Claudio Rivetti

Università degli studi di Parma, Parma, Emilia-Romagna, Italy

Are you Claudio Rivetti?

Claim your profile

Publications (44)238.72 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The lateral spatial resolution of modern atomic force microscopy (AFM) is largely limited by the radius of curvature of the probe. Owing to their extraordinary mechanical strength, large aspect-ratio, and sub-nanometer radius, carbon nanotubes (CNTs) have emerged as the ideal AFM probe tip material, yet existing methods for CNT-AFM probe fabrication have not been optimized. In this work, we present a fabrication method that yields direct control over the CNT's length, radius, and tilt angle by using a positioning stage operated in a transmission electron microscope (TEM) to directly attach a single-walled CNT to the apex of an AFM probe tip. The CNT probes are then utilized to image gold nanoparticles and DNA with tapping-mode AFM in ambient conditions. While imaging gold nanoparticles, we report a full-width radius dilation of 5.5 å,and nearly 8 nm resolution enhancement compared to commercially available super sharp Si AFM probes. We also measure a DNA fullwidth of less than 5.0 nm and observe, in some cases, the fine structure associated with the DNA double-helix with a pitch of 3.32 nm, which agrees well with the theoretical value of 3.4 nm.
    02/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacteriophages attacking lactic acid bacteria (LAB) still represent a crucial problem in industrial dairy fermentations. The consequences of a phage infection against LAB can lead to fermentation delay, alteration of the product quality and, in most severe cases, the product loss. Phage particles enumeration and phage-host interactions are normally evaluated by conventional plaque count assays, but, in many cases, these methods can be unsuccessful. Bacteriophages of Lactobacillus helveticus, a LAB species widely used as dairy starter or probiotic cultures, are often unable to form lysis plaques, thus impairing their enumeration by plate assay. In this study, we used epifluorescence microscopy to enumerate L. helveticus phage particles from phage-infected cultures and Atomic Force Microscopy (AFM) to visualize both phages and bacteria during the different stages of the lytic cycle. Preliminary, we tested the sensitivity of phage counting by epifluorescence microscopy. To this end, phage particles of ΦAQ113, a lytic phage of L. helveticus isolated from a whey starter culture, were stained by SYBR Green I and enumerated by epifluorescence microscopy. Values obtained by the microscopic method were 10 times higher than plate counts, with a lowest sensitivity limit of ≥6log phage/ml. The interaction of phage ΦAQ113 with its host cell L. helveticus Lh1405 was imaged by AFM after 0, 2 and 5h from phage-host adsorption. The lytic cycle was followed by epifluorescence microscopy counting and the concomitant cell wall changes were visualized by AFM imaging. Our results showed that these two methods can be combined for a reliable phage enumeration and for studying phage and host morphology during infection processes, thus giving a complete overview of phage-host interactions in L. helveticus strains involved in dairy productions.
    Journal of microbiological methods 01/2012; 88(1):41-6. · 2.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Cell surface pili in Gram positive bacteria have been reported to orchestrate the colonization of host tissues, evasion of immunity and the development of biofilms. So far, little if any information is available on the presence of pilus-like structures in human gut commensals like bifidobacteria. RESULTS AND DISCUSSION: In this report, Atomic Force Microscopy (AFM) of various bifidobacterial strains belonging to Bifidobacterium bifidum, Bifidobacterium longum subsp. longum, Bifidobacterium dentium, Bifidobacterium adolescentis and Bifidobacterium animalis subsp. lactis revealed the existence of appendages resembling pilus-like structures. Interestingly, these microorganisms harbour two to six predicted pilus gene clusters in their genome, with each organized in an operon encompassing the major pilin subunit-encoding gene (designated fimA or fimP) together with one or two minor pilin subunit-encoding genes (designated as fimB and/or fimQ), and a gene encoding a sortase enzyme (strA). Quantitative Real Time (qRT)-PCR analysis and RT-PCR experiments revealed a polycistronic mRNA, encompassing the fimA/P and fimB/Q genes, which are differentially expressed upon cultivation of bifidobacteria on various glycans.
