M C Poirier

National Cancer Institute (USA), Maryland, United States

Are you M C Poirier?

Claim your profile

Publications (210)1036.38 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The nucleoside reverse transcriptase inhibitors (NRTIs), used for treatment of the human immunodeficiency virus-1, compromise mitochondria in cardiomyocytes and other host cells, limiting the clinical use of these drugs. To explore underlying mechanisms, we overexpressed PGC-1α, a master regulator of mitochondrial biogenesis, twofold in H9c2 rat cardiomyocyte cultures, hypothesizing that this might protect the mitochondria from damage induced by the NRTI combination zidovudine (AZT) and didanosine (ddI). The experimental groups, evaluated during 16 passages (P) of drug exposure, included: PGC-1α-overexpressing cells with no exposure, or exposure to 50 µM AZT plus 50 µM ddI; and control cells with no exposure or exposure to the same doses of AZT and ddI. The AZT/ddI combination caused a growth inhibition of 15-20 % in control cells, but none in PGC-1α cells. Apoptosis was highest in AZT/ddI-exposed control cells, and PGC-1α overexpression protected cells from AZT/ddI-induced apoptosis. At P3, P6, P8, and P12, uncoupled mitochondrial oxygen consumption rate, determined by Seahorse 24 XF Analyzer, as higher in AZT/ddI-exposed PGC-1α cells, compared to AZT/ddI-exposed control cells (p < 0.05 at all P). Complex I activity was higher in AZT/ddI-exposed PGC-1α overexpressing cells than that in AZT/ddI-exposed control cells (p < 0.05), and reactive oxygen species levels were lower in PGC-1α overexpressing cells than that in control cells (p < 0.05) when both were exposed to AZT/ddI. Taken together, these experiments show proof of concept that overexpression of PGC-1α protects cardiomyocytes from NRTI-induced toxicity, and suggest that a pharmaceutical agent with similar activity may protect against NRTI-induced mitochondrial toxicity.
    Cardiovascular toxicology. 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The polycyclic aromatic hydrocarbon (PAH) benzo(a)pyrene (BP) is thought to bind covalently to DNA, through metabolism by cytochrome P450 1A1 (CYP1A1) and CYP1B1, and other enzymes, to form r7, t8, t9-trihydroxy-c-10-(N (2) -deoxyguanosyl)-7,8,9,10-tetrahydro-benzo[a]-pyrene (BPdG). Evaluation of RNA expression data, to understand the contribution of different metabolic enzymes to BPdG formation, is typically presented as fold-change observed upon BP exposure, leaving the actual number of RNA transcripts unknown. Here, we have quantified RNA copies/ng cDNA (RNA cpn) for CYP1A1 and CYP1B1, as well as NAD(P)H:quinone oxidoreductase 1 (NQO1), which may reduce formation of BPdG adducts, using primary normal human mammary epithelial cell (NHMEC) strains, and the MCF-7 breast cancer cell line. In unexposed NHMECs, basal RNA cpn values were 58-836 for CYP1A1, 336-5587 for CYP1B1 and 5943-40112 for NQO1. In cells exposed to 4.0 µM BP for 12h, RNA cpn values were 251-13234 for CYP1A1, 4133-57078 for CYP1B1 and 4456-55887 for NQO1. There were 3.5 (mean, range 0.2-15.8) BPdG adducts/10(8) nucleotides in the NHMECs (n = 16), and 790 in the MCF-7s. In the NHMECs, BP-induced CYP1A1 RNA cpn was highly associated with BPdG (P = 0.002), but CYP1B1 and NQO1 were not. Western blots of four NHMEC strains, chosen for different levels of BPdG adducts, showed a linear correlation between BPdG and CYP1A1, but not CYP1B1 or NQO1. Ethoxyresorufin-O-deethylase (EROD) activity, which measures CYP1A1 and CYP1B1 together, correlated with BPdG, but NQO1 activity did not. Despite more numerous levels of CYP1B1 and NQO1 RNA cpn in unexposed and BP-exposed NHMECs and MCF-7cells, BPdG formation was only correlated with induction of CYP1A1 RNA cpn. The higher level of BPdG in MCF-7 cells, compared to NHMECs, may have been due to a much increased induction of CYP1A1 and EROD. Overall, BPdG correlation was observed with CYP1A1 protein and CYP1A1/1B1 enzyme activity, but not with CYP1B1 or NQO1 protein, or NQO1 enzyme activity.
