Annelies Michiels

Free University of Brussels, Brussels, BRU, Belgium

Are you Annelies Michiels?

Claim your profile

Publications (19)90.1 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The limitations of highly active anti-retroviral therapy (HAART) have necessitated the development of alternative therapeutic strategies. One of the approaches that has gained prominence in recent years is therapeutic vaccination. We decided to assess the capacity of mature dendritic cells, derived from blood monocytes of HIV-1 infected patients, to generate functional T-cell responses. For this purpose, we constructed a chimeric mRNA encoding the proteins Tat, Rev and Nef. The TaReNef encoding information was linked to the HLA class II-targeting sequence of DC-LAMP. Broadly directed HIV-specific CD4(+) and CD8(+) cytotoxic T cells exhibiting a poly-functional cytokine secretion pattern were generated by co-culturing with autologous chimeric mRNA electroporated dendritic cells. Thus, administration of ex vivo generated dendritic cells expressing the early proteins Tat, Rev and Nef might offer a promising approach for therapeutic vaccination in HIV-1 infection.
    Vaccine 08/2008; 26(29-30):3735-41. · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antigen-loaded dendritic cells (DCs) have been intensively investigated as potential cellular antitumor vaccines. Several recent reports have indicated that loading DCs with whole tumor derived mRNA or defined tumor-antigen-encoding mRNA represents an effective nonviral strategy to stimulate T cell responses both for in vitro and in vivo models. Here, we describe the electroporation method as a tool for introducing in vitro transcribed capped mRNA into human DCs for tumor vaccination. We use MART-1/Melan-A as a model tumor-associated antigen for the generation of a DC-based vaccine against melanoma cancer. In addition to efficient antigen loading, it is important to obtain a maximal number of potent antigen-presenting cells. Another prerequisite for the development of a DC-based cancer vaccine is to obtain mature DCs. In this chapter, we describe the basic techniques required for the successful genetic modification of DCs by using the mRNA electroporation method.
    Methods in molecular biology (Clifton, N.J.) 02/2008; 423:155-63. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) are an attractive tool for immunomodulation, targeting mature DCs (mDCs) for immunization or immature/semimature DCs (iDCs) for tolerization. Therefore, introducing antigens into DCs has become a prime topic in various immunological disciplines. Numerous studies have shown that lentiviruses are an efficient vehicle for this purpose. This study evaluates the effects of lentiviral transduction on iDC activation. Immature DCs are efficiently transduced with increasing doses of lentivirus without affecting cell viability. Transduction at low multiplicities of infection (MOIs) did not result in phenotypical or functional maturation. Higher doses of lentivirus, however, resulted in upregulation of adhesion, costimulatory, and HLA molecules, as well as in increased allostimulatory capacity and secretion of interleukin (IL)-6, IL-8, and tumor necrosis factor-alpha. Production of IL-12 p70, IL-10, and interferon-alpha was observed only at extremely high doses. Protein kinase R phosphorylation on transduction at an MOI of 150 was demonstrated by Western blotting. A Toll-like receptor (TLR)-driven luciferase reporter assay showed dose-dependent activation of TLR2, TLR3, and TLR8, which was independent of the pseudotype, production, or transduction protocol and was abrogated on heat inactivation. These data show that lentiviral vectors provide not only the antigen but also appropriate activation signals to iDCs, favoring their use for immunotherapy and vaccine development.
    Human Gene Therapy 07/2007; 18(6):536-46. · 4.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The sixth report of the ESHRE PGD Consortium is presented, relating to cycles collected for the calendar year 2003 and follow-up of the pregnancies and babies born up to October 2004. Since the beginning of the data collections, there has been a steady rise in the number of cycles, pregnancies and babies reported. For this report, 50 centres participated, reporting on 2984 cycles, 501 pregnancies and 373 babies born. Five hundred and twenty-nine cycles were reported for chromosomal abnormalities, 516 cycles were reported for monogenic diseases, 137 cycles were reported for sexing for X-linked diseases, 1722 cycles were reported for preimplantation genetic screening (PGS) and 80 cycles were reported for social sexing. Data VI is compared to the cumulative data for data collections I-V.
