomes of 25 metastatic melanomas and matched germline DNA. A wide range of point mutation rates was observed: lowest in melanomas whose primaries arose on non-ultraviolet-exposed hairless skin of the extremities (3 and 14 per megabase (Mb) of genome), intermediate in those originating from hair-bearing skin of the trunk (5-55 per Mb), and highest in a patient with a documented history of chronic sun exposure (111 per Mb). Analysis of whole-genome sequence data identified PREX2 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2)--a PTEN-interacting protein and negative regulator of PTEN in breast cancer--as a significantly mutated gene with a mutation frequency of approximately 14% in an independent extension cohort of 107 human melanomas. PREX2 mutations are biologically relevant, as ectopic expression of mutant PREX2 accelerated tumour formation of immortalized human melanocytes in vivo. Thus, whole-genome sequencing of human melanoma tumours revealed genomic evidence of ultraviolet pathogenesis and discovered a new recurrently mutated gene in melanoma.
    Nature 05/2012; 485(7399):502-6. DOI:10.1038/nature11071 · 42.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Melanoma is notable for its metastatic propensity, lethality in the advanced setting and association with ultraviolet exposure early in life. To obtain a comprehensive genomic view of melanoma in humans, we sequenced the genomes of 25 metastatic melanomas and matched germline DNA. A wide range of point mutation rates was observed: lowest in melanomas whose primaries arose on non-ultraviolet-exposed hairless skin of the extremities (3 and 14 per megabase (Mb) of genome), intermediate in those originating from hair-bearing skin of the trunk (5–55 per Mb), and highest in a patient with a documented history of chronic sun exposure (111 per Mb). Analysis of whole-genome sequence data identified PREX2 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2)—a PTEN-interacting protein and negative regulator of PTEN in breast cancer—as a significantly mutated gene with a mutation frequency of approximately 14% in an independent extension cohort of 107 human melanomas. PREX2 mutations are biologically relevant, as ectopic expression of mutant PREX2 accelerated tumour formation of immortalized human melanocytes in vivo. Thus, whole-genome sequencing of human melanoma tumours revealed genomic evidence of ultraviolet pathogenesis and discovered a new recurrently mutated gene in melanoma.
    Nature 01/2012; 485(7399):502-506. · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MYC contributes to the pathogenesis of a majority of human cancers, yet strategies to modulate the function of the c-Myc oncoprotein do not exist. Toward this objective, we have targeted MYC transcription by interfering with chromatin-dependent signal transduction to RNA polymerase, specifically by inhibiting the acetyl-lysine recognition domains (bromodomains) of putative coactivator proteins implicated in transcriptional initiation and elongation. Using a selective small-molecule bromodomain inhibitor, JQ1, we identify BET bromodomain proteins as regulatory factors for c-Myc. BET inhibition by JQ1 downregulates MYC transcription, followed by genome-wide downregulation of Myc-dependent target genes. In experimental models of multiple myeloma, a Myc-dependent hematologic malignancy, JQ1 produces a potent antiproliferative effect associated with cell-cycle arrest and cellular senescence. Efficacy of JQ1 in three murine models of multiple myeloma establishes the therapeutic rationale for BET bromodomain inhibition in this disease and other malignancies characterized by pathologic activation of c-Myc.
    Cell 09/2011; 146(6):904-17. DOI:10.1016/j.cell.2011.08.017 · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple human epidemiologic studies link caffeinated (but not decaffeinated) beverage intake with significant decreases in several types of cancer, including highly prevalent UV-associated skin carcinomas. The mechanism by which caffeine protects against skin cancer is unknown. Ataxia telangiectasia and Rad3-related (ATR) is a replication checkpoint kinase activated by DNA stresses and is one of several targets of caffeine. Suppression of ATR, or its downstream target checkpoint kinase 1 (Chk1), selectively sensitizes DNA-damaged and malignant cells to apoptosis. Agents that target this pathway are currently in clinical trials. Conversely, inhibition of other DNA damage response pathways, such as ataxia telangiectasia mutated (ATM) and BRCA1, promotes cancer. To determine the effect of replication checkpoint inhibition on carcinogenesis, we generated transgenic mice with diminished ATR function in skin and crossed