    Mutagenesis 09/2014; · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The nucleoside reverse transcriptase inhibitor zidovudine (AZT) induces genotoxic damage that includes centrosomal amplification (CA > 2 centrosomes/cell) and micronucleus (MN) formation. Here we explored these end points in mice deficient in DNA repair and tumor suppressor function to evaluate their effect on AZT-induced DNA damage. We used mesenchymal-derived fibroblasts cultured from C57BL/6J mice that were null and wild type (WT) for Xpa, and WT, haploinsufficient and null for p53 (6 different genotypes). Dose-responses for CA formation, in cells exposed to 0, 10, and 100 μM AZT for 24 hr, were observed in all genotypes except the Xpa(+/+)p53(+/−) cells, which had very low levels of CA, and the Xpa(−/−)p53(−/−) cells, which had very high levels of CA. For CA there was a significant three-way interaction between Xpa, p53, and AZT concentration, and Xpa(−/−) cells had significantly higher levels of CA than Xpa(+/+) cells, only for p53(+/−) cells. In contrast, the MN and MN + chromosomes (MN + C) data showed a lack of AZT dose response. The Xpa(−/−) cells, with p53(+/+) or (+/−) genotypes, had levels of MN and MN + C higher than the corresponding Xpa(+/+) cells. The data show that CA is a major event induced by exposure to AZT in these cells, and that there is a complicated relationship between AZT and CA formation with respect to gene dosage of Xpa and p53. The loss of both genes resulted in high levels of damage, and p53 haploinsufficicency strongly protected Xpa(+/+) cells from AZT-induced CA damage. Environ. Mol. Mutagen., 2014. © 2014 Wiley Periodicals, Inc.
    Environmental and Molecular Mutagenesis 07/2014; · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cytokinesis-block micronucleus cytome (CBMN) assay, introduced by Fenech, was used to demonstrate different types of DNA damage in MOLT-3 human lymphoblastoid cells exposed to 10 μM zidovudine (AZT). In addition, we explored the cytoprotective potential of two antioxidants, WR-1065 and Tempol, to decrease AZT-induced genotoxicity. Binucleated cells, arrested by Cytochalasin B (Cyt B), were evaluated for micronuclei (MN), caused by DNA damage or chromosomal loss, and chromatin nucleoplasmic bridges (NPBs), caused by telomere attrition. Additionally, nuclear buds (NBUDs), caused by amplified DNA, and apoptotic and necrotic (A/N) cells were scored. We hypothesized that AZT exposure would increase the frequency of genotoxic end points, and that the antioxidants Tempol and WR-1065 would protect against AZT-induced genotoxicity. MOLT-3 cells were exposed to 0 or 10 µM AZT for a total of 76 hr. After the first 24 hr, 0 or 5 µM WR-1065 and/or 0 or 200 µM Tempol were added for the remainder of the experiment. For the last 28 hr (of 76 hr), Cyt B was added to arrest replication after one cell division, leaving a predominance of binucleated cells. The nuclear division index (NDI) was similar for all treatment groups, indicating that the exposures did not alter cell viability. MOLT-3 cells exposed to AZT alone had significant (P < 0.05) increases in MN and NBs, compared to unexposed cells. Both Tempol and WR-1065 protected against AZT-induced MN formation (P < 0.003 for both), and WR-1065, but not Tempol, reduced the levels of A/N (P = 0.041). In cells exposed to AZT/Tempol there were significantly reduced levels of NBUDs, compared to cells exposed to AZT alone (P = 0.015). Cells exposed to AZT/WR-1065 showed reduced levels of NPBs, compared to cells exposed to AZT alone (P = 0.037). Thus WR-1065 and Tempol protected MOLT-3 cells against specific types of AZT-induced DNA damage. Environ. Mol. Mutagen., 2014. © 2014 Wiley Periodicals, Inc.