    Microbial Cell Factories 08/2011; 10 Suppl 1:S16. · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Virulent phages of the Siphoviridae family are responsible for milk fermentation failures worldwide. Here, we report the characterization of the product of the early expressed gene orf35 from Lactococcus lactis phage p2 (936 group). ORF35(p2), also named Sak3, is involved in the sensitivity of phage p2 to the antiviral abortive infection mechanism AbiK. The localization of its gene upstream of a gene coding for a single-strand binding protein as well as its membership to a superfamily of single-strand annealing proteins (SSAPs) suggested a possible role in homologous recombination. Electron microscopy showed that purified ORF35(p2) form a hexameric ring-like structure that is often found in proteins with a conserved RecA nucleotide-binding core. Gel shift assays and surface plasmon resonance data demonstrated that ORF35(p2) interacts preferentially with single-stranded DNA with nanomolar affinity. Atomic force microscopy showed also that it preferentially binds to sticky DNA substrates over blunt ends. In addition, in vitro assays demonstrated that ORF35(p2) is able to anneal complementary strands. Sak3 also stimulates Escherichia coli RecA-mediated homologous recombination. Remarkably, Sak3 was shown to possess an ATPase activity that is required for RecA stimulation. Collectively, our results demonstrate that ORF35(p2) is a novel SSAP stimulating homologous recombination.
    Molecular Microbiology 01/2011; 80(1):102-16. · 5.03 Impact Factor
  • Claudio Rivetti
    [Show abstract] [Hide abstract]
    ABSTRACT: The atomic force microscope (AFM) is a widely used tool to image DNA and nucleoprotein complexes at the molecular level. This is because the AFM is relatively easy to operate, has the capability to image biomolecules under aqueous solutions, and, most importantly, can image mesoscopic macromolecular structures that are too complex to be studied by X-ray or NMR and too small to be visualized with the optical microscope. Although there are many AFM studies about the structure and the physical properties of DNA, only in few cases a rigorous method has been applied to analyze AFM images. This chapter describes procedures to prepare DNA and nucleoprotein complexes for AFM imaging and methods used to carry out simple image measurements to obtain structural data. In particular, methods to measure DNA contour length and the volume of free or DNA-bound proteins are presented and discussed.
    Methods in molecular biology (Clifton, N.J.) 01/2011; 749:235-54. · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Virulent phages are responsible for milk fermentation failures in the dairy industry, due to their ability to infect starter cultures containing strains of Lactococcus lactis. Single-strand annealing proteins (SSAPs) have been found in several lactococcal phages, among which Sak in the phage ul36. Sak has been recently shown to be a functional homolog of the human protein RAD52, involved in homologous recombination. A comparison between full-length Sak and its N- and C-terminal domains was carried out to elucidate functional characteristics of each domain. We performed HPLC-SEC, AFM and SPR experiments to evaluate oligomerization states and compare the affinities to DNA. We have shown that the N-terminal domain (1-171) is essential and sufficient for oligomerization and binding to DNA, while the C-terminal domain (172-252) does not bind DNA nor oligomerize. Modelisation of Sak N-terminal domain suggests that DNA may bind a positively charged crevice that runs external to the ring. Annealing and stimulation of RecA strand exchange indicate that only the N-terminal domain is capable of single-strand annealing and both domains do not stimulate the RecA strand exchange reaction. We propose that Sak N-terminus is involved in DNA binding and annealing while the C-terminus may serve to contact Sak partners.
    Journal of Structural Biology 06/2010; 170(3):462-9. · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lactococcus lactis, a Gram-positive bacterium widely used by the dairy industry, is subject to infection by a diverse population of virulent phages, predominantly by those of the 936 group, including the siphovirus phage p2. Confronted with the negative impact of phage infection on milk fermentation, the study of the biology of lactococcal provides insight from applied and fundamental perspectives. We decided to characterize the product of the orf34 gene from lactococcus phage p2, which was considered as a candidate single-stranded DNA binding protein (SSB) due to its localization downstream of a gene coding for a single-strand annealing protein. Two-dimensional gel electrophoresis showed that ORF34(p2) is expressed in large amounts during the early phases of phage infection, suggesting an important role in this process. Gel-shift assays, surface plasmon resonance and atomic force microscopy demonstrated that ORF34(p2) interacts with single-strand DNA with nanomolar affinity. We also determined the crystal structure of ORF34(p2) and showed that it bears a variation of the typical oligonucleotide/oligosaccharide binding-fold of SSBs. Finally, we found that ORF34(p2) is able to stimulate Escherichia coli RecA-mediated homologous recombination. The specific structural and biochemical properties that distinguish ORF34(p2) from other SSB proteins are discussed.
