Jadwiga Baj

University of Warsaw, Warszawa, Masovian Voivodeship, Poland

Are you Jadwiga Baj?

Claim your profile

Publications (25)47.68 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Halomonas sp. ZM3 was isolated from Zelazny Most post-flotation mineral waste repository (Poland), which is highly contaminated with heavy metals and various organic compounds. Mobile DNA of the strain (i.e. plasmids and transposons) were analyzed in order to identify genetic information enabling adaptation of the bacterium to the harsh environmental conditions. RESULTS: The analysis revealed that ZM3 carries plasmid pZM3H1 (31,370 bp), whose replication system may be considered as an archetype of a novel subgroup of IncU-like replicons. pZM3H1 is a narrow host range, mobilizable plasmid (encodes a relaxase of the MOBV family) containing mercury resistance operon (mer) and czcD genes (mediate resistance to zinc and cobalt), which are part of a large truncated Tn3 family transposon. Further analysis demonstrated that the phenotypes determined by the pZM3H1 resistance cassette are highly dependent on the host strain. In another strand of the study, the trap plasmid pMAT1 was employed to identify functional transposable elements of Halomonas sp. ZM3. Using the sacB positive selection strategy two insertion sequences were identified: ISHsp1 - representing IS5 group of IS5 family and ISHsp2 - a distinct member of the IS630 family. CONCLUSIONS: This study provides the first detailed description of mobile DNA in a member of the family Halomonadaceae. The identified IncU plasmid pZM3H1 confers resistance phenotypes enabling adaptation of the host strain to the Zelazny Most environment. The extended comparative analysis has shed light on the distribution of related IncU plasmids among bacteria, which, in many cases, reflects the frequency and direction of horizontal gene transfer events. Our results also identify plasmid-encoded modules, which may form the basis of novel shuttle vectors, specific for this group of halophilic bacteria.
    BMC Microbiology 03/2013; 13(1):59. · 3.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmids are components of many bacterial genomes. They enable the spread of a large pool of genetic information via lateral gene transfer. Many bacterial strains contain mega-sized replicons and these are particularly common in Alphaproteobacteria. Considerably less is known about smaller alphaproteobacterial plasmids. We analyzed the genomes of 14 such plasmids residing in 4 multireplicon carotenoid-producing strains of the genus Paracoccus (Alphaproteobacteria): P. aestuarii DSM 19484, P. haeundaensis LG P-21903, P. marcusii DSM 11574 and P. marcusii OS22. Comparative analyses revealed mosaic structures of the plasmids and recombinational shuffling of diverse genetic modules involved in (i) plasmid replication, (ii) stabilization (including toxin-antitoxin systems of the relBE/parDE, tad-ata, higBA, mazEF and toxBA families) and (iii) mobilization for conjugal transfer (encoding relaxases of the MobQ, MobP or MobV families). A common feature of the majority of the plasmids is the presence of AT-rich sequence islets (located downstream of exc1-like genes) containing genes, whose homologs are conserved in the chromosomes of many bacteria (encoding e.g. RelA/SpoT, SMC-like proteins and a retron-type reverse transcriptase). The results of this study have provided insight into the diversity and plasticity of plasmids of Paracoccus spp., and of the entire Alphaproteobacteria. Some of the identified plasmids contain replication systems not described previously in this class of bacteria. The composition of the plasmid genomes revealed frequent transfer of chromosomal genes into plasmids, which significantly enriches the pool of mobile DNA that can participate in lateral transfer. Many strains of Paracoccus spp. have great biotechnological potential, and the plasmid vectors constructed in this study will facilitate genetic studies of these bacteria.