    Human Reproduction 03/2007; 22(2):323-36. · 4.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The maturation state of dendritic cells (DCs) is an important determinant for the initiation and regulation of adaptive immune responses. In this study, we wanted to assess whether functional activation of human monocyte-derived DCs can be achieved by electroporation of an activation signal in the form of double-stranded (ds) RNA and whether simultaneous electroporation of the dsRNA with tumor antigen encoding mRNA can lead to the induction of a cytotoxic T-lymphocyte (CTL) response. Electroporation of immature DCs with poly(I:C(12)U), a dsRNA analogue, resulted in phenotypic as well as functional changes, indicative of DC maturation. Co-electroporation of DCs with both poly(I:C(12)U) and Melan-A/MART-1 encoding mRNA induced strong anti-Melan-A/MART-1 CD8(+) T-cell responses in vitro. Higher numbers of Melan-A/MART-1-specific CTLs were consistently obtained with poly(I:C(12)U)-activated DCs compared to DCs matured in the presence of an inflammatory cytokine cocktail. These results indicate that DC co-electroporation with both dsRNA and tumor antigen encoding mRNA induces fully activated and antigen-loaded DCs that promote antigen-specific CTL responses and may provide the basis for future immunotherapeutic strategies.
    Gene Therapy 08/2006; 13(13):1027-36. · 4.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients with recurrent IVF failure are defined as patients who are younger than 37 years and who had at least three consecutive unsuccessful IVF/intracytoplasmic sperm injection (ICSI) cycles with good quality embryos. These patients might be predisposed to chromosome errors in their embryos and therefore might benefit from preimplantation genetic diagnosis for aneuploidy screening (PGD-AS). This technique is, however, expensive and some normal embryos might be lost due to the error rate. The aim of this retrospective study was to define those patients who would benefit most from it. One hundred and twenty-one first PGD-AS cycles for recurrent IVF failure were analysed. The aneuploidy rate, 'no embryo transfer' rate, live birth rate per embryo transfer and implantation rate were respectively 48.3, 22.3, 29.7 and 19.5%. A multivariate logistic regression analysis gave us a predictive model demonstrating that to have a 90% probability of having an embryo transfer after PGD-AS, the patient should have at least 10 mature oocytes, eight normally fertilized oocytes and six embryos for biopsy. This study suggests that most patients with recurrent IVF failure may benefit from PGD-AS. Future studies, however, should more strictly define this heterogeneous group of patients, so that comparison is easier.
    Reproductive biomedicine online 04/2006; 12(3):334-9. · 2.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously described mRNA electroporation as an efficient gene delivery method to introduce tumor-antigens (Ag) into murine immature dendritic cells (DC). Here, we further optimize the protocol and evaluate the capacity of mRNA-electroporated DC as a vaccine for immunotherapy. First, the early DC maturation kinetics and the effect of different lipopolysaccharide incubation periods on the phenotypic maturation profile of DC are determined. Next, we show that either immature or mature DC are equally well electroporated and express and present the transgene at a comparable level after electroporation. We point out that the mRNA electroporation results in a negative effect on the interleukin (IL)-12p70, IL-6, and tumor necrosis factor-alpha secretion after maturation. Nevertheless, mRNA-electroporated DC induce an effective cytotoxic T lymphocyte (CTL) response in vivo. Mature electroporated DC are significantly more potent in eliciting an Ag-specific CD8+ CTL response compared to their immature electroporated counterparts. In addition, a significant improvement in CTL response is obtained both in the primary and in the memory effector phases when CD4+CD25+ regulatory T cells (Treg) are depleted in vivo prior to immunization. These findings are further substantiated in tumor protection experiments and hold convincing evidence for the merit of Treg cell depletion prior to immunization with mRNA-electroporated DC.
