Steven R Kleeberger

East Carolina University, North Carolina, United States

Are you Steven R Kleeberger?

Claim your profile

Publications (166)750.3 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nrf2 is a key transcription factor that regulates cellular redox and defense responses. However, permanent Nrf2 activation in human lung carcinomas promotes pulmonary malignancy and chemoresistance. We tested the hypothesis that Nrf2 has cell survival properties and lack of Nrf2 suppresses chemically-induced pulmonary neoplasia by treating Nrf2(+/+) and Nrf2(-/-) mice with urethane. Airway inflammation and injury were assessed by bronchoalveolar lavage analyses and histopathology, and lung tumors were analyzed by gross and histologic analysis. We used transcriptomics to assess Nrf2-dependent changes in pulmonary gene transcripts at multiple stages of neoplasia. Lung hyperpermeability, cell death and apoptosis, and inflammatory cell infiltration were significantly higher in Nrf2(-/-) mice compared to Nrf2(+/+) mice 9 and 11 wk after urethane. Significantly fewer lung adenomas were found in Nrf2(-/-) mice than in Nrf2(+/+) mice at 12 and 22 wk. Nrf2 modulated expression of genes involved cell-cell signaling, glutathione metabolism and oxidative stress response, and immune responses during early stage neoplasia. In lung tumors, Nrf2-altered genes had roles in transcriptional regulation of cell cycle and proliferation, carcinogenesis, organismal injury and abnormalities, xenobiotic metabolism, and cell-cell signaling genes. Collectively, Nrf2 deficiency decreased susceptibility to urethane-induced lung tumorigenesis in mice. Cell survival properties of Nrf2 were supported, at least in part, by reduced early death of initiated cells and heightened advantage for tumor cell expansion in Nrf2(+/+) mice relative to Nrf2(-/-) mice. Our results were consistent with the concept that Nrf2 over-activation is an adaptive response of cancer conferring resistance to anti-cancer drugs and promoting malignancy.
    PLoS ONE 01/2011; 6(10):e26590. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms underlying ozone (O₃)-induced pulmonary inflammation remain unclear. Interleukin-10 (IL-10) is an anti-inflammatory cytokine that is known to inhibit inflammatory mediators. We investigated the molecular mechanisms underlying interleuken-10 (IL-10)-mediated attenuation of O₃-induced pulmonary inflammation in mice. Il10-deficient (Il10(-/-)) and wild-type (Il10(+/+)) mice were exposed to 0.3 ppm O₃ or filtered air for 24, 48, or 72 hr. Immediately after exposure, differential cell counts and total protein (a marker of lung permeability) were assessed from bronchoalveolar lavage fluid (BALF). mRNA and protein levels of cellular mediators were determined from lung homogenates. We also used global mRNA expression analyses of lung tissue with Ingenuity Pathway Analysis to identify patterns of gene expression through which IL-10 modifies O₃-induced inflammation. Mean numbers of BALF polymorphonuclear leukocytes (PMNs) were significantly greater in Il10(-/-) mice than in Il10(+/+) mice after exposure to O₃ at all time points tested. O₃-enhanced nuclear NF-κB translocation was elevated in the lungs of Il10(-/-) compared with Il10(+/+) mice. Gene expression analyses revealed several IL-10-dependent and O₃-dependent mediators, including macrophage inflammatory protein 2, cathepsin E, and serum amyloid A3. Results indicate that IL-10 protects against O₃-induced pulmonary neutrophilic inflammation and cell proliferation. Moreover, gene expression analyses identified three response pathways and several genetic targets through which IL-10 may modulate the innate and adaptive immune response. These novel mechanisms of protection against the pathogenesis of O₃-induced pulmonary inflammation may also provide potential therapeutic targets to protect susceptible individuals.