    PLoS ONE 01/2013; 8(11):e80258. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several trap plasmids (enabling positive selection of transposition events) were used to identify a pool of functional transposable elements (TEs) residing in bacteria of the genus Paracoccus (Alphaproteobacteria). Complex analysis of 25 strains representing 20 species of this genus led to the capture and characterization of (i) 37 insertion sequences (ISs) representing 9 IS families (IS3, IS5, IS6, IS21, IS66, IS256, IS1182, IS1380 and IS1634), (ii) a composite transposon Tn6097 generated by two copies of the ISPfe2 (IS1634 family) containing two predicted genetic modules, involved in the arginine deiminase pathway and daunorubicin/doxorubicin resistance, (iii) 3 non-composite transposons of the Tn3 family, including Tn5393 carrying streptomycin resistance and (iv) a transposable genomic island TnPpa1 (45 kb). Some of the elements (e.g. Tn5393, Tn6097 and ISs of the IS903 group of the IS5 family) were shown to contain strong promoters able to drive transcription of genes placed downstream of the target site of transposition. Through the application of trap plasmid pCM132TC, containing a promoterless tetracycline resistance reporter gene, we identified five ways in which transposition can supply promoters to transcriptionally silent genes. Besides highlighting the diversity and specific features of several TEs, the analyses performed in this study have provided novel and interesting information on (i) the dynamics of the process of transposition (e.g. the unusually high frequency of transposition of TnPpa1) and (ii) structural changes in DNA mediated by transposition (e.g. the generation of large deletions in the recipient molecule upon transposition of ISPve1 of the IS21 family). We also demonstrated the great potential of TEs and transposition in the generation of diverse phenotypes as well as in the natural amplification and dissemination of genetic information (of adaptative value) by horizontal gene transfer, which is considered the driving force of bacterial evolution.
    PLoS ONE 01/2012; 7(2):e32277. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N,N-Dimethylformamide (DMF), a toxic solvent used in the chemical industry, is frequently present in industrial wastes. Plasmid pAMI2 (18.6 kb) of Paracoccus aminophilus JCM 7686 carries genetic information which is crucial for methylotrophic growth of this bacterium, using DMF as the sole source of carbon and energy. Besides a conserved backbone related to pAgK84 of Agrobacterium radiobacter K84, pAMI2 carries a three-gene cluster coding for the protein DmfR, which has sequence similarities to members of the LuxR family of transcription regulators, and two subunits (DmfA1 and DmfA2) of N,N-dimethylformamidase, an enzyme of high substrate specificity that catalyzes the first step in the degradation of DMF. Genetic analysis revealed that these genes, which are all placed in the same orientation, constitute an inducible operon whose expression is activated in the presence of DMF by the positive transcription regulator DmfR. This operon was used to construct a strain able to degrade DMF at high concentrations that might be used in the biotreatment of DMF-containing industrial wastewaters. To our knowledge, this is the first study to provide insights into the genetic organization and regulation as well as the dissemination in bacteria of genes involved in the enzymatic breakdown of DMF.
    Applied and Environmental Microbiology 03/2010; 76(6):1861-9. · 3.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrated that a single copy of insertion sequence ISPme1 can mobilize adjacent segments of genomic DNA of Paracoccus methylutens DM12, which leads to the generation of diverse transposable elements of various size and DNA contents. All elements (named transposable modules [TMos]) contain ISPme1 (placed at the 5' ends of the elements) and have variable 3'-end regions of between 0.5 and 5 kb. ISPme1 was shown to encode an outwardly oriented promoter, which may activate the transcription of genes transposed within TMos in evolutionarily distinct hosts. TMos may therefore be considered to be natural systems enabling gene capture, expression, and spread. However, unless these elements have been inserted into a highly conserved genetic context to enable a precise definition of their termini, it is extremely difficult or even impossible to identify them in bacterial genomes by in silico sequence analysis. We showed that TMos are present in the chromosome and plasmids of strain DM12. Sequence analysis of plasmid pMTH1 (32 kb) revealed that four TMos, previously identified with a trap vector, pMEC1, comprise 87% of its genome. Repeated TMos within pMTH1 may stimulate other structural rearrangements resulting from homologous recombination between long repeat sequences. This illustrates that TMos may play a significant role in shaping the structure of natural plasmids, which consequently may have a great impact on the evolution of plasmid genomes.