    Molecular Microbiology 09/2009; 73(6):1156-70. · 5.03 Impact Factor
  • Source
    Claudio Rivetti
    [Show abstract] [Hide abstract]
    ABSTRACT: The determination of the contour length of DNA imaged by either electron microscopy or atomic force microscopy is frequently required for investigating the physical properties of nucleic acids. Nevertheless, these measurements are often carried out with methods that are not optimized for the curvilinear shape of DNA or are too complex to be of practical use. The aim of this study is to provide a method for the contour length measurements of DNA that is accurate, practical, and computationally simple. Computer simulated DNA fragments were used as experimental benchmarks in order to compute the coefficients a and b of the (n(e), n(o))-characterization [L(n(e),n(o)) = an(e) + bn(o)] so as to minimize the error of the measurements. The data show that, at variance with straight lines, a DNA length estimator depends on both the DNA flexibility and the image resolution, but it is independent of the DNA contour length. A table with DNA estimators to be used for length measurements of digitized contours obtained under commonly used imaging conditions is provided. Although the method has been developed using DNA as a benchmark, its applicability can be extended to other polymers as well as to other imaging techniques.
    Cytometry Part A 09/2009; 75(10):854-61. · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Upstream interactions of Escherichia coli RNA polymerase (RNAP) in an open promoter complex (RPo) formed at the P(R) and P(RM) promoters of bacteriophage lambda have been studied by atomic force microscopy. We demonstrate that the previously described 30-nm DNA compaction observed upon RPo formation at P(R) [Rivetti, C., Guthold, M. & Bustamante, C. (1999). Wrapping of DNA around the E. coli RNA polymerase open promoter complex. EMBO J., 18, 4464-4475.] is a consequence of the specific interaction of the RNAP with two AT-rich sequence determinants positioned from -36 to -59 and from -80 to -100. Likewise, RPos formed at P(RM) showed a specific contact between RNAP and the upstream DNA sequence. We further demonstrate that this interaction, which results in DNA wrapping against the polymerase surface, is mediated by the C-terminal domains of alpha-subunits (carboxy-terminal domain). Substitution of these AT-rich sequences with heterologous DNA reduces DNA wrapping but has only a small effect on the activity of the P(R) promoter. We find, however, that the frequency of DNA templates with both P(R) and P(RM) occupied by an RNAP significantly increases upon loss of DNA wrapping. These results suggest that alpha carboxy-terminal domain interactions with upstream DNA can also play a role in regulating the expression of closely spaced promoters. Finally, a model for a possible mechanism of promoter interference between P(R) and P(RM) is proposed.
    Journal of Molecular Biology 12/2008; 385(3):748-60. · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Enterococcus faecalis conjugative plasmid pPD1 encodes proteins responsible for the mating response to the sex pheromone cPD1 secreted by a recipient cell. This response involves the respectively negative and positive determinants traA and traE, the pheromone-inhibitor determinant ipd and structural genes participating in the conjugation process. TraA is capable of binding to key sites within the regulatory gene cluster. The binding of TraA to cognate sites is modulated by the pheromone (cPD1) and the pheromone-inhibitor (iPD1) peptides. Using atomic force microscopy and classic biochemical techniques, we mapped and characterized the TraA-DNA interactions within the pPD1 regulatory gene cluster and the role of TraA in the transcription regulation of the sex pheromone response. A previous report showed that TraA binds to three adjacent sites (tab1, tab2 and tab3) located upstream of the ipd promoter region. Here, we provide direct evidence for such interactions and show that TraA alone or in the presence of iPD1 inhibits ipd transcription by preferentially binding to tab1, whereas in the presence of saturating cPD1, the overall binding to the tab sites decreases, TraA preferentially binds to tab3 and the ipd repression is relieved. Moreover, TraA alone or in the presence of iPD1 binds to two non-adjacent sites within the ipd terminators T1 and T2, an interaction that is also relieved in the presence of cPD1. The binding of TraA to the termination region of ipd may play an important role in controlling traE and traF expression via a transcriptional read-through mechanism already postulated for the pAD1 plasmid. TraA may also regulate its own expression by binding to a site in the proximity of the traA promoter, which has been relocated 200 bp downstream of the ipd gene. A model for the TraA-mediated regulation of the pPD1-encoded sex pheromone response is presented.