    Molecular Therapy 12/2005; 12(5):922-32. · 7.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DC) are professional antigen-presenting cells that are used in vaccine approaches to cancer. Classically, mature monocyte-derived DC are generated in vitro in the presence of interleukin (IL)-4, granulocyte macrophage-colony stimulating factor, and inflammatory cytokines (G4-DC). Recently, it has been described that DC can also be generated in the presence of IL-3 and interferon (IFN)-beta and that these DC are efficiently matured using polyriboinosinic polyribocytidylic acid (I3-DC). In this study, a series of in vitro experiments was performed to compare side-by-side I3-DC and G4-DC as vaccine adjuvants. Phenotypic characterization of the DC revealed differences in the expression of the monocyte marker CD14 and the maturation marker CD83. Low expression of CD14 and high expression of CD83 characterized G4-DC, whereas I3-DC displayed intermediate expression of CD14 and CD83. Both types of DC were as potent in the induction of allogeneic T cell proliferation. Upon CD40 ligation, G4-DC produced lower amounts of IFN-alpha and pulmonary and activation-regulated chemokine, similar amounts of IL-6, macrophage-inflammatory protein (MIP)-1alpha, and MIP-1beta, and higher amounts of IL-12 p70, tumor necrosis factor alpha, and MIP-3beta than I3-DC. We further evaluated whether the DC could be frozen/thawed without loss of cell number, viability, phenotype, and function. After freezing/thawing, 56.0% +/- 9.0% of I3-DC and 77.0% +/- 3.0% of G4-DC (n=9) were recovered as viable cells, displaying the same phenotype as their fresh counterparts. Finally, in vitro stimulations showed that fresh and frozen peptide-loaded I3-DC are more potent inducers of Melan-A-specific CD8(+) T cell responses than G4-DC. The antigen-specific T cells were functional as shown in cytotoxicity and IFN-gamma secretion assay.
    Journal of Leukocyte Biology 11/2005; 78(4):898-908. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Until now, studies utilizing mRNA electroporation as a tool for the delivery of tumor antigens to human monocyte-derived dendritic cells (DC) have focused on DC electroporated in an immature state. Immature DC are considered to be specialized in antigen capture and processing, whereas mature DC present antigen and have an increased T-cell stimulatory capacity. Therefore, the consensus has been to electroporate DC before maturation. We show that the transfection efficiency of DC electroporated either before or after maturation was similarly high. Both immature and mature electroporated DC, matured in the presence of an inflammatory cytokine cocktail, expressed mature DC surface markers and preserved their capacity to secrete cytokines and chemokines upon CD40 ligation. In addition, both immature and mature DC can be efficiently cryopreserved before or after electroporation without deleterious effects on viability, phenotype or T-cell stimulatory capacity including in vitro antigen-specific T-cell activation. However, DC electroporated after maturation are more efficient in in vitro migration assays and at least as effective in antigen presentation as DC electroporated before maturation. These results are important for vaccination strategies where an optimal antigen presentation by DC after migration to the lymphoid organs is crucial.Keywords: dendritic cells, mRNA electroporation, antigen presentation, cancer immunotherapy
    Gene Therapy 03/2005; 12(9):772-782. · 4.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ESHRE PGD Consortium was formed in 1997 to survey the practice of preimplantation genetic diagnosis (PGD). Since then, three reports have been published giving an overview on PGD from an ever-increasing number of centres and reporting on an increasing number of PGD cycles and pregnancies and babies born after PGD. After these initial influential publications, important shortcomings were identified primarily on the method of data collection, i.e. with Excel spreadsheets, and in the timing of the collection (cycles were collected in a different time frame from pregnancies and babies, making the follow-up of cycles very difficult). This is why the Steering Committee has made a major investment in developing and implementing a new database in FileMaker Pro 6. It was also decided that cycles would be collected from one calendar year, as well as the pregnancies and babies ensuing from that particular calendar year. This gave us the opportunity to take a closer look at the data collected earlier, and to attempt to improve their quality. This is a report on the corrected data from the first three data collections (I-III) as well as the result of the last data collection (IV) that was completely carried out using the new database.