    Journal of Bacteriology 06/2008; 190(9):3306-13. · 3.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A group of proteic toxin-antitoxin (TA) cassettes whose representatives are widely distributed among bacterial genomes has been identified. These cassettes occur in chromosomes, plasmids, bacteriophages, and noncomposite transposons, as well as in the SXT conjugative element of Vibrio cholerae. The following four homologous loci were subjected to detailed comparative studies: (i) tad-ata from plasmid pAMI2 of Paracoccus aminophilus (the prototype of this group), (ii) gp49-gp48 from the linear bacteriophage N15 of Escherichia coli, (iii) s045-s044 from SXT, and (iv) Z3230-Z3231 from the genomic island of enterohemorrhagic Escherichia coli O157:H7 strain EDL933. Functional analysis revealed that all but one of these loci (Z3230-Z3231) are able to stabilize heterologous replicons, although the host ranges varied. The TA cassettes analyzed have the following common features: (i) the toxins are encoded by the first gene of each operon; (ii) the antitoxins contain a predicted helix-turn-helix motif of the XRE family; and (iii) the cassettes have two promoters that are different strengths, one which is located upstream of the toxin gene and one which is located upstream of the antitoxin gene. All four toxins tested are functional in E. coli; overexpression of the toxins (in the absence of antitoxin) results in a bacteriostatic effect manifested by elongation of bacterial cells and growth arrest. The toxins have various effects on cell viability, which suggests that they may recognize different intracellular targets. Preliminary data suggest that different cellular proteases are involved in degradation of antitoxins encoded by the loci analyzed.
    Journal of Bacteriology 04/2007; 189(5):1983-97. · 3.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel shuttle entrapment vector, pMMB2, was used to identify a large transposable element, TnPpa1 (44.3 kb), of Paracoccus pantotrophus DSM 11072. TnPpa1 has a composite structure with divergently oriented copies of a cryptic transposon, Tn3434 (Tn3 family), located at both termini. The core region of the element contains a large set of putative genes, whose products show similarity to enzymes involved in central intermediary metabolism (e.g. tricarboxylic acid cycle or 2-methylcitrate cycle), transporters, transcriptional regulators and conserved proteins of unknown function. A 4.2 kb DNA segment of TnPpa1 is homologous to a region of chromosome cII of Rhodobacter sphaeroides 2.4.1, which exemplifies the mosaic structure of this element. TnPpa1 is bordered by 5 bp long directly repeated sequences and is located within a mega-sized replicon, pWKS5, in the DSM 11072 genome. Spontaneous inversion of the core region of TnPpa1 was detected in the host genome. Analysis of the distribution of TnPpa1 in three other strains of P. pantotrophus revealed that this element was present exclusively within DSM 11072, which suggests its relatively recent acquisition by lateral transfer. The identification of TnPpa1 (which may be considered a transposable genomic island) provides evidence for the transposition and lateral transfer of large DNA segments of chromosomal origin (carrying various housekeeping genes), which may have a great impact on the evolution of bacterial genomes.
    Microbiology 05/2006; 152(Pt 4):1063-73. · 2.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Several mini-replicons, derivatives of a large (107-kb) cryptic Thiobacillus versutus pTAV1 plasmid, were obtained. The pTAV1 derivatives confer all functions sufficient for autonomous replication in T. versutus but they cannot be maintained in Escherichia coli. The fragment of pTAV1 (4-kb) included in the smallest mini-replicon, pTAV202, encodes for two proteins of approximately 26 and 45 kDa. The region responsible for stable maintenance of pTAV1 derivatives (and presumably entire pTAV1) was located in defined 14-kb fragment of pTAV1 genome. Hybrid plasmids composed of E. coli vectors (pBGS18 or pWSK29) and pTAV202 replicon were constructed and their activity in both hosts tested.
    FEMS Microbiology Letters 01/2006; 129(2‐3):169 - 174. · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using cointegrate formation, we constructed a basic replicon of the megaplasmid/mini-chromosome pTAV3 of Paracoccus versutus UW1. It is composed of two adjacent modules, responsible for plasmid replication (rep) and partitioning (par). Functional analysis of the par region identified a determinant of incompatibility (inc2), whose presence is crucial for proper partitioning (the partitioning site). Database searches revealed that the only known replicon with significant homology to that of pTAV3 is encoded by the chromosome cII of Rhodobacter sphaeroides 2.4.1. Incompatibility studies showed that closely related basic replicons are also encoded by megaplasmids (above 400 kb) harbored by four strains of P. pantotrophus. Basic replicons of the pTAV3-type are able to maintain large bacterial genomes, therefore they appear to be good candidates for the construction of vectors specific for Alphaproteobacteria.