them into a UV-sensitive background, Xpc(-/-). Unlike caffeine, this genetic approach was selective and had no effect on ATM activation. These transgenic mice were viable and showed no histological abnormalities in skin. Primary keratinocytes from these mice had diminished UV-induced Chk1 phosphorylation and twofold augmentation of apoptosis after UV exposure (P = 0.006). With chronic UV treatment, transgenic mice remained tumor-free for significantly longer (P = 0.003) and had 69% fewer tumors at the end of observation of the full cohort (P = 0.019), compared with littermate controls with the same genetic background. This study suggests that inhibition of replication checkpoint function can suppress skin carcinogenesis and supports ATR inhibition as the relevant mechanism for the protective effect of caffeinated beverage intake in human epidemiologic studies.
    Proceedings of the National Academy of Sciences 08/2011; 108(33):13716-21. DOI:10.1073/pnas.1111378108 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clinical and genomic evidence suggests that the metastatic potential of a primary tumor may be dictated by prometastatic events that have additional oncogenic capability. To test this "deterministic" hypothesis, we adopted a comparative oncogenomics-guided function-based strategy involving: (1) comparison of global transcriptomes of two genetically engineered mouse models with contrasting metastatic potential, (2) genomic and transcriptomic profiles of human melanoma, (3) functional genetic screen for enhancers of cell invasion, and (4) evidence of expression selection in human melanoma tissues. This integrated effort identified six genes that are potently proinvasive and oncogenic. Furthermore, we show that one such gene, ACP5, confers spontaneous metastasis in vivo, engages a key pathway governing metastasis, and is prognostic in human primary melanomas.
    Cancer cell 07/2011; 20(1):92-103. DOI:10.1016/j.ccr.2011.05.025 · 23.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Telomere dysfunction activates p53-mediated cellular growth arrest, senescence and apoptosis to drive progressive atrophy and functional decline in high-turnover tissues. The broader adverse impact of telomere dysfunction across many tissues including more quiescent systems prompted transcriptomic network analyses to identify common mechanisms operative in haematopoietic stem cells, heart and liver. These unbiased studies revealed profound repression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha and beta (PGC-1alpha and PGC-1beta, also known as Ppargc1a and Ppargc1b, respectively) and the downstream network in mice null for either telomerase reverse transcriptase (Tert) or telomerase RNA component (Terc) genes. Consistent with PGCs as master regulators of mitochondrial physiology and metabolism, telomere dysfunction is associated with impaired mitochondrial biogenesis and function, decreased gluconeogenesis, cardiomyopathy, and increased reactive oxygen species. In the setting of telomere dysfunction, enforced Tert or PGC-1alpha expression or germline deletion of p53 (also known as Trp53) substantially restores PGC network expression, mitochondrial respiration, cardiac function and gluconeogenesis. We demonstrate that telomere dysfunction activates p53 which in turn binds and represses PGC-1alpha and PGC-1beta promoters, thereby forging a direct link between telomere and mitochondrial biology. We propose that this telomere-p53-PGC axis contributes to organ and metabolic failure and to diminishing organismal fitness in the setting of telomere dysfunction.
    Nature 06/2011; DOI:10.1038/nature10223 · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Telomere dysfunction activates p53-mediated cellular growth arrest, senescence and apoptosis to drive progressive atrophy and functional decline in high-turnover tissues. The broader adverse impact of telomere dysfunction across many tissues including more quiescent systems prompted transcriptomic network analyses to identify common mechanisms operative in haematopoietic stem cells, heart and liver. These unbiased studies revealed profound repression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha and beta (PGC-1α and PGC-1β, also known as Ppargc1a and Ppargc1b, respectively) and the downstream network in mice null for either telomerase reverse transcriptase (Tert) or telomerase RNA component (Terc) genes. Consistent with PGCs as master regulators of mitochondrial physiology and metabolism, telomere dysfunction is associated with impaired mitochondrial biogenesis and function, decreased gluconeogenesis, cardiomyopathy, and increased reactive oxygen species. In the setting of telomere dysfunction, enforced Tert or PGC-1α expression or germline deletion of p53 (also known as Trp53) substantially restores PGC network expression, mitochondrial respiration, cardiac function and gluconeogenesis. We demonstrate that telomere dysfunction activates p53 which in turn binds and represses PGC-1α and PGC-1β promoters, thereby forging a direct link between telomere and mitochondrial biology. We propose that this telomere-p53-PGC axis contributes to organ and metabolic failure and to diminishing organismal fitness in the setting of telomere dysfunction.
