Are you Andrew Wood?

Claim your profile

Publications (34)136.8 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: BACE1 is the rate-limiting enzyme that cleaves amyloid precursor protein (APP) to produce the amyloid β peptides that accumulate in Alzheimer's disease (AD). BACE1, which is elevated in AD patients and APP transgenic mice, also cleaves the β2-subunit of voltage-gated sodium channels (Navβ2). Although increased BACE1 levels are associated with Navβ2 cleavage in AD patients, whether Navβ2 cleavage occurs in APP mice had not yet been examined. Such a finding would be of interest because of its potential impact on neuronal activity: previous studies demonstrated that BACE1-overexpressing mice exhibit excessive cleavage of Navβ2 and reduced sodium current density, but the phenotype associated with loss of function mutations in either Navβ-subunits or pore-forming α-subunits is epilepsy. Because mounting evidence suggests that epileptiform activity may play an important role in the development of AD-related cognitive deficits, we examined whether enhanced cleavage of Navβ2 occurs in APP transgenic mice, and whether it is associated with aberrant neuronal activity and cognitive deficits. We found increased levels of BACE1 expression and Navβ2 cleavage fragments in cortical lysates from APP transgenic mice, as well as associated alterations in Nav1.1α expression and localization. Both pyramidal neurons and inhibitory interneurons exhibited evidence of increased Navβ2 cleavage. Moreover, the magnitude of alterations in sodium channel subunits was associated with aberrant EEG activity and impairments in the Morris water maze. Together, these results suggest that altered processing of voltage-gated sodium channels may contribute to aberrant neuronal activity and cognitive deficits in AD.
    Journal of Neuroscience 04/2013; 33(16):7020-6. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thienyl-isoquinolone (TIQ-A) is a relatively potent PARP inhibitor able to reduce post-ischaemic neuronal death in vitro. Here we have studied, in different stroke models in vivo, the neuroprotective properties of DAMTIQ and HYDAMTIQ, two TIQ-A derivatives able to reach the brain and to inhibit PARP-1 and PARP-2. Studies were carried out in (i) transient (2 h) middle cerebral artery occlusion (tMCAO), (ii) permanent MCAO (pMCAO) and (iii) electrocoagulation of the distal portion of MCA in conjunction with transient (90 min) bilateral carotid occlusion (focal cortical ischaemia). In male rats with tMCAO, HYDAMTIQ (0.1-10 mg·kg(-1)) injected i.p. three times, starting 4 h after MCAO, reduced infarct volumes by up to 70%, reduced the loss of body weight by up to 60% and attenuated the neurological impairment by up to 40%. In age-matched female rats, HYDAMTIQ also reduced brain damage. Protection, however, was less pronounced than in the male rats. In animals with pMCAO, HYDAMTIQ administered 30 min after MCAO reduced infarct volumes by approximately 40%. In animals with focal cortical ischaemia, HYDAMTIQ treatment decreased post-ischaemic accumulation of PAR (the product of PARP activity) and the presence of OX42-positive inflammatory cells in the ischaemic cortex. It also reduced sensorimotor deficits for up to 90 days after MCAO. Our results show that HYDAMTIQ is a potent PARP inhibitor that conferred robust neuroprotection and long-lasting improvement of post-stroke neurological deficits.
    British Journal of Pharmacology 09/2011; 165(5):1487-500. · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Huntington's disease (HD) is a late-onset, neurodegenerative disease for which there are currently no cures nor disease-modifying treatments. Here we report the identification of several potential anti-inflammatory targets for HD using an ex vivo model of HD that involves the acute transfection of human mutant huntingtin-based constructs into rat brain slices. This model recapitulates key components of the human disease, including the formation of intracellular huntingtin protein (HTT)-containing inclusions and the progressive neurodegeneration of striatal neurons-both occurring within the native tissue context of these neurons. Using this "high-throughput biology" screening platform, we conducted a hypothesis-neutral screen of a collection of drug-like compounds which identified several anti-inflammatory targets that provided neuroprotection against HTT fragment-induced neurodegeneration. The nature of these targets provide further support for non-cell autonomous mechanisms mediating significant aspects of neuropathogenesis induced by mutant HTT fragment proteins.