    Journal of Molecular Biology 08/2008; 380(5):932-45. · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An entirely new means of printing molecular information on a planar film, involving casting nanoscale impressions of the template protein molecules in molten gallium, is presented here for the first time. The metallic imprints not only replicate the shape and size of the proteins used as template. They also show specific binding for the template species. Such a simple approach to the creation of antibody-like properties in metallic mirrors can lead to applications in separations, microfluidic devices, and the development of new optical and electronic sensors, and will be of interest to chemists, materials scientists, analytical specialists, and electronic engineers.
    Biosensors & Bioelectronics 10/2007; 23(2):290-4. · 6.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immunotherapy against the amyloid-beta (Abeta) peptide is a valuable potential treatment for Alzheimer disease (AD). An ideal antigen should be soluble and nontoxic, avoid the C-terminally located T-cell epitope of Abeta, and yet be capable of eliciting antibodies that recognize Abeta fibrils and neurotoxic Abeta oligomers but not the physiological monomeric species of Abeta. We have described here the construction and immunological characterization of a recombinant antigen with these features obtained by tandem multimerization of the immunodominant B-cell epitope peptide Abeta1-15 (Abeta15) within the active site loop of bacterial thioredoxin (Trx). Chimeric Trx(Abeta15)n polypeptides bearing one, four, or eight copies of Abeta15 were constructed and injected into mice in combination with alum, an adjuvant approved for human use. All three polypeptides were found to be immunogenic, yet eliciting antibodies with distinct recognition specificities. The anti-Trx(Abeta15)4 antibody, in particular, recognized Abeta42 fibrils and oligomers but not monomers and exhibited the same kind of conformational selectivity against transthyretin, an amyloidogenic protein unrelated in sequence to Abeta. We have also demonstrated that anti-Trx(Abeta15)4, which binds to human AD plaques, markedly reduces Abeta pathology in transgenic AD mice. The data indicate that a conformational epitope shared by oligomers and fibrils can be mimicked by a thioredoxin-constrained Abeta fragment repeat and identify Trx(Abeta15)4 as a promising new tool for AD immunotherapy.
    Journal of Biological Chemistry 05/2007; 282(15):11436-45. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We show that the extent of stable DNA wrapping by Escherichia coli RNA polymerase (RNAP) in the RNAP-promoter open complex depends on the sequence of the promoter and, in particular, on the sequence of the upstream region of the promoter. We further show that the extent of stable DNA wrapping depends on the presence of the RNAP alpha-subunit carboxy-terminal domain and on the presence and length of the RNAP alpha-subunit interdomain linker. Our results indicate that the extensive stable DNA wrapping observed previously in the RNAP-promoter open complex at the lambda P(R) promoter is not a general feature of RNAP-promoter open complexes.