    Environmental Health Perspectives 12/2010; 118(12):1721-7. · 7.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Asthma is a known risk factor for acute ozone-associated respiratory disease. Ozone causes an immediate decrease in lung function and increased airway inflammation. The role of atopy and asthma in modulation of ozone-induced inflammation has not been determined. We sought to determine whether atopic status modulates ozone response phenotypes in human subjects. Fifty volunteers (25 healthy volunteers, 14 atopic nonasthmatic subjects, and 11 atopic asthmatic subjects not requiring maintenance therapy) underwent a 0.4-ppm ozone exposure protocol. Ozone response was determined based on changes in lung function and induced sputum composition, including airway inflammatory cell concentration, cell-surface markers, and cytokine and hyaluronic acid concentrations. All cohorts experienced similar decreases in lung function after ozone. Atopic and atopic asthmatic subjects had increased sputum neutrophil numbers and IL-8 levels after ozone exposure; values did not significantly change in healthy volunteers. After ozone exposure, atopic asthmatic subjects had significantly increased sputum IL-6 and IL-1beta levels and airway macrophage Toll-like receptor 4, Fc(epsilon)RI, and CD23 expression; values in healthy volunteers and atopic nonasthmatic subjects showed no significant change. Atopic asthmatic subjects had significantly decreased IL-10 levels at baseline compared with healthy volunteers; IL-10 levels did not significantly change in any group with ozone. All groups had similar levels of hyaluronic acid at baseline, with increased levels after ozone exposure in atopic and atopic asthmatic subjects. Atopic asthmatic subjects have increased airway inflammatory responses to ozone. Increased Toll-like receptor 4 expression suggests a potential pathway through which ozone generates the inflammatory response in allergic asthmatic subjects but not in atopic subjects without asthma.
    The Journal of allergy and clinical immunology 09/2010; 126(3):537-44.e1. · 12.05 Impact Factor
  • Alison K Bauer, Steven R Kleeberger
    [Show abstract] [Hide abstract]
    ABSTRACT: Environmental oxidants remain a major public health concern in industrialized cities throughout the world. Population and epidemiological studies have associated oxidant air pollutants with morbidity and mortality outcomes, and underscore the important detrimental effects of these pollutants on the lung. Interindividual variation in pulmonary responses to air pollutants suggests that some subpopulations are at increased risk to detrimental effects of pollutant exposure, and it has become clear that genetic background is an important susceptibility factor. A number of genetics and genomics tools have recently emerged to enable identification of genes that contribute to differential responsiveness to oxidants, including ozone (O(3)). Integrative omics approaches have been applied in inbred mice to identify genes that determine differential responsiveness to O(3)-induced injury and inflammation, including Tnf, Tlr4, and MHC Class II genes. Combined investigations across cell models, inbred mice, and humans have provided, and will continue to provide, important insight to understanding genetic factors that contribute to differential susceptibility to oxidants.
    Annals of the New York Academy of Sciences 08/2010; 1203:113-9. · 4.38 Impact Factor
  • Source
    Hye-Youn Cho, Steven R. Kleeberger
    Toxicology and Applied Pharmacology 08/2010; 246(3):186–187. · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ozone (O(3)) remains a prevalent air pollutant and public health concern. Inf2 is a significant quantitative trait locus on murine chromosome 17 that contributes to susceptibility to O(3)-induced infiltration of polymorphonuclear leukocytes (PMNs) into the lung, but the mechanisms of susceptibility remain unclear. The study objectives were to confirm and restrict Inf2, and to identify and test novel candidate susceptibility gene(s). Congenic strains of mice that contained overlapping regions of Inf2 and their controls, and mice deficient in either major histocompatibility complex (MHC) class II genes or the Tnf cluster, were exposed to air or O(3). Lung inflammation and gene expression were assessed. Inf2 was restricted from 16.42 Mbp to 0.96 Mbp, and bioinformatic analysis identified MHC class II, the Tnf cluster and other genes in this region that contain potentially informative single nucleotide polymorphisms between the susceptible and resistant mice. Furthermore, O(3)-induced inflammation was significantly reduced in mice deficient in MHC class II genes or the Tnf cluster genes, compared with wild-type controls. Gene expression differences were also observed in MHC class II and Tnf cluster genes. This integrative genetic analysis of Inf2 led to identification of novel O(3) susceptibility genes that may provide important, new therapeutic targets in susceptible individuals.