    Neurobiology of Disease 03/2011; 43(1):248-56. · 5.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myelin-associated inhibitors expressed following injury to the adult central nervous system (CNS) induce growth cone collapse and retraction of the axonal cytoskeleton. Myelin-associated glycoprotein (MAG) is a bi-functional molecule that promotes neuritogenesis in some immature neurons during development then becomes inhibitory to neurite outgrowth as neurons mature. Progress is being made towards the elucidation of the downstream events that regulate myelin inhibition of regeneration in neuronal populations. However it is not known how adult-derived neural stem cells or progenitors respond to myelin during neuronal differentiation and neuritogenesis. Here we examine the effect of MAG on neurons derived from an adult rat hippocampal progenitor cell line (AHPCs). We show that, unlike their developmental counterparts, AHPC-derived neurons are susceptible to MAG inhibition of neuritogenesis during differentiation and display a 57% reduction in neurite outgrowth when compared with controls. We demonstrate that this effect can be overcome (by up to 69%) by activation of the neurotrophin, cyclic AMP and protein kinase A pathways or by Rho-kinase suppression. We also demonstrate that combination of these factors enhanced neurite outgrowth from differentiating neurons in the presence of MAG. This work provides important information for the successful generation of new neurons from adult neural stem cell populations within compromised adult circuitry and is thus directly relevant to endogenous repair and regeneration of the adult CNS.
    Neurochemistry International 01/2011; 59(3):333-40. · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activation of poly(ADP-ribose) polymerase (PARP) is an important factor in controlling cell survival or death. As a consequence, therapeutic interventions with PARP-1 inhibitors are sought in different pathological conditions such as cancer, cardiovascular and inflammatory diseases, as well as brain ischemia. In the first part of this work, as a continuation of our efforts in the field, we report the design, synthesis and biological appraisal of novel potent PARP-1 inhibitors. A crystallization experiment is carried out to ascertain the mode of binding to PARP-1 of the most potent compound, namely 2-((dimethylamino)methyl)-9-hydroxythieno[2,3-c]isoquinolin-5(4H)-one (HYDAMTIQ), whilst molecular modeling studies are performed to infer the role of water molecules in ligand binding. In the second part of the work, we discuss the results of HYDAMTIQ in models of brain ischemia as well as its preliminary physicochemical and pharmacokinetic characterization. Collectively, the data obtained qualify HYDAMTIQ a
    Medicinal Chemistry Communication 01/2011; 2:559-565. · 2.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the major barriers to successful axon regeneration in the adult CNS is the presence of inhibitory molecules that originate from the myelin sheath and glial scar. So far, only a small number of pharmacological compounds have exhibited functional activity against CNS inhibitors in promoting axon regeneration after injury. To search for novel compounds that enhance neurite outgrowth in vitro, we initiated a screen of a collection of natural products. We identified four compounds with the potential to promote growth over a myelin substrate. Of these, Amphotericin B (AmB) was shown to enhance neurite outgrowth and antagonize activities of major myelin associated inhibitors and glial-scar-derived chondroitin sulfate proteoglycans. AmB was found to activate Akt and thereby suppress the activity of glycogen synthase kinase 3 beta. Also, a cell permeable peptide that inhibits Akt activity was shown to block the effect of AmB in promoting axonal growth, while another peptide that increases Akt activity stimulated axonal growth in the presence of the myelin associated inhibitors. Our results suggest that AmB can promote neurite outgrowth over a wide range of inhibitory substrates via a mechanism that involves activation of Akt.
    Journal of Neurochemistry 03/2010; 113(5):1331-42. · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The N-terminal domain of NogoA, called amino-Nogo, inhibits axonal outgrowth and cell spreading via a largely unknown mechanism. In the present study, we show that amino-Nogo decreases Rac1 activity and inhibits fibroblast spreading. 12-O-Tetradecanoylphorbol-13-acetate-type tumor promoters, such as phorbol 12-myristate 13-acetate (PMA) and teleocidin, increase Rac1 activity and overcome the amino-Nogo-induced inhibition of cell spreading. The stimulating effect of tumor promoters on cell spreading requires activation of protein kinase D and the subsequent activation of Akt1. Furthermore, we identified Akt1 as a new signaling component of the amino-Nogo pathway. Akt1 phosphorylation is decreased by amino-Nogo. Activation of Akt1 with a cell-permeable peptide, TAT-TCL1, blocks the amino-Nogo inhibition. Finally, we provide evidence that these signaling pathways operate in neurons in addition to fibroblasts. Our results suggest that activation of protein kinase D and Akt1 are approaches to promote axonal regeneration after injury.