    Human Reproduction 02/2005; 20(1):19-34. · 4.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of tumor antigen-loaded dendritic cells (DC) is one of the most promising approaches to inducing a tumor-specific immune response. We compared electroporation of mRNA to lentiviral transduction for the delivery of tumor antigens to human monocyte-derived and murine bone marrow-derived DC. Both lentiviral transduction and mRNA electroporation induced eGFP expression in on average 81% of human DC. For murine DC, eGFP mRNA electroporation (62%) proved to be more efficient than lentiviral transduction (47%). When we used tNGFR as a transgene we observed lentiviral pseudotransduction that overestimated lentiviral efficiency. Neither gene transfer method had an adverse effect on viability, phenotype, or allostimulatory capacity of either human or murine DC. Yet, the mRNA-electroporated DC showed a reduced production of IL-12p70 compared to their lentivirally transduced and unmodified counterparts. Human Ii80MAGE-A3-modified DC and murine Ii80tOVA-modified DC were able to present antigenic epitopes in the context of MHC class I and class II. Both types of modified murine DC were able to induce OVA-specific cytotoxic T cells in vivo; however, the mRNA-electroporated DC were less potent. Our data indicate that this may be related to their impaired IL-12 production.
    Molecular Therapy 11/2004; 10(4):768-79. · 7.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of ICSI has been a major breakthrough in the treatment of male infertility. Even azoospermic patients with focal spermatogenesis in the testis (not sufficient to spill over into the ejaculate) may benefit from the technique. Previous reports suggest a higher pregnancy rate after ICSI treatment in patients with obstructive azoospermia (OA) compared to their non-obstructive azoospermia (NOA) counterparts, which could be due to a higher aneuploidy frequency in the embryos of the latter group. We therefore conducted a prospective cohort study to compare the aneuploidy frequency of the screened embryos between the two groups. From May 2001 until September 2003, we offered couples with an OA or NOA partner ICSI in combination with preimplantation genetic diagnosis for aneuploidy screening. No difference in age (30.6 and 33.5 years) or stimulation parameters was observed between the two groups; 53 and 60% of the embryos were abnormal in the NOA and OA groups respectively (P = not significant). The aneuploidy frequency in embryos obtained from NOA as well as OA men is similar and very high, despite the young age of their female partners.
    Human Reproduction 08/2004; 19(7):1570-4. · 4.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An optimal anticancer vaccine probably requires the cooperation of both CD4(+) Th cells and CD8(+) CTLs. A promising tool in cancer immunotherapy is, therefore, the genetic modification of dendritic cells (DCs) by introducing the coding region of a tumor Ag, of which the antigenic peptides will be presented in both HLA class I and class II molecules. This can be achieved by linking the tumor Ag to the HLA class II-targeting sequence of an endosomal or lysosomal protein. In this study we compared the efficiency of the targeting signals of invariant chain, lysosome-associated membrane protein-1 (LAMP1) and DC-LAMP. Human DCs were electroporated before or after maturation with mRNA encoding unmodified enhanced green fluorescent protein (eGFP) or eGFP linked to various targeting signals. The lysosomal degradation inhibitor chloroquine was added, and eGFP expression was evaluated at different time points after electroporation. DCs were also electroporated with unmodified MAGE-A3 or MAGE-A3 linked to the targeting signals, and the presentation of MAGE-A3-derived epitopes in the context of HLA class I and class II molecules was investigated. Our data suggest that proteins linked to the different targeting signals are targeted to the lysosomes and are indeed presented in the context of HLA class I and class II molecules, but with different efficiencies. Proteins linked to the LAMP1 or DC-LAMP signal are more efficiently presented than proteins linked to the invariant chain-targeting signal. Furthermore, DCs electroporated after maturation are more efficient in Ag presentation than DCs electroporated before maturation.