    Environmental and Molecular Mutagenesis 05/2014; · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NRTIs, essential components of combinational therapies used for treatment of HIV-1, damage heart mitochondria. Here we have shown mitochondrial compromise in H9c2 rat cardiomyocytes exposed for 16 passages (P) to the NRTIs Zidovudine (AZT, 50 μM) and Didanosine (ddI, 50 μM), and we have demonstrated protection from mitochondrial compromise in cells treated with 200 μM Tempol or 200 μM Tempol-H, along with AZT/ddI, for 16P. Exposure to AZT/ddI caused a moderate growth inhibition at P3, P5, P7 and P13, which was not altered by addition of Tempol or Tempol-H. Mitochondrial oxidative phosphorylation (OXPHOS) capacity was determined as uncoupled Oxygen Consumption Rate (OCR) by Seahorse XF24 Analyzer. At P5, P7 and P13, AZT/ddI-exposed cells showed an OCR reduction of 8.8-57.2% in AZT/ddI-exposed cells, compared to unexposed cells. Addition of Tempol or Tempol-H, along with AZT/ddI, resulted in OCR levels increased by about 300% above the values seen with AZT/ddI alone. The Seahorse data were further supported by electron microscopy (EM) studies in which P16 cells exposed to AZT/ddI/Tempol had less mitochondrial pathology than P16 cells exposed to AZT/ddI. Western blots of P5 cells showed that Tempol and Tempol-H upregulated expression of mitochondrial uncoupling protein-2 (UCP-2). However, Complex I activity that was reduced by AZT/ddI, was not restored in the presence of AZT/ddI/Tempol. Superoxide levels were increased in the presence of AZT/ddI and significantly decreased in cells exposed to AZT/3TC/Tempol at P3, P7 and P10. In conclusion, Tempol protects against NRTI-induced mitochondrial compromise, and UCP-2 plays a role through mild uncoupling.
    Toxicological Sciences 03/2014; · 4.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The estrogen analog tamoxifen (TAM), used for adjuvant therapy of breast cancer, induces endometrial and uterine tumors in breast cancer patients. Proliferation stimulus of the uterine endometrium is likely involved in tumor induction, but genotoxicity may also play a role. Formation of TAM-DNA adducts in human tissues has been reported but remains controversial. To address this issue, we examined TAM-DNA adducts in uteri from two species of monkeys, Erythrocebus patas (patas) and Macaca fascicularis (macaque) and in human endometrium and myometrium. Monkeys were given 3-4 months of chronic TAM dosing scaled to be equivalent to the daily human dose. In the uteri, livers and brains from the patas (n=3), and endometrium from the macaques (n=4), TAM-DNA adducts were measurable by TAM-DNA Chemiluminescence Immunoassay (CIA). Average TAM-DNA adduct values for the patas uteri (23 adducts/10(8) nucleotides) were similar to those found in endometrium of the macaques (19 adducts/10(8) nucleotides). Endometrium of macaques exposed to both TAM and low-dose estradiol (n=5) averaged 34 adducts/10(8) nucleotides. To examine TAM-DNA persistence in the patas, females (n=3) were exposed to TAM for 3 months and to no drug for an additional month, resulting in low or non-detectable TAM-DNA in livers and uteri. Human endometrial and myometrial samples from women receiving (n=8) and not receiving (n=8) TAM therapy were also evaluated. Women receiving TAM therapy averaged 10.3 TAM-DNA adducts/10(8) nucleotides, while unexposed women showed no detectable TAM-DNA. The data indicate that genotoxicity, in addition to estrogen-agonist effects, may contribute to TAM-induced human endometrial cancer.
    Carcinogenesis 02/2014; · 5.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antiretroviral drugs have proved useful in the clinical management of HIV-infected persons, though there are concerns about the effects of exposure to these DNA-reactive drugs. We investigated the potential of the plant model Allium cepa root tip assay to demonstrate the cytogenotoxicity of zidovudine and nevirapine and as a replace-reduce-refine programme amenable to resource-poor research settings. Cells mitotic index were determined in squashed root cells from Allium cepa bulbs exposed to zidovudine or nevirapine for 48 hr. The concentration of zidovudine and nevirapine inhibiting 50% root growth after 96 hr exposure was 65.0 µM and 92.5 µM respectively. Root length of all antiretroviral-exposed roots after 96 hr exposure was significantly shorter than the unexposed roots while additional root growth during a subsequent 48 hr recovery period in the absence of drug was not significantly different. By ANOVA, there was a significant association between percentage of cells in mitosis and zidovudine dose (p = 0.004), but not nevirapine dose (p = 0.68). Chromosomal aberrations such as sticky chromosomes, chromatin bridges, multipolar mitoses and binucleated cells were observed in root cells exposed to zidovudine and nevirapine for 48 hr. The most notable chromosomal aberration was drug-related increases in sticky chromosomes. Overall, the study showed inhibition in root length growth, changes in the mitotic index, and the induction of chromosomal aberrations in Allium bulbs treated for 96 hr or 48 hr with zidovudine and nevirapine. The study reveals generalized cytogenotoxic damage induced by exposure to zidovudine and nevirapine, and further show that the two compounds differ in their effects on mitosis and the types of chromosomal aberrations induced.