    Journal of Biological Chemistry 12/2009; 285(9):6425-33. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cysteine-dependant aspartyl protease (caspase) activation has been implicated as a part of the signal transduction pathway leading to apoptosis. It has been postulated that caspase-3 inhibition could attenuate cell damage after an ischemic event and thereby providing for a novel neuroprotective treatment for stroke. As part of a program to develop a small molecule inhibitor of caspase-3, a novel series of 3,4-dihydropyrimido(1,2-a)indol-10(2H)-ones (pyrimidoindolones) was identified. The synthesis, biological evaluation and structure-activity relationships of the pyrimidoindolones are described.
    Bioorganic & medicinal chemistry 11/2009; 17(22):7755-68. · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Src kinase signaling has been implicated in multiple mechanisms of ischemic injury, including vascular endothelial growth factor (VEGF)-mediated vascular permeability that leads to vasogenic edema, a major clinical complication in stroke and brain trauma. Here we report the effects of two novel Src kinase inhibitors, 4-[(2,4-dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[3-(4-methyl-1-piperazinyl)propoxy]-3-quinolinecarbonitrile (SKI-606) and 4-[(2,4-dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[4-(4-methypiperazin-1-yl)but-1-ynyl]-3-quinolinecarbonitrile (SKS-927), on ischemia-induced brain infarction and short- and long-term neurological deficits. Two well established transient [transient middle cerebral artery occlusion (tMCAO)] and permanent [permanent middle cerebral artery occlusion (pMCAO)] focal ischemia models in the rat were used with drug treatments initiated up to 6 h after onset of stroke to mimic the clinical scenario. Brain penetration of Src inhibitors, their effect on blood-brain barrier integrity and VEGF signaling in human endothelial cells were also evaluated. Our results demonstrate that both agents potently block VEGF-mediated signaling in human endothelial cells, penetrate rat brain upon systemic administration, and inhibit postischemic Src activation and vascular leakage. Treatment with SKI-606 or SKS-927 (at the doses of 3-30 mg/kg i.v.) resulted in a dose-dependent reduction in infarct volume and robust protection from neurological impairments even when the therapy was initiated up to 4- to 6-h after tMCAO. Src blockade after pMCAO resulted in accelerated improvement in recovery from motor, sensory, and reflex deficits during a long-term (3 weeks) testing period poststroke. These data demonstrate that the novel Src kinase inhibitors provide effective treatment against ischemic conditions within a clinically relevant therapeutic window and may constitute a viable therapy for acute stroke.
    Journal of Pharmacology and Experimental Therapeutics 10/2009; 331(3):827-35. · 3.89 Impact Factor
  • Alzheimer's and Dementia 07/2009; 5(4). · 17.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ischemic stroke is the second most common cause of death worldwide and a major cause of disability. Intravenous thrombolysis with rt-PA remains the only available acute therapy in patients who present within 3h of stroke onset other than the recently approved mechanical MERCI device, substantiating the high unmet need in available stroke therapeutics. The development of successful therapeutic strategies remains challenging, as evidenced by the continued failures of new therapies in clinical trials. However, significant lessons have been learned and this knowledge is currently being incorporated into improved pre-clinical and clinical design. Furthermore, advancements in imaging technologies and continued progress in understanding biological pathways have established a prolonged presence of salvageable penumbral brain tissue and have begun to elucidate the natural repair response initiated by ischemic insult. We review important past and current approaches to drug development with an emphasis on implementing principles of translational research to achieve a rigorous conversion of knowledge from bench to bedside. We highlight current strategies to protect and repair brain tissue with the promise to provide longer therapeutic windows, preservation of multiple tissue compartments and improved clinical success.