    European Respiratory Journal 08/2010; 36(2):428-37. · 6.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The rapid decline in the cost of dense genotyping is paving the way for new DNA sequence-based laboratory tests to move quickly into clinical practice, and to ultimately help realize the promise of 'personalized' therapies. These advances are based on the growing appreciation of genetics as an important dimension in science and the practice of investigative pharmacology and toxicology. On the clinical side, both the regulators and the pharmaceutical industry hope that the early identification of individuals prone to adverse drug effects will keep advantageous medicines on the market for the benefit of the vast majority of prospective patients. On the environmental health protection side, there is a clear need for better science to define the range and causes of susceptibility to adverse effects of chemicals in the population, so that the appropriate regulatory limits are established. In both cases, most of the research effort is focused on genome-wide association studies in humans where de novo genotyping of each subject is required. At the same time, the power of population-based preclinical safety testing in rodent models (e.g., mouse) remains to be fully exploited. Here, we highlight the approaches available to utilize the knowledge of DNA sequence and genetic diversity of the mouse as a species in mechanistic toxicology research. We posit that appropriate genetically defined mouse models may be combined with the limited data from human studies to not only discover the genetic determinants of susceptibility, but to also understand the molecular underpinnings of toxicity.
    Pharmacogenomics 08/2010; 11(8):1127-36. · 3.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ozone and lipopolysaccharide (LPS) are environmental pollutants with adverse health effects noted in both healthy and asthmatic individuals. The authors and others have shown that inhalation of ozone and LPS both induce airway neutrophilia. Based on these similarities, the authors tested the hypothesis that common biological factors determine response to these two different agents. Fifteen healthy, nonasthmatic volunteers underwent a 0.4 part per million ozone exposure for 2 h while performing intermittent moderate exercise. These same subjects underwent an inhaled LPS challenge with 20,000 LPS units of Clinical Center Reference LPS, with a minimum of 1 month separating these two challenge sessions. Induced sputum was obtained 24 h before and 4-6 h after each exposure session. Sputum was assessed for total and differential cell counts and expression of cell surface proteins as measured by flow cytometry. Sputum supernatants were assayed for cytokine concentration. Both ozone and LPS challenge augmented sputum neutrophils and subjects' responses were significantly correlated (R = .73) with each other. Ozone had greater overall influence on cell surface proteins by modifying both monocytes (CD14, human leukocyte antigen [HLA]-DR, CD11b) and macrophages (CD11b, HLA-DR) versus LPS where CD14 and HLA-DR were modified only on monocytes. However, LPS significantly increased interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha, with no significant increases seen after ozone challenge. Ozone and LPS exposure in healthy volunteers induce similar neutrophil responses in the airways; however, downstream activation of innate immune responses differ, suggesting that oxidant versus bacterial air pollutants may be mediated by different mechanisms.
    Inhalation Toxicology 07/2010; 22(8):648-56. · 1.89 Impact Factor
  • Source
    Hye-Youn Cho, Steven R. Kleeberger
    [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a ubiquitous master transcription factor that regulates antioxidant response elements (AREs)-mediated expression of antioxidant enzyme and cytoprotective proteins. In the unstressed condition, Kelch-like ECH-associated protein 1 (Keap1) suppresses cellular Nrf2 in cytoplasm and drives its proteasomal degradation. Nrf2 can be activated by diverse stimuli including oxidants, pro-oxidants, antioxidants, and chemopreventive agents. Nrf2 induces cellular rescue pathways against oxidative injury, abnormal inflammatory and immune responses, apoptosis, and carcinogenesis. Application of Nrf2 germ-line mutant mice has identified an extensive range of protective roles for Nrf2 in experimental models of human disorders in the liver, gastrointestinal tract, airway, kidney, brain, circulation, and immune or nerve system. In the lung, lack of Nrf2 exacerbated toxicity caused by multiple oxidative insults including supplemental respiratory therapy (e.g., hyperoxia, mechanical ventilation), cigarette smoke, allergen, virus, bacterial endotoxin and other inflammatory agents (e.g., carrageenin), environmental pollution (e.g., particles), and a fibrotic agent bleomycin. Microarray analyses and bioinformatic studies elucidated functional AREs and Nrf2-directed genes that are critical components of signaling mechanisms in pulmonary protection by Nrf2. Association of loss of function with promoter polymorphisms in NRF2 or somatic and epigenetic mutations in KEAP1 and NRF2 has been found in cohorts of patients with acute lung injury/acute respiratory distress syndrome or lung cancer, which further supports the role for NRF2 in these lung diseases. In the current review, we address the role of Nrf2 in airways based on emerging evidence from experimental oxidative disease models and human studies.