    PLoS ONE 01/2014; 9(3):e90296. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac troponins serve as serum biomarkers of myocardial injury. The current study examined the influence of age on serum concentrations of cardiac troponin I (cTnI). An ultrasensitive immunoassay was used to monitor cTnI concentrations in Sprague-Dawley (SD) rats and Erythrocebus patas monkeys of different ages. The mean cTnI concentrations were highest in 10-day-old rats compared to 25-, 40-, and 80-day-old SD rats. Cardiomyocyte remodeling was apparent in hearts from 10-day-old SD rats as evident by hypercellularity, irregularly shaped nuclei, and moderate numbers of myocytes undergoing mitosis and apoptosis. The mean concentration of cTnI in 5 newborn monkeys was considerably higher than that of three 1-year-old monkeys. Evidence of cardiomyocyte remodeling was also observed in these newborn hearts (loss of myofibrils and cytoplasmic vacuolation). Commercial animal serum samples were also analyzed. The concentrations of cTnI detected in fetal equine and porcine serum were considerably higher than that found in adult equine and porcine serum samples Likewise, fetal bovine serum had higher cTnI concentrations (>2,400 pg/ml) than did adult caprine and laprine samples (2.5-2.7 pg/ml). The present study found age-related differences in cTnI concentrations, with higher levels occurring at younger ages. This effect was consistent across several animal species.
    Toxicologic Pathology 10/2013; · 2.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background. Erythrocebus patas (patas) monkeys were used to model use of antiretroviral (ARV) drugs in HIV-1 infected pregnant women.Methods. Pregnant patas dams were given human-equivalent daily ARV dosing for 50% of gestation. Mesenchymal cells, cultured from bone marrow of patas offspring obtained at birth, 1 and 3 yr of age, were examined for genotoxicity including: centrosomal amplification (CA); micronuclei (MN); and MN containing whole chromosomes (MN+C).Results. Compared to controls, significant increases (p<0.05) in CA, MN and MN+C were found in most groups of offspring examined at birth, 1 and 3 yr.Conclusions. Transplacental NRTI exposures induced fetal genotoxicity persistent for 3 yr.
    The Journal of Infectious Diseases 04/2013; · 5.85 Impact Factor
  • Mitochondrion 09/2012; 12(5):557–558. · 4.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have evaluated DNA damage (DNA adduct formation) after feeding benzo[a]pyrene (BP) to wild-type (WT) and cancer-susceptible Xpa(-/-)p53(+/-) mice deficient in nucleotide excision repair and haploinsufficient for the tumor suppressor p53. DNA damage was evaluated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ES-MS/MS), which measures r7,t8,t9-trihydroxy-c-10-(N (2)-deoxyguanosyl)-7,8,9,10-tetrahydrobenzo[a]pyrene (BPdG), and a chemiluminescence immunoassay (CIA), using anti-r7,t8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)-DNA antiserum, which measures both BPdG and the other stable BP-DNA adducts. When mice were fed 100 ppm BP for 28 days, BP-induced DNA damage measured in esophagus, liver and lung was typically higher in Xpa(-/-)p53(+/-) mice, compared with WT mice. This result is consistent with the previously observed tumor susceptibility of Xpa(-/-)p53(+/-) mice. BPdG, the major DNA adduct associated with tumorigenicity, was the primary DNA adduct formed in esophagus (a target tissue in the mouse), whereas total BP-DNA adducts predominated in higher levels in the liver (a non-target tissue in the mouse). In an attempt to lower BP-induced DNA damage, we fed the WT and Xpa(-/-)p53(+/-) mice 0.3% chlorophyllin (CHL) in the BP-containing diet for 28 days. The addition of CHL resulted in an increase of BP-DNA adducts in esophagus, liver and lung of WT mice, a lowering of BPdG in esophagi of WT mice and livers of Xpa(-/-)p53(+/-) mice and an increase of BPdG in livers of WT mice. Therefore, the addition of CHL to a BP-containing diet showed a lack of consistent chemoprotective effect, indicating that oral CHL administration may not reduce PAH-DNA adduct levels consistently in human organs.
