Je-In Youn

Wistar Institute, Filadelfia, Pennsylvania, United States

Are you Je-In Youn?

Claim your profile

Publications (24)211.37 Total impact

  • 11/2014; 2(Suppl 3):P241-P241. DOI:10.1186/2051-1426-2-S3-P241
  • Source
    11/2014; 2(Suppl 3):P173-P173. DOI:10.1186/2051-1426-2-S3-P173
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulation of pathologically activated immature myeloid cells with potent immune-suppressive activity is one of the major immunological hallmarks of cancer. In recent years, it became clear that in addition to their immune-suppressive activity, myeloid-derived suppressor cells (MDSCs) influence tumor progression in a variety of ways. They are directly implicated in the promotion of tumor metastases by participating in the formation of premetastatic niches, promoting angiogenesis and tumor cell invasion. In this review, we discuss recent data describing various roles of MDSCs in the formation of tumor metastases. Expected final online publication date for the Annual Review of Medicine Volume 66 is January 14, 2015. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Medicine 10/2014; 66(1). DOI:10.1146/annurev-med-051013-052304 · 15.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myeloid-derived suppressor cells (MDSCs), a heterogeneous population of cells capable of suppressing anti-tumor T cell function in the tumor microenvironment, represent an imposing obstacle in the development of cancer immunotherapeutics. Thus, identifying elements essential to the development and perpetuation of these cells will undoubtedly improve our ability to circumvent their suppressive impact. HDAC11 has emerged as a key regulator of IL-10 gene expression in myeloid cells, suggesting that this may represent an important targetable axis through which to dampen MDSC formation. Using a murine transgenic reporter model system where eGFP expression is controlled by the HDAC11 promoter (Tg-HDAC11-eGFP), we provide evidence that HDAC11 appears to function as a negative regulator of MDSC expansion/function in vivo. MDSCs isolated from EL4 tumor-bearing Tg-HDAC11-eGFP display high expression of eGFP, indicative of HDAC11 transcriptional activation at steady state. In striking contrast, immature myeloid cells in tumor-bearing mice display a diminished eGFP expression, implying that the transition of IMC to MDSC’s require a decrease in the expression of HDAC11, where we postulate that it acts as a gate-keeper of myeloid differentiation. Indeed, tumor-bearing HDAC11-knockout mice (HDAC11-KO) demonstrate a more suppressive MDSC population as compared to wild-type (WT) tumor-bearing control. Notably, the HDAC11-KO tumor-bearing mice exhibit enhanced tumor growth kinetics when compare to the WT control mice. Thus, through a better understanding of this previously unknown role of HDAC11 in MDSC expansion and function, rational development of targeted epigenetic modifiers may allow us to thwart a powerful barrier to efficacious immunotherapies.
    Molecular Immunology 08/2014; 63(2). DOI:10.1016/j.molimm.2014.08.002 · 3.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myeloid-derived suppressor cells (MDSCs) dampen the immune response thorough inhibition of T cell activation and proliferation and often are expanded in pathological conditions. Here, we studied the fate of MDSCs in cancer. Unexpectedly, MDSCs had lower viability and a shorter half-life in tumor-bearing mice compared with neutrophils and monocytes. The reduction of MDSC viability was due to increased apoptosis, which was mediated by increased expression of TNF-related apoptosis-induced ligand receptors (TRAIL-Rs) in these cells. Targeting TRAIL-Rs in naive mice did not affect myeloid cell populations, but it dramatically reduced the presence of MDSCs and improved immune responses in tumor-bearing mice. Treatment of myeloid cells with proinflammatory cytokines did not affect TRAIL-R expression; however, induction of ER stress in myeloid cells recapitulated changes in TRAIL-R expression observed in tumor-bearing hosts. The ER stress response was detected in MDSCs isolated from cancer patients and tumor-bearing mice, but not in control neutrophils or monocytes, and blockade of ER stress abrogated tumor-associated changes in TRAIL-Rs. Together, these data indicate that MDSC pathophysiology is linked to ER stress, which shortens the lifespan of these cells in the periphery and promotes expansion in BM. Furthermore, TRAIL-Rs can be considered as potential targets for selectively inhibiting MDSCs.