    Toxicology and Applied Pharmacology 04/2010; · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The NF-E2 related factor 2 (Nrf2)-antioxidant response element (ARE) pathway is essential for protection against oxidative injury and inflammation including hyperoxia-induced acute lung injury. Microarray expression profiling revealed that lung peroxisome proliferator activated receptor gamma (PPARgamma) induction is suppressed in hyperoxia-susceptible Nrf2-deficient (Nrf2(-/-)) mice compared with wild-type (Nrf2(+/+)) mice. PPARgamma has pleiotropic beneficial effects including antiinflammation in multiple tissues. We tested the hypothesis that PPARgamma is an important determinant of pulmonary responsivity to hyperoxia regulated by Nrf2. A computational bioinformatic method was applied to screen potential AREs in the Pparg promoter for Nrf2 binding. The functional role of a potential ARE was investigated by in vitro promoter analysis. A role for PPARgamma in hyperoxia-induced acute lung injury was determined by temporal silencing of PPARgamma via intranasal delivery of PPARgamma-specific interference RNA and by administration of a PPARgamma ligand 15-deoxy-Delta(12,14)-prostaglandin J(2) in mice. Deletion or site-directed mutagenesis of a potential ARE spanning -784/-764 sequence significantly attenuated hyperoxia-increased Pparg promoter activity in airway epithelial cells overexpressing Nrf2, indicating that the -784/-764 ARE is critical for Nrf2-regulated PPARgamma expression. Mice with decreased lung PPARgamma by specific interference RNA treatment had significantly augmented hyperoxia-induced pulmonary inflammation and injury. 15 Deoxy-Delta(12,14)-prostaglandin J(2) administration significantly reduced hyperoxia-induced lung inflammation and edema in Nrf2(+/+), but not in Nrf2(-/-) mice. Results indicate for the first time that Nrf2-driven PPARgamma induction has an essential protective role in pulmonary oxidant injury. Our observations provide new insights into the therapeutic potential of PPARgamma in airway oxidative inflammatory disorders.
    American Journal of Respiratory and Critical Care Medicine 03/2010; 182(2):170-82. · 11.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prior microarray studies of smokers at high risk for lung cancer have demonstrated that heterogeneity in bronchial airway epithelial cell gene expression response to smoking can serve as an early diagnostic biomarker for lung cancer. As a first step in applying functional genomic analysis to population studies, we have examined the relationship between gene expression variation and genetic variation in a central molecular pathway (NRF2-mediated antioxidant response) associated with smoking exposure and lung cancer. We assessed global gene expression in histologically normal airway epithelial cells obtained at bronchoscopy from smokers who developed lung cancer (SC, n = 20), smokers without lung cancer (SNC, n = 24), and never smokers (NS, n = 8). Functional enrichment analysis showed that the NRF2-mediated, antioxidant response element (ARE)-regulated genes, were significantly lower in SC, when compared with expression levels in SNC. Importantly, we found that the expression of MAFG (a binding partner of NRF2) was correlated with the expression of ARE genes, suggesting MAFG levels may limit target gene induction. Bioinformatically we identified single nucleotide polymorphisms (SNPs) in putative ARE genes and to test the impact of genetic variation, we genotyped these putative regulatory SNPs and other tag SNPs in selected NRF2 pathway genes. Sequencing MAFG locus, we identified 30 novel SNPs and two were associated with either gene expression or lung cancer status among smokers. This work demonstrates an analysis approach that integrates bioinformatics pathway and transcription factor binding site analysis with genotype, gene expression and disease status to identify SNPs that may be associated with individual differences in gene expression and/or cancer status in smokers. These polymorphisms might ultimately contribute to lung cancer risk via their effect on the airway gene expression response to tobacco-smoke exposure.