    Carcinogenesis 07/2012; · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Benzo[a]pyrene (BaP) is a widespread environmental carcinogen activated by cytochrome P450 (P450) enzymes. In Hepatic P450 Reductase Null (HRN) and Reductase Conditional Null (RCN) mice, P450 oxidoreductase (Por) is deleted specifically in hepatocytes, resulting in the loss of essentially all hepatic P450 function. Treatment of HRN mice with a single i.p. or oral dose of BaP (12.5 or 125mg/kg body weight) resulted in higher DNA adduct levels in liver (up to 10-fold) than in wild-type (WT) mice, indicating that hepatic P450s appear to be more important for BaP detoxification in vivo. Similar results were obtained in RCN mice. We tested whether differences between hepatocytes and non-hepatocytes in P450 activity may underlie the increased liver BaP-DNA binding in HRN mice. Cellular localisation by immunohistochemistry of BaP-DNA adducts showed that HRN mice have ample capacity for formation of BaP-DNA adducts in liver, indicating that the metabolic process does not result in the generation of a reactive species different from that formed in WT mice. However, increased protein expression of cytochrome b(5) in hepatic microsomes of HRN relative to WT mice suggests that cytochrome b(5) may modulate the P450-mediated bioactivation of BaP in HRN mice, partially substituting the function of Por.
    Toxicology Letters 06/2012; 213(2):160-6. · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have developed and validated a sandwich chemiluminescence immunoassay (SCIA) which measures polycyclic aromatic hydrocarbon (PAH)-DNA adducts combining high throughput and adequate sensitivity, appropriate for evaluation of adduct levels in human population studies. Fragmented DNA is incubated with rabbit antiserum elicited against DNA modified with r7,t8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and subsequently trapped by goat anti-rabbit IgG bound to a solid surface. Anti-single-stranded (ss) DNA antibodies binds in a quantity proportional to the adduct levels and is detected by chemiluminescence. The BPDE-DNA SCIA has a limit of detection of 3 adducts per 10(9) nucleotides with 5 μg DNA per well. We have validated the BPDE-DNA SCIA using DNA modified in vitro, DNA from benzo[a]pyrene (BP)-exposed cultured cells and mice. The levels of adduct measured by SCIA were lower (30-60%) than levels of bulky DNA adducts measured in the same samples by (32)P-postlabelling. The BPDE-DNA SCIA also detected adducts produced in vivo by PAHs other than BP. When blood DNA samples from maternal/infant pairs were assayed by BPDE-DNA SCIA, the adduct levels obtained were significantly correlated. However, there was no correlation between (32)P-postlabelling and SCIA values for the same samples. The SCIA can be extended to any DNA adduct and is expected to provide, when fully automated, a valuable high-throughput approach in large-scale population studies.