    The Journal of Immunology 07/2004; 172(11):6649-57. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we compared dendritic cells (DCs) differentiated from positively selected monocytes (CD14-DCs) to DCs differentiated from adherence-selected monocytes (adh-DCs) with emphasis on lentiviral transduction. Using a second-generation, triple-helix containing, self-inactivating lentiviral vector at a multiplicity of infection (MOI) of 15, we observed enhanced transduction of CD14-DCs (72.8 +/- 5.3%, mean fluorescence intensity [MFI] = 166 +/- 76) compared to adh-DCs (32.3 +/- 13.1%, MFI = 119 +/- 76, n = 5). More importantly, the efficiency to transduce adh-DCs was significantly increased when monocytes were incubated with antiCD14 antibody coupled beads, anti-CD14 antibodies, or lipopolysaccharide (LPS), reaching transduction efficiencies up to 86.6%, 53.3%, and 80.9%, respectively. We showed that this enhanced transduction was correlated to an activation of the monocytes, characterized by the up regulation of the cytokines interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha and the de novo synthesis of IL-6 and IL-10. However, the enhanced transduction of immature CD14-DCs was not correlated with a progression in the cell cycle from G(0) to G(1). We further showed that CD14-DCs were phenotypically comparable to adh-DCs. Functional analysis revealed that there were no differences in allostimulatory capacity, production of IL-12 p70 on CD40 ligation or expression of IL-1beta, IL-6, IL-8, IL-10, IL-12, and TNF-alpha as evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR). Finally, we showed that lentivirally transduced CD14-DCs were equally capable as adh-DCs in stimulating MAGE-A3 antigen-specific CD4(+) and CD8(+) T cells in vitro.
    Human Gene Therapy 07/2004; 15(6):562-73. · 4.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Establishing a successful method for testicular stem cell transplantation of frozen-thawed testicular cells would be of immense benefit to boys with childhood cancer undergoing a sterilizing treatment. In this study, we evaluated different cryopreservation protocols in a mouse model by means of testicular germ cell transplantation (TGCT), in order to establish an optimal freezing protocol. In a first series of experiments, we compared an uncontrolled protocol with 1.5 mol/l dimethyl sulphoxide (DMSO) versus a controlled long protocol (cooling to -80 degrees C) and observed a better viability with the latter protocol (36% versus 48%, P < 0.05). We then compared survival after two thawing methods (37 degrees C water versus ice water) in either a DMSO- or an ethylene glycol (EG)-based protocol, and found no difference. In order to evaluate the functional capacity of the cryopreserved testicular suspension, TGCT was performed with both fresh and frozen-thawed suspensions. In 90% of the successfully injected testes, spermatogenesis was reinitiated using fresh suspensions. In contrast, this figure was only 12.5 and 22.7% after cryopreservation, for the short controlled EG protocol and the uncontrolled DMSO protocol, respectively. Reinitiation of spermatogenesis is possible after cryopreservation of testicular germ cell suspensions. Although cell survival was acceptable, our results after TGCT show that our protocols need further improvement.
    Human Reproduction 05/2004; 19(4):948-53. · 4.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For the induction of an optimal immune response against cancer or infections not only CD8(+) CTLs but also CD4(+) T helper cells must be induced, in particular IFN-gamma-secreting type 1 T helper cells. Several strategies have been explored to target tumor-associated antigens to the HLA class II processing compartments. We engineered a genetic construct encoding an invariant chain (Ii) protein where the CLIP region has been replaced by sequences encoding HLA class II-restricted MAGE-A3 epitopes. Monocyte-derived dendritic cells (DCs) were electroporated with in vitro transcribed mRNA encoding a modified Ii protein containing the HLA-DP4-restricted MAGE-A3 epitope. The capacity of these electroporated DCs to stimulate a MAGE-A3-specific T-cell clone was compared at different stages of DC maturation with the T-cell stimulatory capacity of DCs pulsed with the synthetic peptide. After electroporation, the T-cell stimulatory capacity was shown to be high and long lasting, whereas the stimulatory capacity of peptide-pulsed DCs decreased rapidly. Upon coculture with epitope-specific T cells, electroporated immature DCs expressed enhanced levels of costimulatory molecules, HLA class II molecules, and CD83, suggesting the induction of maturation. The electroporated DCs can be frozen and thawed without losing their capability to stimulate the specific T-cell clone in vitro, and they are able to stimulate unprimed CD4(+) T cells specific to the HLA-DP4-restricted MAGE-A3 epitope in vitro. Similar results were obtained with a recombinant Ii containing the MAGE-A3 epitope presented in the context of HLA-DR13.