    PLoS ONE 01/2010; 5(8):e11934. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Therapeutic strategies exist for human pulmonary neoplasia, however due to the heterogeneity of the disease, most are not very effective. The innate immunity gene, toll-like receptor 4 (TLR4), protects against chronic pulmonary inflammation and tumorigenesis in mice, but the mechanism is unclear. This study was designed to identify TLR4-mediated gene expression pathways that may be used as prognostic indicators of susceptibility to lung tumorigenesis in mice and provide insight into the mechanism. Whole lung mRNA was isolated from C.C3H-Tlr4(Lps-d) (BALB(Lps-d); Tlr4 mutant) and BALB/c (Tlr4 normal) mice following butylated hydroxytoluene (BHT)-treatment (four weekly ip. injections; 150-200 mg/kg/each; "promotion"). mRNA from micro-dissected tumors (adenomas) and adjacent uninvolved tissue from both strains were also compared 27 wks after a single carcinogen injection (3-methylcholanthrene (MCA), 10 microg/g; "control") or followed by BHT (6 weekly ip. injections; 125-200 mg/kg/each; "progression"). Bronchoalveolar lavage fluid was analyzed for inflammatory cell content and total protein determination, a marker of lung hyperpermeability; inflammation was also assessed using immunohistochemical staining for macrophages (F4/80) and lymphocytes (CD3) in mice bearing tumors (progression). During promotion, the majority of genes identified in the BALB(Lps-d) compared to BALB/c mice (P < 0.05) were involved in epithelial growth factor receptor (EGFR) signaling (e.g. epiregulin (Ereg)), secreted phosphoprotein 1(Spp1)), which can lead to cell growth and eventual tumor development. Inflammation was significantly higher in BALB(Lps-d) compared to BALB/c mice during progression, similar to the observed response during tumor promotion in these strains. Increases in genes involved in signaling through the EGFR pathway (e.g. Ereg, Spp1) were also observed during progression in addition to continued inflammation, chemotactic, and immune response gene expression in the BALB(Lps-d) versus BALB/c mice (P < 0.05), which appears to provide more favorable conditions for cell growth and tumor development. In support of these findings, the BALB/c mice also had significantly reduced expression of many immune response and inflammatory genes in both the tumors and uninvolved tissue. This transcriptomic study determined the protective effect of TLR4 in lung carcinogenesis inhibition of multiple pathways including EGFR (e.g. Ereg), inflammatory response genes (e.g. Cxcl5), chemotaxis (e.g. Ccr1) and other cell proliferation genes (e.g. Arg1, Pthlh). Future studies will determine the utility of these pathways as indicators of immune system deficiencies and tumorigenesis.
    Molecular Cancer 11/2009; 8:107. · 5.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxygen supplementation is used as therapy to support critically ill patients with severe respiratory impairment. Although hyperoxia has been shown to enhance the lung susceptibility to subsequent bacterial infection, the mechanisms underlying enhanced susceptibility remain enigmatic. We have reported that disruption of NF-E2-related factor 2 (Nrf2), a master transcription regulator of various stress response pathways, enhances susceptibility to hyperoxia-induced acute lung injury in mice, and have also demonstrated an association between a polymorphism in the NRF2 promoter and increased susceptibility to acute lung injury. In this study, we show that Nrf2-deficient (Nrf2(-/-)) but not wild-type (Nrf2(+/+)) mice exposed to sublethal hyperoxia succumbed to death during recovery after Pseudomonas aeruginosa infection. Nrf2-deficiency caused persistent bacterial pulmonary burden and enhanced levels of inflammatory cell infiltration as well as edema. Alveolar macrophages isolated from Nrf2(-/-) mice exposed to hyperoxia displayed persistent oxidative stress and inflammatory cytokine expression concomitant with diminished levels of antioxidant enzymes, such as Gclc, required for glutathione biosynthesis. In vitro exposure of Nrf2(-/-) macrophages to hyperoxia strongly diminished their antibacterial activity and enhanced inflammatory cytokine expression compared with Nrf2(+/+) cells. However, glutathione supplementation during hyperoxic insult restored the ability of Nrf2(-/-) cells to mount antibacterial response and suppressed cytokine expression. Thus, loss of Nrf2 impairs lung innate immunity and promotes susceptibility to bacterial infection after hyperoxia exposure, ultimately leading to death of the host.