    Neuropharmacology 12/2008; 56(2):329-41. · 4.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The implicit aim of neuroprotection is to rescue neurons within distressed but still viable tissue, thereby promoting functional recovery upon neuronal salvage. The clinical failure of this approach suggests that previous efforts to develop stroke therapies lacked means to predict success or futility in pre-clinical and early clinical studies. A key translational medicine strategy that can improve predictability relies on imaging methodologies to map the spatiotemporal evolution of the ischemic penumbra. This could serve as a biomarker indicative of neuroprotective potential and could increase likelihood of success in clinical studies by allowing selection of patients who are most likely to respond to therapy.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 09/2008; 29(1):217-9. · 5.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gangliosides are key players in neuronal inhibition, with antibody-mediated clustering of gangliosides blocking neurite outgrowth in cultures and axonal regeneration post injury. In this study we show that the ganglioside GT1b can form a complex with the Nogo-66 receptor NgR1. The interaction is shown by analytical ultracentrifugation sedimentation and is mediated by the sialic acid moiety on GT1b, with mutations in FRG motifs on NgR1 attenuating the interaction. One FRG motif was developed into a cyclic peptide (N-AcCLQKFRGSSC-NH(2)) antagonist of GT1b, reversing the GT1b antibody inhibition of cerebellar granule cell neurite outgrowth. Interestingly, the peptide also antagonizes neurite outgrowth inhibition mediated by soluble forms of the myelin-associated glycoprotein (MAG). Structure function analysis of the peptide point to the conserved FRG triplet being the minimal functional motif, and mutations within this motif inhibit NgR1 binding to both GT1b and MAG. Finally, using gene ablation, we show that the cerebellar neuron response to GT1b antibodies and soluble MAG is indeed dependent on NgR1 function. The results suggest that gangliosides inhibit neurite outgrowth by interacting with FRG motifs in the NgR1 and that this interaction can also facilitate the binding of MAG to the NgR1. Furthermore, the results point to a rational strategy for developing novel ganglioside antagonists.
    Journal of Biological Chemistry 07/2008; 283(24):16641-52. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rapamycin is an immunosuppressive immunophilin ligand reported as having neurotrophic activity. We show that modification of rapamycin at the mammalian target of rapamycin (mTOR) binding region yields immunophilin ligands, WYE-592 and ILS-920, with potent neurotrophic activities in cortical neuronal cultures, efficacy in a rodent model for ischemic stroke, and significantly reduced immunosuppressive activity. Surprisingly, both compounds showed higher binding selectivity for FKBP52 versus FKBP12, in contrast to previously reported immunophilin ligands. Affinity purification revealed two key binding proteins, the immunophilin FKBP52 and the beta1-subunit of L-type voltage-dependent Ca(2+) channels (CACNB1). Electrophysiological analysis indicated that both compounds can inhibit L-type Ca(2+) channels in rat hippocampal neurons and F-11 dorsal root ganglia (DRG)/neuroblastoma cells. We propose that these immunophilin ligands can protect neurons from Ca(2+)-induced cell death by modulating Ca(2+) channels and promote neurite outgrowth via FKBP52 binding.
    Proceedings of the National Academy of Sciences 02/2008; 105(1):33-8. · 9.81 Impact Factor
  • Alzheimers & Dementia - ALZHEIMERS DEMENT. 01/2008; 4(4).
  • Alzheimers & Dementia - ALZHEIMERS DEMENT. 01/2008; 4(4).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activation of the caspase family of cysteine proteases results in the deregulation of cellular homeostasis and apoptosis. This deregulation is a key factor in the development of Alzheimer's disease, Parkinson's disease, and cancer. Thus, the caspases are important drug targets for the therapeutic intervention of a number of pathological states involving inflammation and apoptosis. In this article, we report the results of inhibition kinetics and binding studies utilizing fluorescence spectroscopy and isothermal titration calorimetry to characterize the mechanism of interaction of caspase-3 with three different classes of inhibitors: peptidomimetics, isatins, and pyrimidoindolones. The peptidomimetics and pyrimidoindolones bind to both active sites of the caspase-3 homodimer with equal affinity and favorable enthalpic and entropic binding contributions. Enzyme activity is abolished when both active sites are occupied with the above inhibitors. In contrast, the isatins bind to caspase-3 with significant heat release (-12 kcal/mol) and negative entropy. In addition, enzyme activity is abolished upon isatin binding to one active site of the homodimer resulting in half-site reactivity. Our studies provide important mechanistic insight into inhibitor interactions with caspase-3 and a way to characterize inhibitor interactions that may not be readily apparent from the crystal structure.