    Nature 02/2011; 470(7334):359-65. DOI:10.1038/nature09787 · 42.35 Impact Factor
  • Douglas E. Brash · Timothy P. Heffernan · Paul Nghiem
    [Show abstract] [Hide abstract]
    ABSTRACT: Skin cancer offers the best picture of how a carcinogen causes human neoplasia. The basic principles of carcinogen exposure and slow development – discovered when Sir Percivall Pott traced scrotal cancers in adults to childhood employment as a chimney sweep – also apply to sunlight-induced cancers [1, 2]. The process begins with carcinogen exposure, DNA damage, and failure to repair DNA or apoptotically eliminate the damaged cell [3–6]. A mutant gene arises in a single cell, which then expands into a mutant clone [7]. Rare cells of this clone repeat the carcinogenesis cycle to generate mutations in additional genes. Sunlight acts at each of these steps.
    Textbook of Aging Skin, 01/2010: pages 567-578; , ISBN: 978-3-540-89655-5
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New approaches to prevent and reverse UV damage are needed to combat rising sunlight-induced skin cancer rates. Mouse studies have shown that oral or topical caffeine promotes elimination of UV-damaged keratinocytes through apoptosis and markedly inhibits subsequent skin cancer development. This potentially important therapeutic effect has not been studied in human skin cells. Here, we use primary human keratinocytes to examine which of several caffeine effects mediates this process. In these cells, caffeine more than doubled apoptosis after 75 mJ cm(-2) of ultraviolet light B (UVB). Selectively targeting two of caffeine's known effects did not alter UVB-induced apoptosis: inhibition of ataxia-telangiectasia mutated and augmentation of cyclic AMP levels. In contrast, siRNA against ataxia-telangiectasia and Rad3-related (ATR) doubled apoptosis after UV through a p53-independent mechanism. Caffeine did not further augment apoptosis after UVB in cells in which ATR had been specifically depleted, suggesting that a key target of caffeine in this effect is ATR. Inhibition of a central ATR target, checkpoint kinase 1 (Chk1), through siRNA or a new and highly specific inhibitor (PF610666) also augmented UVB-induced apoptosis. These data suggest that a relevant target of caffeine is the ATR-Chk1 pathway and that inhibiting ATR or Chk1 might have promise in preventing or reversing UV damage.
    Journal of Investigative Dermatology 03/2009; 129(7):1805-15. DOI:10.1038/jid.2008.435 · 6.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a nonheuristic genome topography scan (GTS) algorithm to characterize the patterns of genomic alterations in human glioblastoma (GBM), identifying frequent p18(INK4C) and p16(INK4A) codeletion. Functional reconstitution of p18(INK4C) in GBM cells null for both p16(INK4A) and p18(INK4C) resulted in impaired cell-cycle progression and tumorigenic potential. Conversely, RNAi-mediated depletion of p18(INK4C) in p16(INK4A)-deficient primary astrocytes or established GBM cells enhanced tumorigenicity in vitro and in vivo. Furthermore, acute suppression of p16(INK4A) in primary astrocytes induced a concomitant increase in p18(INK4C). Together, these findings uncover a feedback regulatory circuit in the astrocytic lineage and demonstrate a bona fide tumor suppressor role for p18(INK4C) in human GBM wherein it functions cooperatively with other INK4 family members to constrain inappropriate proliferation.
    Cancer cell 05/2008; 13(4):355-64. DOI:10.1016/j.ccr.2008.02.010 · 23.89 Impact Factor

Publication Stats

2k Citations
508.04 Total Impact Points

Top Journals

Institutions

  • 2013–2015
    • University of Texas MD Anderson Cancer Center
      • Institute for Applied Cancer Science
      Houston, Texas, United States
  • 2009–2011
    • Harvard Medical School
      Boston, Massachusetts, United States
  • 2008–2011
    • Dana-Farber Cancer Institute
      • • Belfer Institute for Applied Cancer Science
      • • Department of Medical Oncology
      Boston, MA, United States
  • 2003–2005
    • University of North Carolina at Chapel Hill
      • Department of Pathology and Laboratory Medicine
      Chapel Hill, NC, United States