    Mutagenesis 05/2012; 27(5):589-97. · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: - We have developed and validated a sandwich chemiluminescence immunoassay (SCIA)
    Mutagenesis 01/2012; 27(5):589-97. · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the highly effective impact of NRTI therapy in patients infected with the human immunodeficiency virus type 1 (HIV-1), long-term treatment has revealed cardiotoxicity, considered to be due to mitochondrial dysfunction. To evaluate mitochondrial damage, and design therapeutic interventions, we established cultures of rat H9c2 and mouse HL-1 cardiomyocytes and exposed them to the NRTIs zidovudine (AZT), and AZT plus didanosine (ddI). Proliferation assays showed that H9c2 cells grew well in 50 μM AZT and 50 μM AZT/50 μM ddI and that HL-1 cells grew well in 10 μM AZT and 10 μM AZT/10 μM ddI. Both types of cells were exposed to the drugs for 39 passages (P), and mitochondrial integrity in the form of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) was examined by Seahorse XF24 analyzer. In NRTI-exposed H9c2 cells at most passages, OCR was reduced, in both the basal and uncoupled states, compared to unexposed controls (P < 0.05). NRTI-exposed HL-1 cells showed a different pattern of mitochondrial compromise, with inhibition of OCR, in basal and uncoupled cells, occurring largely before P14 and after P17 (P < 0.05). The ECAR response in uncoupled cells of both types was unchanged at early passages, but increased after P18 (P < 0.05). Evaluation of mitochondrial biogenesis in H9c2 cells revealed reduction before P29, no change at P29, and reduction at P39 in NRTI-exposed cells, compared to unexposed cells (P < 0.05). Western blotting of transcription factors critical for mitochondrial biogenesis, PGC-1α, Nrf-1 and mtTFA, showed downregulation in NRTI-exposed H9c2 cells compared to unexposed controls. In addition, electron microscopy (EM) revealed increasing mitochondrial morphological damage in H9c2 cells over passages. For both cell types, AZT/ddI was more damaging than AZT alone. These studies demonstrate progressive mitochondrial compromise in cardiomyocytes-exposed long term, and the model will be used to evaluate potentially protective intervention strategies.
    Cardiovascular toxicology 12/2011; 12(2):123-34. · 2.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polycyclic aromatic hydrocarbons (PAHs) are combustion products of organic materials, mixtures of which contain multiple known and probable human carcinogens. PAHs occur in indoor and outdoor air, as well as in char-broiled meats and fish. Human exposure to PAHs occurs by inhalation, ingestion and topical absorption, and subsequently formed metabolites are either rendered hydrophilic and excreted, or bioactivated and bound to cellular macromolecules. The formation of PAH-DNA adducts (DNA binding products), considered a necessary step in PAH-initiated carcinogenesis, has been widely studied in experimental models and has been documented in human tissues. This review describes immunohistochemistry (IHC) studies, which reveal localization of PAH-DNA adducts in human tissues, and semi-quantify PAH-DNA adduct levels using the Automated Cellular Imaging System (ACIS). These studies have shown that PAH-DNA adducts concentrate in: basal and supra-basal epithelium of the esophagus, cervix and vulva; glandular epithelium of the prostate; and cytotrophoblast cells and syncitiotrophoblast knots of the placenta. The IHC photomicrographs reveal the ubiquitous nature of PAH-DNA adduct formation in human tissues as well as PAH-DNA adduct accumulation in specific, vulnerable, cell types. This semi-quantative method for PAH-DNA adduct measurement could potentially see widespread use in molecular epidemiology studies.
    International Journal of Environmental Research and Public Health 07/2011; 8(7):2675-91. · 2.00 Impact Factor
  • Source
    Tracey Einem Lindeman, Miriam C Poirier, Rao L Divi
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to carcinogenic polycyclic aromatic hydrocarbons (PAHs) induces cytochrome P450 (CYP) 1A1 and 1B1 enzymes, which biotransform PAHs resulting in the formation of DNA adducts. We hypothesised that 2,3',4,5'-tetramethoxystilbene (TMS), an analogue of resveratrol and a potent CYP1B1 inhibitor, may inhibit r7, t8, t9-trihydroxy-c-10-(N(2)deoxyguanosyl)-7,8,9,10-tetrahydro-benzo[a]pyrene (BPdG) adduct formation in cells exposed to benzo[a]pyrene (BP). To address this, MCF-7 cells were cultured for 96 h in the presence of 1 μM BP, 1 μM BP + 1 μM TMS or 1 μM BP + 4 μM TMS. Cells were assayed at 2-12 h intervals for: BPdG adducts by r7, t8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)-DNA chemiluminescence immunoassay; CYP1A1 and 1B1 gene expression changes by relative real-time polymerase chain reaction; and CYP1A1/1B1 enzyme activity by ethoxyresorufin-O-deethylase (EROD) assay. Whereas maximal BPdG levels were similar for all exposure groups, the times at which the maxima were reached increased by 16 and 24 h with the addition of 1 and 4 μM TMS, respectively. The maximal expression of CYP1A1 and CYP1B1 occurred at 16, 24 and 48 h, but the maximal level for EROD-specific activity was reached at 24, 48 and 60 h, in cells exposed to 1 μM BP, 1 μM BP + 1 μM TMS or 1 μM BP + 4 μM TMS, respectively. The area under the curve from 4 to 96 h of exposure (AUC(4-)(96 h)) for BPdG adduct formation was not increased in the presence of TMS, but for CYP1A1 and CYP1B1 expression fold increase AUC(4-)(96 h) and EROD-specific activity AUC(4-)(96 h), there were significant (P < 0.05) increases in the presence of 4 μM TMS. Therefore, during 96 h of exposure in MCF-7 cells, the combination of BP plus TMS caused a slowing of BP biotransformation, with an increase in CYP1A1 and CYP1B1 expression and EROD activity, and a slowing, but no change in magnitude of BPdG formation.