    Biochemistry 09/2007; 46(33):9462-71. · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immunophilins are protein receptors for the immunosuppressant drugs FK506, cyclosporin A (CsA), and rapamycin. Two categories of immunophilins are the FK506-binding proteins (FKBPs), which bind to FK506, rapamycin, and CCI-779 and the cyclophilins, which bind to CsA. Reports have shown that immunophilins are expressed in the brain and spinal cord, are 10-100-fold higher in CNS tissue than immune tissue, and their expression is increased following nerve injury, suggesting that their chemical ligands may have therapeutic utility in the treatment of neurodegenerative diseases. In this study, we report the development and utility of a rapid neurofilament (NF) enzyme-linked immunosorbent assay (ELISA) to quantify neuronal survival and the Cellomics ArrayScan platform to quantify neurite outgrowth following treatment with immunophilin ligands. Cultured neurons or F-11 cells were treated with various immunophilin ligands for 72 or 96h and their promotion of neuronal survival and neurite outgrowth were determined. The results showed that all immunophilin ligands, in a concentration-dependent manner, significantly increased neuronal survival and neurite outgrowth, when compared to control cultures. Taken together, these results demonstrate the potential utility of the neurofilament ELISA and Cellomics ArrayScan platform to efficiently quantify neurotrophic effects of immunophilin ligands on cultured neurons and cell lines.
    Journal of Neuroscience Methods 08/2007; 163(2):310-20. · 2.11 Impact Factor
  • Source
    Seongeun Cho, Andrew Wood, Mark R Bowlby
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent improvements in brain slice technology have made this biological preparation increasingly useful for examining pathophysiology of brain diseases in a tissue context. Brain slices maintain many aspects of in vivo biology, including functional local synaptic circuitry with preserved brain architecture, while allowing good experimental access and precise control of the extracellular environment, making them ideal platforms for dissection of molecular pathways underlying neuronal dysfunction. Importantly, these ex vivo systems permit direct treatment with pharmacological agents modulating these responses and thus provide surrogate therapeutic screening systems without recourse to whole animal studies. Virus or particle mediated transgenic expression can also be accomplished relatively easily to study the function of novel genes in a normal or injured brain tissue context.In this review we will discuss acute brain injury models in organotypic hippocampal and co-culture systems and the effects of pharmacological modulation on neurodegeneration. The review will also cover the evidence of developmental plasticity in these ex vivo models, demonstrating emergence of injury-stimulated neuronal progenitor cells, and neurite sprouting and axonal regeneration following pathway lesioning. Neuro-and axo-genesis are emerging as significant factors contributing to brain repair following many acute and chronic neurodegenerative disorders. Therefore brain slice models may provide a critical contextual experimental system to explore regenerative mechanisms in vitro.
    Current Neuropharmacology 04/2007; 5(1):19-33. · 2.03 Impact Factor
  • Source
    Seongeun Cho, Andrew Wood, Mark R Bowlby
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent improvements in brain slice technology have made this biological preparation increasingly useful for examining pathophysiology of brain diseases in a tissue context. Brain slices maintain many aspects of in vivo biology, including functional local synaptic circuitry with preserved brain architecture, while allowing good experimental access and precise control of the extracellular environment, making them ideal platforms for dissection of molecular pathways underlying neuronal dysfunction. Importantly, these ex vivo systems permit direct treatment with pharmacological agents modulating these responses and thus provide surrogate therapeutic screening systems without recourse to whole animal studies. Virus or particle mediated transgenic expression can also be accomplished relatively easily to study the function of novel genes in a normal or injured brain tissue context.In this review we will discuss acute brain injury models in organotypic hippocampal and co-culture systems and the effects of pharmacological modulation on neurodegeneration. The review will also cover the evidence of developmental plasticity in these ex vivo models, demonstrating emergence of injury-stimulated neuronal progenitor cells, and neurite sprouting and axonal regeneration following pathway lesioning. Neuro-and axo-genesis are emerging as significant factors contributing to brain repair following many acute and chronic neurodegenerative disorders. Therefore brain slice models may provide a critical contextual experimental system to explore regenerative mechanisms in vitro.
    Current Neuropharmacology 04/2007; 5(1):19-33. · 2.03 Impact Factor