    Plasmid 06/2005; 53(3):239-50. · 1.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Three novel insertion sequences (ISs) (ISPso1, ISPso2, and ISPso3) of the soil bacterium Paracoccus solventivorans DSM 11592 were identified by transposition into entrapment vector pMEC1. ISPso1 (1,400 bp) carries one large open reading frame (ORF) encoding a putative basic protein (with a DDE motif conserved among transposases [Tnps] of elements belonging to the IS256 family) with the highest levels of similarity with the hypothetical Tnps of Rhodospirillum rubrum and Sphingopyxis macrogoltabida. ISPso2 (832 bp) appeared to be closely related to ISPpa2 of Paracoccus pantotrophus DSM 11072 and IS1248 of Paracoccus denitrificans PdX22, both of which belong to the IS427 group (IS5 family). These elements contain two overlapping ORFs and a putative frameshift motif (AAAAG) responsible for production of a putative transframe Tnp. ISPso3 (1,286 bp) contains a single ORF, whose putative product showed homology with Tnps of ISs classified as members of a distinct subgroup of the IS5 group of the IS5 family. The highest levels of similarity were observed with ISSsp126 of Sphingomonas sp. and IS1169 of Bacteroides fragilis. Analysis of the distribution of ISs of P. solventivorans revealed that ISPso2-like elements are the most widely spread of the elements in nine species of the genus PARACOCCUS: ISPso1 and ISPso3 are present in only a few paracoccal strains, which suggests that they were acquired by lateral transfer. Phylogenetic analysis of Tnps of the novel ISs and their closest relatives showed their evolutionary relationships and possible directions of lateral transfer between various bacterial hosts.
    Applied and Environmental Microbiology 01/2004; 69(12):7002-8. · 3.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We studied diversity and distribution of transposable elements residing in different strains (DSM 11072, DSM 11073, DSM 65, and LMD 82.5) of a soil bacterium Paracoccus pantotrophus (alpha-Proteobacteria). With application of a shuttle entrapment vector pMEC1, several novel insertion sequences (ISs) and transposons (Tns) have been identified. They were sequenced and subjected to detailed comparative analysis, which allowed their characterization (i.e., identification of transposase genes, terminal inverted repeats, as well as target sequences) and classification into the appropriate IS or Tn families. The frequency of transposition of these elements varied and ranged from 10(-6) to 10(-3) depending on the strain. The copy number, localization (plasmid or chromosome), and distribution of these elements in the Paracoccus species P. pantotrophus, P. denitrificans, P. methylutens, P. solventivorans, and P. versutus were analyzed. This allowed us to distinguish elements that are common in paracocci (ISPpa2, ISPpa3--both of the IS5 family--and ISPpa5 of IS66 family) as well as strain-specific ones (ISPpa1 of the IS256 family, ISPpa4 of the IS5 family, and Tn3434 and Tn5393 of the Tn3 family), acquired by lateral transfer events. These elements will be of a great value in the design of new genetic tools for paracocci, since only one element (IS1248 of P. denitrificans) has been described so far in this genus.
    Journal of Bacteriology 08/2003; 185(13):3753-63. · 3.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The repABC replicons have an unusual structure, since they carry genes coding for partitioning (repA, repB) and replication (repC) proteins, which are organized in an operon. So far, the presence of these compact bi-functional modules has been reported only in the megaplasmids of the Rhizobiaceae and within the plasmid pTAV1 (107kb) of Paracoccus versutus. We studied the distribution of repABC-type replicons within bacteria belonging to the genus Paracoccus. We found that repABC replicons occur only in the group of pTAV1-like plasmids: pKLW1, pHG16-a, pWKS2, and pPAN1, harbored by different strains of Paracoccus pantotrophus. A partial sequencing approach followed by phylogenetic analysis revealed that these replicons constitute a distinct evolutionary branch of repABC replicons. Incompatibility studies showed that they represent two incompatibility groups designated IncABC1 (pTAV1, pKLW1, and pHG16-a) and IncABC2 (pPAN1). Sequence comparison using available databases allowed the identification, within plasmid pRS241d of Rhodobacter sphaeroides 2.4.1, of an additional sequence highly homologous to the paracoccal repABC replicons, which has been included in comparative analyses.