    The Journal of clinical investigation 05/2014; 124(6). DOI:10.1172/JCI74056 · 13.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Functionally altered myeloid cells play an important role in immune suppression in cancer, in angiogenesis, and in tumor cells' invasion and metastases. Here, we report that inhibition of Notch signaling in hematopoietic progenitor cells (HPC), myeloid-derived suppressor cells (MDSC), and dendritic cells (DC) is directly involved in abnormal myeloid cell differentiation in cancer. Inhibition of Notch signaling was caused by the disruption of the interaction between Notch receptor and transcriptional repressor CSL, which is normally required for efficient transcription of target genes. This disruption was the result of serine phosphorylation of Notch. We demonstrated that increased activity of caseine kinase 2 (CK2) observed in HPC and in MDSC could be responsible for the phosphorylation of Notch and down-regulation of Notch signaling. Inhibition of CK2 by siRNA or by pharmacological inhibitor restored Notch signaling in myeloid cells and substantially improved their differentiation, both in vitro and in vivo. This study demonstrates a novel mechanism regulation of Notch signaling in cancer. This may suggest a new perspective for pharmacological regulation of differentiation of myeloid cells in cancer.
    Cancer Research 11/2013; 74(1). DOI:10.1158/0008-5472.CAN-13-1686 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myelodysplastic syndromes (MDS) are age-dependent stem cell malignancies that share biological features of activated adaptive immune response and ineffective hematopoiesis. Here we report that myeloid-derived suppressor cells (MDSC), which are classically linked to immunosuppression, inflammation, and cancer, were markedly expanded in the bone marrow of MDS patients and played a pathogenetic role in the development of ineffective hematopoiesis. These clonally distinct MDSC overproduce hematopoietic suppressive cytokines and function as potent apoptotic effectors targeting autologous hematopoietic progenitors. Using multiple transfected cell models, we found that MDSC expansion is driven by the interaction of the proinflammatory molecule S100A9 with CD33. These 2 proteins formed a functional ligand/receptor pair that recruited components to CD33's immunoreceptor tyrosine-based inhibition motif (ITIM), inducing secretion of the suppressive cytokines IL-10 and TGF-β by immature myeloid cells. S100A9 transgenic mice displayed bone marrow accumulation of MDSC accompanied by development of progressive multilineage cytopenias and cytological dysplasia. Importantly, early forced maturation of MDSC by either all-trans-retinoic acid treatment or active immunoreceptor tyrosine-based activation motif-bearing (ITAM-bearing) adapter protein (DAP12) interruption of CD33 signaling rescued the hematologic phenotype. These findings indicate that primary bone marrow expansion of MDSC driven by the S100A9/CD33 pathway perturbs hematopoiesis and contributes to the development of MDS.
    The Journal of clinical investigation 10/2013; 123(11). DOI:10.1172/JCI67580 · 13.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells that play a major role in the regulation of immune responses in many pathological conditions. These cells have a common myeloid origin, relatively immature state, common genetic and biochemical profiles, and, most importantly, the ability to inhibit immune responses. Although initial studies of MDSCs were almost exclusively performed in tumor-bearing mice or cancer patients, in recent years, it became clear that MDSCs play a critical role in the regulation of different types of inflammation that are not directly associated with cancer. In this review we discuss the nature of the complex relationship between MDSCs and the different populations of CD4(+) T cells.
    The Journal of Immunology 07/2013; 191(1):17-23. DOI:10.4049/jimmunol.1300654 · 5.36 Impact Factor
  • Source
    Je-In Youn · Dmitry I Gabrilovich
    Cell cycle (Georgetown, Tex.) 04/2013; 12(9). DOI:10.4161/cc.24577 · 5.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two major populations of myeloid-derived suppressor cells (MDSCs), monocytic MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs) regulate immune responses in cancer and other pathologic conditions. Under physiologic conditions, Ly6C(hi)Ly6G(-) inflammatory monocytes, which are the normal counterpart of M-MDSCs, differentiate into macrophages and dendritic cells. PMN-MDSCs are the predominant group of MDSCs that accumulates in cancer. Here we show that a large proportion of M-MDSCs in tumor-bearing mice acquired phenotypic, morphological and functional features of PMN-MDSCs. Acquisition of this phenotype, but not the functional attributes of PMN-MDSCs, was mediated by transcriptional silencing of the retinoblastoma gene through epigenetic modifications mediated by histone deacetylase 2 (HDAC-2). These data demonstrate a new regulatory mechanism of myeloid cells in cancer.