    Cancer Research 10/2003; 63(17):5587-94. · 8.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetically modified dendritic cells (DC) constitute a promising approach in cancer immunotherapy. Viral gene delivery systems have been shown to be very efficient strategies, but safety concerns for their clinical use in immunotherapy remain an important issue. Recently, the technique of mRNA electroporation was described as a very efficient tool for the genetic modification of human monocyte-derived DC. Here, we show that transgene expression can be modulated by varying the amount of mRNA used for electroporation. We document that CD40 ligation leads to a significant production of IL-12 by the electroporated DC, although the level of IL-12 production is somewhat lower than for non- or mock-electroporated DC. Furthermore, we show that the electroporated DC can be frozen and thawed without loss of viability or function and that Influenza virus Matrix Protein 1 mRNA electroporated DC are capable of inducing a memory cytotoxic T lymphocyte response and are more potent in doing so than mRNA-pulsed DC. Similar results were obtained with MelanA/MART-1 mRNA electroporated DC. These results clearly indicate that mRNA-electroporated DC represent powerful candidates for use as tumor vaccines and could constitute an improvement compared with vaccines using peptide-pulsed DC.
    Cancer Gene Therapy 10/2003; 10(9):696-706. · 2.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of ICSI has been a major breakthrough in the treatment of male infertility. Even azoospermic patients with focal spermatogenesis in the testis, may benefit from the ICSI technique in order to father a child. As ICSI use has become more common, centres have introduced infertility treatment for Klinefelter patients. To date, 34 healthy children have been born using ICSI without PGD, and the conception of one 47,XXY fetus has been reported. In view of the possible risk of an increased gonosome number in the spermatozoa of Klinefelter patients, a safer approach--offering these couples ICSI combined with PGD--has been used, and has resulted in the birth of three healthy children. Couples in which the male suffered from Klinefelter's syndrome were first treated in 1995; these patients were offered ICSI + PGD using FISH technology, notably to enumerate the X and Y chromosomes. ICSI + PGD was performed in 32 cycles of 20 couples with spermatozoa originating from a fresh ejaculate (n = 1), testicular biopsy (n = 21) or frozen-thawed testicular biopsy (n = 10). Normal fertilization occurred in 56.0 +/- 22.4% of the successfully injected oocytes. On day 3 of development, 119 embryos from 29 cycles were of sufficient quality to undergo biopsy and subsequent PGD; a positive result was obtained in 113 embryos. Embryos were available for transfer in 26 cycles, with a mean of 1.6 +/- 0.6 embryos per transfer. Eight pregnancies were obtained, and five resulted in a delivery. A total of 113 embryos from couples with Klinefelter's syndrome was compared with 578 embryos from control couples with X-linked disease where PGD was used to determine gender. A significant fall occurred in the rate of normal embryos for couples with Klinefelter's syndrome (54.0%) compared with controls (77.2%). Moreover, a significantly increased risk of abnormalities was observed for sex chromosomes and autosomes; for each autosome separately, this reached significance level for chromosomes 18 and 21 only. Hence, a cautious approach is warranted in advising couples with non-mosaic Klinefelter's syndrome. Moreover, the use of ICSI + PGD or prenatal diagnosis should be carefully considered.
    Human Reproduction Update 01/2003; 9(4):319-30. · 8.85 Impact Factor
  • Reproductive biomedicine online 4:27. · 2.68 Impact Factor