    Plasmid 10/2002; 48(2):130-41. · 1.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The complete nucleotide sequence of the small, cryptic plasmid pWKS1 (2697 bp) of Paracoccus pantotrophus DSM 11072 was determined. The G+C content of the sequence of this plasmid was 62 mol%. Analysis revealed that over 80% of the plasmid genome was covered by two ORFs, ORF1 and ORF2, which were capable of encoding putative peptides of 44.1 and 37.8 kDa, respectively. Mutational analysis showed that ORF2 was crucial for plasmid replication. The translational product of ORF2 shared local homologies with replication proteins of several theta-replicating lactococcal plasmids, as well as with the Rep proteins of plasmids residing in Gram-negative hosts. An A+T-rich region, located upstream of the rep gene and containing three tandemly repeated 21 bp long iteron-like sequences, served as the origin of replication (oriV). ORF1 encoded a putative mobilization protein with similarities to mobilization proteins (Mob) from the broad-host-range plasmid pBBR1 and plasmids of Gram-positive bacteria. A plasmid bearing the MOB module of pWKS1 (the mob gene and the oriT sequence) could be mobilized for transfer (by IncP RP4 transfer apparatus) at low frequency between different strains of Escherichia coli. MOB modules of pWKS1 and pBBR1 were functionally complementary to each other. Hybridization analysis revealed that only plasmid pSOV1 (6.5 kb), among all of the paracoccal plasmids identified so far, carries sequences related to pWKS1. Plasmid pWKS1 could replicate in 10 species of Paracoccus and in Agrobacterium tumefaciens, Rhizobium leguminosarum and Rhodobacter sphaeroides, but it could not replicate in E. coli.
    Microbiology 10/2002; 148(Pt 9):2847-56. · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The replicon of the pTAV3 megaplasmid (approx. 400 kb) of Paracoccus versutus has been localized to a 4center dot3 kb EcoRI restriction fragment and its entire nucleotide sequence determined. The G+C content of the entire sequence is 66 mol%, which is within the range (62-66 mol%) previously determined for P. versutus total DNA. ORF1 encodes a replication initiation protein Rep (47.2 kDa), which shares substantial similarity with putative proteins of the Coxiella burnetii plasmids QpH1 and QpDV, and the replication protein of Pseudomonas syringae plasmid pPS10. ORF2, located in the opposite transcriptional orientation to ORF1, encodes a putative protein that shares similarity to a subfamily of ATPases involved in plasmid partitioning. The highest similarity was observed with homologous proteins (RepA) encoded by the repABC family of replicons found in several plasmids of Agrobacterium, Rhizobium and Paracoccus spp. The predicted product of ORF3 was similar to AcoR, Nif and NtrC transcriptional activators. A strong incompatibility determinant (inc) was localized between ORF1 (rep) and ORF2 (parA). The origin of replication of pTAV400 contains a short A+T-rich region and several imperfect palindromic sequences. Curing experiments demonstrated that the megaplasmid bears genes required for growth in minimal media and can therefore be referred to as a mini-chromosome. Megaplasmids pTAV3 of P. versutus UW1 and pKLW2 of Paracoccus pantotrophus DSM 11073 were found to carry closely related, incompatible replicons. It has been shown that plasmid pORI6 (containing oriV of pTAV3 cloned into plasmid pABW1, which does not replicate in Paracoccus spp.) can be trans activated not only by pTAV3, but also by pKLW2. Using pORI6, it was demonstrated that replication systems related to pTAV3 are also present in the replicons of Paracoccus alcaliphilus JCM 7364, Paracoccus thiocyanatus IAM 12816 and Paracoccus methylutens DM 12.