    Nature Immunology 01/2013; 14(3). DOI:10.1038/ni.2526 · 24.97 Impact Factor
  • Cancer Research 04/2012; 72(8 Supplement):5411-5411. DOI:10.1158/1538-7445.AM2012-5411 · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myeloid-derived suppressor cells (MDSC) play a major role in cancer-related immune suppression, yet the nature of this suppression remains controversial. In this study, we evaluated the ability of MDSCs to elicit CD4(+) T-cell tolerance in different mouse tumor models. In contrast to CD8(+) T-cell tolerance, which could be induced by MDSCs in all the tumor models tested, CD4(+) T-cell tolerance could be elicited in only one of the models (MC38) in which a substantial level of MHC class II was expressed on MDSCs compared with control myeloid cells. Mechanistic investigations revealed that MDSCs deficient in MHC class II could induce tolerance to CD8(+) T cells but not to CD4(+) T cells. Unexpectedly, antigen-specific CD4(+) T cells (but not CD8(+) T cells) could dramatically enhance the immune suppressive activity of MDSCs by converting them into powerful nonspecific suppressor cells. This striking effect was mediated by direct cell-cell contact through cross-linking of MHC class II on MDSCs. We also implicated an Ets-1 transcription factor-regulated increase in expression of Cox-2 and prostaglandin E2 in MDSCs in mediating this effect. Together, our findings suggest that activated CD4(+) T cells that are antigen specific may enhance the immune suppressive activity of MDSCs, a mechanism that might serve normally as a negative feedback loop to control immune responses that becomes dysregulated in cancer.
    Cancer Research 02/2012; 72(4):928-38. DOI:10.1158/0008-5472.CAN-11-2863 · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MDSCs are a group of cells with potent immune-suppressive activity. These cells accumulate in many pathologic conditions and play a major role in the regulation of immune responses. The nature of MDSC remains highly debatable. In cancer, most MDSCs are represented by cells with granulocytic phenotype and morphology, G-MDSC. The relationship between G-MDSCs and Neu remains unclear. In this study, we have found that G-MDSCs, from tumor-bearing, and Neu, from tumor-free, mice share a common morphology and phenotype. However, in contrast to Neu, a substantial proportion of G-MDSCs expressed M-CSFR and a CD244 molecule. Neu had significantly higher phagocytic activity, expression of lysosomal proteins, and TNF-α than corresponding G-MDSCs, which had significantly higher activity of arginase, MPO, and ROS. In contrast to G-MDSC, neither rested nor mobilized Neu suppressed T cells. G-MDSC survived 2 days in culture in the presence of GM-CSF and within 24 h, became phenotypic and functionally similar to Neu. Tumor-associated G-MDSC shared most characteristics of splenic G-MDSC, rather then Neu. These data suggest that in cancer, despite morphological and phenotypic similarities, G-MDSCs are functionally distinct from Neu and are comprised of pathologically activated precursors of Neu.
    Journal of leukocyte biology 09/2011; 91(1):167-81. DOI:10.1189/jlb.0311177 · 4.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer immunotherapeutic approaches induce tumor-specific immune responses, in particular CTL responses, in many patients treated. However, such approaches are clinically beneficial to only a few patients. We set out to investigate one possible explanation for the failure of CTLs to eliminate tumors, specifically, the concept that this failure is not dependent on inhibition of T cell function. In a previous study, we found that in mice, myeloid-derived suppressor cells (MDSCs) are a source of the free radical peroxynitrite (PNT). Here, we show that pre-treatment of mouse and human tumor cells with PNT or with MDSCs inhibits binding of processed peptides to tumor cell-associated MHC, and as a result, tumor cells become resistant to antigen-specific CTLs. This effect was abrogated in MDSCs treated with a PNT inhibitor. In a mouse model of tumor-associated inflammation in which the antitumor effects of antigen-specific CTLs are eradicated by expression of IL-1β in the tumor cells, we determined that therapeutic failure was not caused by more profound suppression of CTLs by IL-1β-expressing tumors than tumors not expressing this proinflammatory cytokine. Rather, therapeutic failure was a result of the presence of PNT. Clinical relevance for these data was suggested by the observation that myeloid cells were the predominant source of PNT in human lung, pancreatic, and breast cancer samples. Our data therefore suggest what we believe to be a novel mechanism of MDSC-mediated tumor cell resistance to CTLs.
    The Journal of clinical investigation 09/2011; 121(10):4015-29. DOI:10.1172/JCI45862 · 13.77 Impact Factor
  • Cancer Research 04/2011; 71(8 Supplement):3646-3646. DOI:10.1158/1538-7445.AM2011-3646 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence suggests that regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSC) are elevated in cancer patients and tumor-bearing hosts, and that depletion of Tregs and MDSC may enhance the anti-tumor immunity of the host. Sorafenib, a novel multi-kinase inhibitor, is approved for the treatment of several human cancers, including advanced hepatocellular carcinoma (HCC). Sorafenib is believed to inhibit tumor growth via anti-angiogenesis, cell cycle arrest, and inducing apoptosis. However, the impact of Sorafenib on immune cell populations in tumor-bearing hosts is unclear. In this report, we show that Tregs and MDSC are increased in the spleens and bone marrows of the BALB/c mice with liver hepatoma. The increase in Tregs and MDSC was positively correlated with tumor burden. Treatment of Sorafenib not only inhibited HCC cell growth in mice but also significantly decreased the suppressive immune cell populations: Tregs and MDSC. In conclusion, our study strongly suggests that Sorafenib can enhance anti-tumor immunity via modulating immunosuppressive cell populations in the murine liver cancer model.