    EMBO Reports 04/2007; 8(3):271-8. · 7.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Helicobacter pylori neutrophil-activating protein (HP-NAP), a member of the Dps family, is a fundamental virulence factor involved in H.pylori-associated disease. Dps proteins protect bacterial DNA from oxidizing radicals generated by the Fenton reaction and also from various other damaging agents. DNA protection has a chemical component based on the highly conserved ferroxidase activity of Dps proteins, and a physical one based on the capacity of those Dps proteins that contain a positively charged N-terminus to bind and condense DNA. HP-NAP does not possess a positively charged N-terminus but, unlike the other members of the family, is characterized by a positively charged protein surface. To establish whether this distinctive property could be exploited to bind DNA, gel shift, fluorescence quenching and atomic force microscopy (AFM) experiments were performed over the pH range 6.5-8.5. HP-NAP does not self-aggregate in contrast to Escherichia coli Dps, but is able to bind and even condense DNA at slightly acid pH values. The DNA condensation capacity acts in concert with the ferritin-like activity and could be used to advantage by H.pylori to survive during host-infection and other stress challenges. A model for DNA binding/condensation is proposed that accounts for all the experimental observations.
    Nucleic Acids Research 02/2007; 35(7):2247-56. · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lengsin (LGS) is an abundant transcript in the human lens, encoding a predicted polypeptide similar to glutamine synthetase (GS). We show that a major alternatively spliced product of LGS codes for a 57kDa polypeptide that assembles into a catalytically inactive dodecamer, cross-reacts with anti-GS antibodies, and is expressed at high levels in transparent, but not cataractous, human lenses. Based on this characteristic oligomeric organization, preferential expression in the transparent lens, and amyloid-beta association previously reported for GS, a potential chaperone-like role of LGS has been investigated. We find that LGS has six binding sites for the hydrophobic surface probe bis-ANS and relieves cellular toxicity caused by amyloid-beta expression in a folding-impaired yeast mutant. While documenting the structural similarity between LGS and prokaryotic GS-I, the data rule out any involvement of lengsin in glutamine biosynthesis and suggest an unrelated role that may be important for lens homeostasis and transparency.
    Biochemical and Biophysical Research Communications 12/2006; 350(2):424-9. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Calix[n]arenes functionalized with guanidinium groups at the upper rim and alkyl chains at the lower rim bind to DNA, condense it, and in some cases, promote cell transfection depending on their structure and lipophilicity. Atomic force microscopy (AFM) studies indicate that upon DNA binding the hydrophobic association of the lipophilic chains of cone guanidinium calix[4]arenes drives the formation of intramolecular DNA condensates, characterized by DNA loops emerging from a dense core. Furthermore, hexyl and octyl chains confer to these calixarenes cell transfection capabilities. Conversely, larger and conformationally mobile calix[6]- and calix[8]arene methoxy derivatives form intermolecular aggregates characterized by "gorgonlike" structures composed of multiple plectomenes. These adducts, in which interstrand connections are dominated by electrostatic interactions, fail to promote cell transfection. Finally, calix[4]arenes in a 1,3-alternate conformation show an intermediate behavior because they condense DNA, but the process is driven by charge-charge interactions.
    Journal of the American Chemical Society 12/2006; 128(45):14528-36. · 10.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atomic force microscopy (AFM) has been used to image, at single molecule resolution, transcription events by Escherichia coli RNA polymerase (RNAP) on a linear DNA template with two convergently aligned lambda(pr) promoters. For the first time experimentally, the outcome of collision events during convergent transcription by two identical RNAP has been studied. Measurement of the positions of the RNAP on the DNA, allows distinction of open promoter complexes (OPCs) and elongating complexes (EC) and collided complexes (CC). This discontinuous time-course enables subsequent analysis of collision events where both RNAP remain bound on the DNA. After collision, the elongating RNAP has caused the other (usually stalled) RNAP to back-track along the template. The final positions of the two RNAP indicate that these are collisions between an EC and a stalled EC (SEC) or OPC (previously referred to as sitting-ducks). Interestingly, the distances between the two RNAP show that they are not always at closest approach after 'collision' has caused their arrest.