    Microbiology 04/2002; 148(Pt 3):871-81. · 2.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The replicator region of a low-copy-number plasmid, pALC1, of Paracoccus alcaliphilus JCM 7364 was cloned in a form of the minireplicon pALC100 (3.6 kb). The host range of the minireplicon embraces several species of genus Paracoccus, as well as Agrobacterium tumefaciens, Rhizobium leguminosarum, and Rhodobacter sphaeroides (all belonging to alpha-Proteobacteria), but not Escherichia coli. The complete nucleotide sequence of the replicator region (2276 bp) revealed the presence of one complete open reading frame coding for the 28.4-kDa protein (RepA) with similarity to replication proteins of plasmid pSW500 of Erwinia stewartii and pVS1 of Pseudomonas fluorescens. The iteron-like region was identified upstream of the repA gene and consisted of two clusters of repeated sequences (17 bp long) separated by a putative DnaA box. Analysis of the predicted amino acid sequence of two adjacent incomplete ORFs suggests the localization of repA between genes involved in conjugation (traG) and partitioning (parA) within the pALC1 genome.
    Plasmid 06/2001; 45(3):222-6. · 1.28 Impact Factor
  • J Baj
    Acta microbiologica Polonica 02/2000; 49(3-4):185-200.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The results of screening for the occurrence of plasmids in several strains representing 11 out of 13 species of the genus Paracoccus are presented. We show that plasmids (ranging in size from 2.7 to above 450 kb) are widely distributed in this genus. Only one tested strain (P. alkenifer) appears to be plasmid-free. The majority of the strains harbour at least two plasmids, one of which usually fits into the class of megaplasmids.
    Acta microbiologica Polonica 02/2000; 49(3-4):265-70.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The second replicator region of the native plasmid pTAV1 of Paracoccus versutus has been identified thus proving the composite nature of this replicon. The minimal replicon designated pTAV320 (4.3 kb) was cloned and sequenced. pTAV320 encodes three putative proteins--RepA, RepB and RepC. This replicator region shows strong structural and functional similarity to repABC-type replicons found in several Agrobacterium and Rhizobium plasmids. The origin of replication appears to be localized within the coding sequence of the repC gene. RepC was shown to be essential for replication. RepA and RepB were necessary for stable maintenance of the plasmid, which implies a role in active partitioning. The presence of the complete sequence of pTAV320 (in its non-replicative form) could stabilize in cis pTAV202, a mini-replicon derived from the other pTAV1 replicator region. Deletions introduced into the repC gene abolished the 'stabilizing' activity of pTAV320, suggesting that the centromere-like sequence, necessary for partitioning, might be localized within this gene. The two replicator regions of pTAV1 (pTAV320 and pTAV202) expressed incompatibility towards the parental plasmid but were compatible in trans in P. versutus cells. The pTAV320 replicon can be maintained in several Paracoccus, Agrobacterium, Rhizobium and Rhodobacter strains in addition to P. versutus.
    Microbiology 12/1998; 144 ( Pt 11):3149-57. · 2.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two mobilizable cloning vectors, designated pABW1 and pAWB2, were constructed basing on the E. coli vector pBGS18 and oriT originating from RK2. In pABW2 the kanamycin resistance gene was replaced by a novel tetracycline resistance cassette derived from Tn1721. Both vectors, specific for E. coli, allow to perform the cloning steps in E. coli and then to efficiently transfer the constructs by conjugation to the host of choice. A vector which cannot propagate in the given host can be applied for identification of the host specific plasmid replicator regions. With the use of pABW2 we defined the minimal replicator region of pTAV202-a mini-derivative of the large pTAV1 plasmid of P. versutus. We also proved that RepC' encoded on this fragment is the principal initiator replication protein and that oriV is located along its coding sequence.
    Acta microbiologica Polonica 02/1997; 46(4):387-92.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purified murein from Thiobacillus neapolitanus was poorly digested by lysozyme. It's sensitivity to the enzyme greatly increased after N-acetylation. The murein was found to contain 30 to 35% glucosamine residues lacking N-acetyl groups. It also contained phosphomuramic acid. Further modifications included amidation of diaminopimelic acid in the peptide side chains and a low alanine content. None of these modifications were found in the murein of another sulphur bacterium, Thiobacillus versutus.
    Research in Microbiology 02/1992; 143(1):47-54. · 2.89 Impact Factor