M M Bonilla Simón

Universidad Politécnica de Madrid, Madrid, Madrid, Spain

Are you M M Bonilla Simón?

Claim your profile

Publications (3)11.61 Total impact

  • Source
    S García Salgado, M A Quijano Nieto, M M Bonilla Simón
    [show abstract] [hide abstract]
    ABSTRACT: In order to achieve reliable information on speciation analysis, it is necessary to assess previously the species stability in the sample to analyse. Furthermore, in those cases where the sample treatment for species extraction is time-consuming, an assessment of the species integrity in the extracts is of paramount importance. Thus, the present paper reports total arsenic and arsenic species stability in alga samples (Sargassum fulvellum and Hizikia fusiformis), as well as in their aqueous extracts, which were stored in amber glass and polystyrene containers at different temperatures. Total arsenic determination was carried out by inductively coupled plasma atomic emission spectroscopy (ICP-AES), after sample acid digestion in a microwave oven, while arsenic speciation was conducted by anion exchange high performance liquid chromatography on-line coupled to ICP-AES, with and without sample introduction by hydride generation (HPLC-ICP-AES and HPLC-HG-ICP-AES), after aqueous microwave-assisted extraction. The results obtained for solid alga samples showed that total arsenic (for Hijiki alga) and arsenic species present (As(V) for Hijiki and NIES No. 9 Sargasso) are stable for at least 12 months when samples are stored in polystyrene containers at +20 degrees C. On the other hand, a different behaviour was observed in the stability of total arsenic and As(V) species in aqueous extracts for both samples, being the best storage conditions for Sargasso extracts a temperature of -18 degrees C and polystyrene containers, under which they are stable for at least 15 days, while Hijiki extracts must be stored in polystyrene containers at +4 degrees C in order to ensure the stability for 10 days.
    Talanta 06/2008; 75(4):897-903. · 3.50 Impact Factor
  • S García Salgado, M A Quijano Nieto, M M Bonilla Simón
    [show abstract] [hide abstract]
    ABSTRACT: A microwave-based procedure for arsenic species extraction in alga samples (Sargassum fulvellum, Chlorella vulgaris, Hizikia fusiformis and Laminaria digitata) is described. Extraction time and temperature were tested in order to evaluate the extraction efficiency of the process. Arsenic compounds were extracted in 8 ml of deionised water at 90 degrees C for 5 min. The process was repeated three times. Soluble arsenic compounds extracted accounted for about 78-98% of total arsenic. The results were compared with those obtained in a previous work, where the extraction process was carried out by ultrasonic focussed probe for 30 s. Speciation studies were carried out by high performance liquid chromatography-hydride generation-inductively coupled plasma-atomic emission spectrometry (HPLC-HG-ICP-AES). The chromatographic method allowed us to separate As(III), As(V), monomethylarsonic acid and dimethylarsinic acid in less than 13 min. The chromatographic analysis of the samples allowed us to identify and quantify As(V) in Hizikia sample and Sargasso material, while the four arsenic species studied were found in Chlorella sample. In the case of Laminaria sample, none of these species was identified by HPLC-HG-ICP-AES. However, in the chromatographic analysis of this alga by HPLC-ICP-AES, an unknown arsenic species was detected.
    Journal of Chromatography 10/2006; 1129(1):54-60. · 4.61 Impact Factor
  • S García Salgado, M A Quijano Nieto, M M Bonilla Simón
    [show abstract] [hide abstract]
    ABSTRACT: A procedure for arsenic species fractionation in alga samples (Sargassum fulvellum, Chlorella vulgaris, Hizikia fusiformis and Laminaria digitata) by extraction is described. Several parameters were tested in order to evaluate the extraction efficiency of the process: extraction medium, nature and concentration (tris(hydroxymethyl)aminomethane, phosphoric acid, deionised water and water/methanol mixtures), extraction time and physical treatment (magnetic stirring, ultrasonic bath and ultrasonic focussed probe). The extraction yield of arsenic under the different conditions was evaluated by determining the total arsenic content in the extracts by ICP-AES. Arsenic compounds were extracted in 5mL of water by focussed sonication for 30s and subsequent centrifugation at 14,000xg for 10min. The process was repeated three times. Extraction studies show that soluble arsenic compounds account for about 65% of total arsenic. An ultrafiltration process was used as a clean-up method for chromatographic analysis, and also allowed us to determine the extracted arsenic fraction with a molecular weight lower than 10kDa, which accounts for about 100% for all samples analysed. Speciation studies were carried out by HPLC-ICP-AES. Arsenic species were separated on a Hamilton PRP-X100 column with 17mM phosphate buffer at pH 5.5 and 1.0mLmin(-1) flow rate. The chromatographic method allowed us to separate the species As(III), As(V), MMA and DMA in less than 13min, with detection limits of about 20ng of arsenic per species, for a sample injection volume of 100muL. The chromatographic analysis allowed us to identify As(V) in Hizikia (46+/-2mugg(-1)), Sargassum (38+/-2mugg(-1)) and Chlorella (9+/-1mugg(-1)) samples. The species DMA was also found in Chlorella alga (13+/-1mugg(-1)). However, in Laminaria alga only an unknown arsenic species was detected, which eluted in the dead volume.
    Talanta 03/2006; 68(5):1522-7. · 3.50 Impact Factor

Publication Stats

32 Citations
17 Downloads
185 Views
11.61 Total Impact Points

Top Journals

Institutions

  • 2006–2008
    • Universidad Politécnica de Madrid
      • Departamento de Ingeniería Civil: Tecnología Hidraúlica y Energética
      Madrid, Madrid, Spain