    The Journal of Immunology 10/2009; 183(7):4601-8. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The glutathione-S-transferase Mu 1 (GSTM1) null genotype has been reported to be a risk factor for acute respiratory disease associated with increases in ambient air ozone levels. Ozone is known to cause an immediate decrease in lung function and increased airway inflammation. However, it is not known whether GSTM1 modulates these ozone responses in vivo in human subjects. The purpose of this study was to determine whether the GSTM1 null genotype modulates ozone responses in human subjects. Thirty-five healthy volunteers were genotyped for the GSTM1 null mutation and underwent a standard ozone exposure protocol to determine whether lung function and inflammatory responses to ozone were different between the 19 GSTM1 wild type and 16 GSTM1 null volunteers. GSTM1 did not modulate lung function responses to acute ozone. Granulocyte influx 4 hours after challenge was similar between GSTM1 normal and null volunteers. However, GSTM1 null volunteers had significantly increased airway neutrophils 24 hours after challenge, as well as increased expression of HLA-DR on airway macrophages and dendritic cells. The GSTM1 null genotype is associated with increased airways inflammation 24 hours after ozone exposure, which is consistent with the lag time observed between increased ambient air ozone exposure and exacerbations of lung disease.
    The Journal of allergy and clinical immunology 09/2009; 124(6):1222-1228.e5. · 12.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxygen supplementation (e.g., hyperoxia) is used to support critically ill patients with noninfectious and infectious acute lung injury (ALI); however, hyperoxia exposure can potentially further contribute to and/or perpetuate preexisting ALI. Thus, developing novel therapeutic agents to minimize the side effects of hyperoxia is essential to improve the health of patients with severe ALI and respiratory dysfunction. We have previously shown that mice with a genetic disruption of the Nrf2 transcription factor, which squelches cellular stress by up-regulating the induction of several antioxidant enzymes and proteins, have greater susceptibility to hyperoxic lung injury. Moreover, we have recently demonstrated that Nrf2-deficiency impairs the resolution of lung injury and inflammation after nonlethal hyperoxia exposure. To test the hypothesis that amplification of endogenous Nrf2 activity would prevent or dampen ALI induced by hyperoxia. Methods: Here, we tested our hypothesis using a synthetic triterpenoid compound CDDO-imidazole (CDDO-Im) (1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole) in Nrf2-sufficient and Nrf2-deficient mice subjected to hyperoxia-induced ALI. We demonstrate that oral administration of CDDO-Im at a dose of 30 micromol/kg body weight during the hyperoxic exposure is sufficient to markedly attenuate hyperoxia-induced ALI in Nrf2-sufficient but not Nrf2-deficient mice. This protection by the CDDO-Im against hyperoxic insult was accompanied by increased levels of Nrf2-regulated cytoprotective gene expression and reduced levels of DNA damage in the lung. These results suggest that up-regulation of Nrf2 signaling by CDDO-Im or its analogs may provide a novel therapeutic strategy to minimize the adverse effects of hyperoxia.