    Nucleic Acids Research 02/2006; 34(19):5416-25. · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic RNA polymerase (Pol) III is recruited to target promoters by a stable preinitiation complex containing transcription factors TFIIIC and TFIIIB. After the first transcription cycle, reinitiation proceeds through facilitated recycling, a process by which the terminating Pol III rapidly reloads onto the same transcription unit. Here, we show that Pol III is repeatedly recaptured in vitro by the first transcribed gene, even in the presence of a juxtaposed competitor promoter complex, thus suggesting that facilitated recycling is not merely due to a stochastic reassociation process favored by the small size of class III genes. The transcription factor requirements for facilitated reinitiation were investigated by taking advantage of Pol III templates that support both TFIIIC-dependent and TFIIIC-independent transcription. A TFIIIC-less transcription system, in which TFIIIB was reconstituted from recombinant TATA box-binding protein and Brf1 proteins and a crude fraction containing the Bdp1 component, was sufficient to direct efficient Pol III recycling on short ( approximately 100 bp) class III genes. Unexpectedly, however, on longer (>300 bp) transcription units, reinitiation in the presence of TFIIIB alone was compromised, and TFIIIC was further required to reestablish a high reinitiation rate. Transcription reinitiation was also severely impaired when recombinant Bdp1 protein replaced the corresponding crude fraction in reconstituted TFIIIB. The data reveal an unexpected complexity in the Pol III reinitiation mechanism and suggest the existence of a handing-back network between Pol III, TFIIIC, and TFIIIB on actively transcribed class III genes.
    Proceedings of the National Academy of Sciences 09/2004; 101(37):13442-7. · 9.81 Impact Factor
  • Roberto Ferrari, Claudio Rivetti, Giorgio Dieci
    [Show abstract] [Hide abstract]
    ABSTRACT: We have analyzed the kinetics of transcription initiation and reinitiation in vitro by one of the simplest and best characterized transcription machineries, bacteriophage T7 RNA polymerase (T7 RNAP). We used a short transcription unit with T7-specific promoter and terminator elements as a template, and a heparin challenge assay to distinguish the first transcription cycle from the subsequent ones. When present at sub-saturating concentrations with respect to template DNA, T7 RNAP could find its promoter and initiate the first transcription cycle in less than 1min. Reinitiation under the same conditions proceeded more slowly, with only three new transcription cycles being completed in 10min; after that time, reinitiation practically ceased. When the polymerase was in large excess over template DNA, however, reinitiation proceeded linearly for longer times, at a rate of 1cycle/min. Our data suggest that polymerase recycling represents a critical step in T7 RNAP transcription, and that such a step may become rate-limiting for transcription at sub-saturating polymerase concentrations.
    Biochemical and Biophysical Research Communications 04/2004; 315(2):376-80. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Escherichia coli Dps (DNA-binding proteins from starved cells) is the prototype of a DNA-protecting protein family expressed by bacteria under nutritional and oxidative stress. The role of the lysine-rich and highly mobile Dps N-terminus in DNA protection has been investigated by comparing the self-aggregation and DNA-condensation capacity of wild-type Dps and two N-terminal deletion mutants, DpsDelta8 and DpsDelta18, lacking two or all three lysine residues, respectively. Gel mobility and atomic force microscopy imaging showed that at pH 6.3, both wild type and DpsDelta8 self-aggregate, leading to formation of oligomers of variable size, and condense DNA with formation of large Dps-DNA complexes. Conversely, DpsDelta18 does not self-aggregate and binds DNA without causing condensation. At pH 8.2, DpsDelta8 and DpsDelta18 neither self-aggregate nor cause DNA condensation, a behavior also displayed by wild-type Dps at pH 8.7. Thus, Dps self-aggregation and Dps-driven DNA condensation are parallel phenomena that reflect the properties of the N-terminus. DNA protection against the toxic action of Fe(II) and H2O2 is not affected by the N-terminal deletions either in vitro or in vivo, in accordance with the different structural basis of this property.
    Nucleic Acids Research 02/2004; 32(19):5935-44. · 8.81 Impact Factor

Publication Stats

2k Citations
238.72 Total Impact Points

Institutions

  • 1993–2012
    • Università degli studi di Parma
      • • Department of Veterinary Science
      • • Department of Life Sciences
      • • Department of Pharmacy
      Parma, Emilia-Romagna, Italy
  • 1999
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
  • 1996–1999
    • University of Oregon
      • Institute of Molecular Biology
      Eugene, OR, United States