    Mutagenesis 06/2011; 26(5):629-35. · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Three classes of DNA damage were assessed in human placentas collected (2000-2004) from 51 women living in the Teplice region of the Czech Republic, a mining area considered to have some of the worst environmental pollution in Europe in the 1980s. Polycyclic aromatic hydrocarbon (PAH)-DNA adducts were localized and semiquantified using immunohistochemistry (IHC) and the Automated Cellular Imaging System (ACIS). More generalized DNA damage was measured both by (32)P-postlabeling and by abasic (AB) site analysis. Placenta stained with antiserum elicited against DNA modified with 7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE) revealed PAH-DNA adduct localization in nuclei of the cytotrophoblast (CT) cells and syncytiotrophoblast (ST) knots lining the chorionic villi. The highest levels of DNA damage, 49-312 PAH-DNA adducts/10(8) nucleotides, were found by IHC/ACIS in 14 immediately fixed placenta samples. An additional 37 placenta samples were stored frozen before fixation and embedding, and because PAH-DNA adducts were largely undetectable in these samples, freezing was implicated in the loss of IHC signal. The same placentas (n = 37) contained 1.7-8.6 stable/bulky DNA adducts/10(8) nucleotides and 0.6-47.2 AB sites/10(5) nucleotides. For all methods, there was no correlation among types of DNA damage and no difference in extent of DNA damage between smokers and nonsmokers. Therefore, the data show that DNA from placentas obtained in Teplice contained multiple types of DNA damage, which likely arose from various environmental exposures. In addition, PAH-DNA adducts were present at high concentrations in the CT cells and ST knots of the chorionic villi.
    Environmental and Molecular Mutagenesis 01/2011; 52(1):58-68. · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous components of polluted air. The Mexico City Metropolitan Area (MCMA), one of the most densely populated areas in the world, is 2240 m above sea level. At this altitude, less oxygen is available, making combustion less efficient and therefore producing more PAH pollutants. According to the Automatic Monitoring Network in Mexico City (RAMA, for its Spanish initials; http://www.sma.df.gob.mx/simat2/informaciontecnica/index.php?opcion=5&opciondifusion_bd=90), which performs environmental monitoring, the critical air pollutants in Mexico City are ozone and particulate matter (PM). PM emissions increase during the dry season (winter to spring) and decrease during the rainy season (summer to autumn). The bioactivation of some PAHs produces reactive metabolites that bind to DNA, and the presence of elevated levels of PAH-DNA adducts in tissues such as blood lymphocytes represents an elevated risk for the development of cancer. We have compared the levels of PAH-DNA adducts and the percentage of cells with chromosomal aberrations (CWAs) using a matched set of peripheral blood lymphocytes obtained on two separate occasions from young non-smoking inhabitants of the MCMA (n = 92) during the 2006 dry season and the following rainy season. PAH-DNA adducts were analysed using the r7, t8-dihydroxy-t-9, 10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)-DNA chemiluminescence immunoassay (CIA). The percentages of CWA were determined in cultured lymphocytes from the same individuals. Both DNA adduct levels and chromosomal aberrations were tested for correlation with lifestyle and the polymorphisms of cytochromes P450 CYP1A1 and CYP1B1 as well as glutathione-S-transferases GSTM1 and GSTT1. The levels of PAH-DNA adducts were significantly higher (P < 0.001) in the dry season (10.66 ± 3.05 per 10(9) nt, n = 92) than during the rainy season (9.50 ± 2.85 per 10(9) nt, n = 92) and correlated with the seasonal levels of particulate matter with a diameter of ≤ 10 μm (PM(10)). The percentage of CWA was not seasonally related; however, significant associations between the number of risk alleles and adduct levels in the dry (R = 0.298, P = 0.048) and in the wet seasons (R = 0.473, P = 0.001) were observed.