    American Journal of Respiratory and Critical Care Medicine 09/2009; 180(9):867-74. · 11.04 Impact Factor
  • Source
    Anita J Reddy, Steven R Kleeberger
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute lung injury and acute respiratory distress syndrome are the result of intense inflammation in the lungs leading to respiratory failure. The causes of acute lung injury/acute respiratory distress syndrome are numerous (e.g., pneumonia, sepsis and trauma) but the reasons why certain individuals develop lung injury in response to these stimuli and others do not are not well understood. There is ample evidence in the literature that gene-host and gene-environment interactions may play a large role in the morbidity and mortality associated with this syndrome. In this review, we initially discuss methods for identification of candidate acute lung injury/acute respiratory distress syndrome susceptibility genes using a number of model systems including in vitro cell systems and inbred mice. We then describe examples of polymorphisms in genes that have been associated with the pathogenesis of acute lung injury/acute respiratory distress syndrome in human case-control studies. Systematic bench to bedside approaches to understand the genetic contribution to acute lung injury/acute respiratory distress syndrome have provided important insight to this complex disease and continuation of these investigations could lead to the development of novel prevention or intervention strategies.
    Pharmacogenomics 09/2009; 10(9):1527-39. · 3.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant tissue repair and persistent inflammation following oxidant-mediated acute lung injury (ALI) can lead to the development and progression of various pulmonary diseases, but the mechanisms underlying these processes remain unclear. Hyperoxia is widely used in the treatment of pulmonary diseases, but the effects of this oxidant exposure in patients undergoing recovery from ALI are not clearly understood. Nrf2 has emerged as a crucial transcription factor that regulates oxidant stress through the induction of several detoxifying enzymes and other proteins. Using an experimental model of hyperoxia-induced ALI, we have examined the role of oxidant stress in resolving lung injury and inflammation. We found that when exposed to sublethal (72 h) hyperoxia, Nrf2-deficient, but not wild-type mice, succumbed to death during recovery. When both genotypes were exposed to a shorter period of hyperoxia-induced ALI (48 h), the lungs of Nrf2-deficient mice during recovery exhibited persistent cellular injury, impaired alveolar and endothelial cell regeneration, and persistent cellular infiltration by macrophages and lymphocytes. Glutathione (GSH) supplementation in Nrf2-deficient mice immediately after hyperoxia remarkably restored their ability to recover from hyperoxia-induced damage in a manner similar to that of wild-type mice. Thus, the results of the present study indicate that the Nrf2-regulated transcriptional response and, particularly GSH synthesis, is critical for lung tissue repair and the resolution of inflammation in vivo and suggests that a dysfunctional Nrf2-GSH pathway may compromise these processes in vivo.
    The Journal of Immunology 07/2009; 182(11):7264-71. · 5.52 Impact Factor
  • Journal of Allergy and Clinical Immunology - J ALLERG CLIN IMMUNOL. 01/2009; 123(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute lung injury (ALI) is a syndrome with significant morbidity and mortality, but its genetic susceptibility is not clearly understood. In the present study, we characterized functional promoter single nucleotide polymorphisms (SNPs) in the phase II antioxidant gene NQO1 (NAD(P)H:quinone oxidoreductase1) to evaluate its role in susceptibility to ALI. Three previously uncharacterized SNPs in the NQO1 promoter were selected for investigation. Luciferase assays were performed using constructs of each promoter polymorphism to evaluate function. Functional SNPs were genotyped in a prospective cohort of major trauma patients (N = 264) and assessed for association with development of ALI. The A/C SNP at -1221 decreased in vitro transcription of NQO1 at baseline and after exposure to hyperoxia and other oxidant stressors. Patients heterozygous for the -1221 C allele were at significantly lesser risk of ALI after major trauma compared with patients with wild-type alleles, even after adjustment for APACHE III score, and mechanism of trauma [OR, 0.46 (95% CI 0.23, 0.90); P = 0.024]. This study demonstrated that the AC genotype at position -1221 in the NQO1 gene caused decreased transcription and was associated with a lower incidence of ALI following major trauma. These novel findings may have important implications in diseases with oxidant stress aetiologies.
    Journal of Cellular and Molecular Medicine 12/2008; 13(8B):1784-91. · 4.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory syncytial virus (RSV) is the most frequent cause of significant lower respiratory illness in infants and young children, but its pathogenesis is not fully understood. The transcription factor Nrf2 protects lungs from oxidative injury and inflammation via antioxidant response element (ARE)-mediated gene induction. The current study was designed to determine the role of Nrf2-mediated cytoprotective mechanisms in murine airway RSV disease. Nrf2-deficient (Nrf2(-/-)) and wild-type (Nrf2(+/+)) mice were intranasally instilled with RSV or vehicle. In a separate study, Nrf2(+/+) and Nrf2(-/-) mice were treated orally with sulforaphane (an Nrf2-ARE inducer) or phosphate-buffered saline before RSV infection. RSV-induced bronchopulmonary inflammation, epithelial injury, and mucus cell metaplasia as well as nasal epithelial injury were significantly greater in Nrf2(-/-) mice than in Nrf2(+/+) mice. Compared with Nrf2(+/+) mice, significantly attenuated viral clearance and IFN-gamma, body weight loss, heightened protein/lipid oxidation, and AP-1/NF-kappaB activity along with suppressed antioxidant induction was found in Nrf2(-/-) mice in response to RSV. Sulforaphane pretreatment significantly limited lung RSV replication and virus-induced inflammation in Nrf2(+/+) but not in Nrf2(-/-) mice. The results of this study support an association of oxidant stress with RSV pathogenesis and a key role for the Nrf2-ARE pathway in host defense against RSV.
    American Journal of Respiratory and Critical Care Medicine 11/2008; 179(2):138-50. · 11.04 Impact Factor

Publication Stats

4k Citations
750.30 Total Impact Points

Institutions

  • 2013
    • East Carolina University
      • Department of Physiology
      North Carolina, United States
  • 2002–2013
    • National Institutes of Health
      • Laboratory of Cell Biology
      Bethesda, MD, United States
  • 2001–2013
    • University of North Carolina at Charlotte
      • Department of Kinesiology
      Charlotte, NC, United States
  • 2005–2012
    • National Institute of Environmental Health Sciences
      • • Laboratory of Respiratory Biology (LRB)
      • • Laboratory of Molecular Genetics (LMG)
      Durham, North Carolina, United States
  • 2011
    • Vanderbilt University
      • Department of Pediatrics
      Nashville, MI, United States
  • 2009–2011
    • Michigan State University
      • Department of Pathobiology and Diagnostic Investigation
      East Lansing, MI, United States
    • Cleveland Clinic
      • Respiratory Institute
      Cleveland, OH, United States
  • 2004–2011
    • University of North Carolina at Chapel Hill
      • • Department of Medicine
      • • Department of Pediatrics
      • • Center for Environmental Medicine, Asthma and Lung Biology
      Chapel Hill, NC, United States
    • Howard University
      • Department of Pediatrics and Child Health
      Washington, West Virginia, United States
  • 2010
    • Research Triangle Park Laboratories, Inc.
      Raleigh, North Carolina, United States
  • 1996–2009
    • Johns Hopkins Bloomberg School of Public Health
      • Department of Environmental Health Sciences
      Baltimore, MD, United States
  • 1991–2009
    • Johns Hopkins University
      • • Department of Environmental Health Sciences
      • • Department of Medicine
      • • Department of Physiology
      Baltimore, MD, United States
  • 2008
    • Duke University Medical Center
      • Division of Pulmonary, Allergy, and Critical Care Medicine
      Durham, NC, United States
  • 2007
    • French Institute of Health and Medical Research
      Lutetia Parisorum, Île-de-France, France
    • University of Vermont
      • Department of Pathology
      Burlington, VT, United States
  • 2006–2007
    • Fundación Infant
      Buenos Aires, Buenos Aires F.D., Argentina
    • National Institute of Allergy and Infectious Diseases
      Maryland, United States
    • Unité Inserm U1077
      Caen, Lower Normandy, France
  • 1986–2001
    • Johns Hopkins Medicine
      • Department of Environmental Health Sciences
      Baltimore, MD, United States