    Mutagenesis 12/2010; 26(3):385-91. · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial compromise has been documented in infants born to women infected with the human immunodeficiency virus (HIV-1) who received nucleoside reverse transcriptase inhibitor (NRTI) therapy during pregnancy. To model these human exposures, we examined mitochondrial integrity at birth and 1 year in brain cortex and liver from offspring of retroviral-free Erythrocebus patas dams-administered human-equivalent NRTI doses for the last half (10 weeks) of gestation. Additional infants, followed for 1 year, were given the same drugs as their mothers for the first 6 weeks of life. Exposures included: no drug, Zidovudine (AZT), Lamivudine (3TC), AZT/3TC, AZT/Didanosine (ddI), and Stavudine (d4T)/3TC. In brain and liver, oxidative phosphorylation (OXPHOS) enzyme activities (complexes I, II, and IV) showed minimal differences between unexposed and NRTI-exposed offspring at both times. Brain and liver mitochondria from most NRTI-exposed patas, both at birth and 1 year of age, contained significant (p < 0.05) morphological damage observed by electron microscopy (EM), based on scoring of coded photomicrographs. Brain and liver mitochondrial DNA (mtDNA) levels in NRTI-exposed patas were depleted significantly in the 3TC and d4T/3TC groups at birth and were depleted significantly (p < 0.05) at 1 year in all NRTI-exposed groups. In 1-year-old infants exposed in utero to NRTIs, mtDNA depletion was 28.8-51.8% in brain and 37.4-56.5% in liver. These investigations suggest that some NRTI-exposed human infants may sustain similar mitochondrial compromise in brain and liver and should be followed long term for cognitive integrity and liver function.
    Toxicological Sciences 11/2010; 118(1):191-201. · 4.33 Impact Factor

Publication Stats

4k Citations
1,036.38 Total Impact Points

Institutions

  • 1980–2014
    • National Cancer Institute (USA)
      • • Laboratory of Cancer Biology and Genetics
      • • Center for Cancer Research
      • • Laboratory of Experimental Immunology
      Maryland, United States
  • 1979–2012
    • National Institutes of Health
      • • Laboratory of Cancer Biology and Genetics
      • • Center for Cancer Research
      • • Laboratory of Human Carcinogenesis
      • • Branch of Occupational and Environmental Epidemiology
      • • Branch of Medical Genetics
      • • Branch of Cancer Etiology
      Maryland, United States
  • 2010
    • National Institute of Allergy and Infectious Disease
      Maryland, United States
    • University of New Mexico
      • College of Pharmacy
      Albuquerque, NM, United States
    • West Virginia University
      Morgantown, West Virginia, United States
  • 2009
    • Uniformed Services University of the Health Sciences
      • Department of Medicine
      Maryland, United States
  • 2007
    • New York State Department of Health
      • Wadsworth Center
      New York City, NY, United States
  • 2004–2007
    • Lovelace Respiratory Research Institute
      Albuquerque, New Mexico, United States
  • 2005
    • Centers for Disease Control and Prevention
      Atlanta, Michigan, United States
  • 2001–2004
    • National Heart, Lung, and Blood Institute
      Maryland, United States
  • 2003
    • Stony Brook University
      • Department of Pharmacological Sciences
      Stony Brook, NY, United States
  • 2000
    • U.S. Food and Drug Administration
      • Division of Neurotoxicology
      Washington, D. C., DC, United States
  • 1999–2000
    • NCI-Frederick
      Maryland, United States
    • National Institute of Environmental Health, Hungary
      Budapeŝto, Budapest, Hungary
  • 1990–1995
    • Johns Hopkins Medicine
      • • Department of Environmental Health Sciences
      • • Department of Epidemiology
      Baltimore, MD, United States
  • 1994
    • Montefiore Medical Center
      New York City, New York, United States
  • 1990–1994
    • University of Oslo
      • Department of Pathology (PAT)
      Oslo, Oslo, Norway
  • 1991
    • University of Washington Seattle
      Seattle, Washington, United States
  • 1988
    • Columbia University
      • Mailman School of Public Health
      New York City, NY, United States