    Laboratory Investigation 02/2011; 91(4):598-608. DOI:10.1038/labinvest.2010.205 · 3.83 Impact Factor
  • Source
    Je-In Youn · Dmitry I Gabrilovich
    [Show abstract] [Hide abstract]
    ABSTRACT: Myeloid-derived suppressor cells (MDSC) play an important role in the cellular network regulating immune responses in cancer, chronic infectious diseases, autoimmunity, and in other pathological conditions. Morphological, phenotypic and functional heterogeneity is a hallmark of MDSC. This heterogeneity demonstrates the plasticity of this immune suppressive myeloid compartment, and shows how various tumors and infectious agents can have similar biological effects on myeloid cells despite the differences in the factors that they produce to influence the immune system; however, such a heterogeneity creates ambiguity in the definition of MDSC as well as confusion regarding the origin and fate of these cells. In this review, we will discuss recent findings that help to better clarify these issues and to determine the place of MDSC within the myeloid cell lineage.
    European Journal of Immunology 11/2010; 40(11):2969-75. DOI:10.1002/eji.201040895 · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myeloid-derived suppressor cells (MDSCs) are a major component of the immune-suppressive network described in cancer and many other pathological conditions. We demonstrate that although MDSCs from peripheral lymphoid organs and the tumor site share similar phenotype and morphology, these cells display profound functional differences. MDSC from peripheral lymphoid organs suppressed antigen-specific CD8(+) T cells but failed to inhibit nonspecific T cell function. In sharp contrast, tumor MDSC suppressed both antigen-specific and nonspecific T cell activity. The tumor microenvironment caused rapid and dramatic up-regulation of arginase I and inducible nitric oxide synthase in MDSC, which was accompanied by down-regulation of nicotinamide adenine dinucleotide phosphate-oxidase and reactive oxygen species in these cells. In contrast to MDSC from the spleen, MDSC from the tumor site rapidly differentiated into macrophages. Exposure of spleen MDSC to hypoxia resulted in the conversion of these cells to nonspecific suppressors and their preferential differentiation to macrophages. Hypoxia-inducible factor (HIF) 1α was found to be primarily responsible for the observed effects of the tumor microenvironment on MDSC differentiation and function. Thus, hypoxia via HIF-1α dramatically alters the function of MDSC in the tumor microenvironment and redirects their differentiation toward tumor-associated macrophages, hence providing a mechanistic link between different myeloid suppressive cells in the tumor microenvironment.
    Journal of Experimental Medicine 09/2010; 207(11):2439-53. DOI:10.1084/jem.20100587 · 13.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myeloid-derived suppressor cells (MDSC) are one of the major factors responsible for immune suppression in cancer. Therefore, it would be important to identify effective therapeutic means to modulate these cells. We evaluated the effect of the synthetic triterpenoid C-28 methyl ester of 2-cyano-3,12-dioxooleana-1,9,-dien-28-oic acid (CDDO-Me; bardoxolone methyl) in MC38 colon carcinoma, Lewis lung carcinoma, and EL-4 thymoma mouse tumor models, as well as blood samples from patients with renal cell cancer and soft tissue sarcoma. Samples were also analyzed from patients with pancreatic cancer treated with CDDO-Me in combination with gemcitabine. CDDO-Me at concentrations of 25 to 100 nmol/L completely abrogated immune suppressive activity of MDSC in vitro. CDDO-Me reduced reactive oxygen species in MDSCs but did not affect their viability or the levels of nitric oxide and arginase. Treatment of tumor-bearing mice with CDDO-Me did not affect the proportion of MDSCs in the spleens but eliminated their suppressive activity. This effect was independent of antitumor activity. CDDO-Me treatment decreased tumor growth in mice. Experiments with severe combined immunodeficient-beige mice indicated that this effect was largely mediated by the immune system. CDDO-Me substantially enhanced the antitumor effect of a cancer vaccines. Treatment of pancreatic cancer patients with CDDO-Me did not affect the number of MDSCs in peripheral blood but significantly improved the immune response. CDDO-Me abrogated the immune suppressive effect of MDSCs and improved immune responses in tumor-bearing mice and cancer patients. It may represent an attractive therapeutic option by enhancing the effect of cancer immunotherapy.
    Clinical Cancer Research 03/2010; 16(6):1812-23. DOI:10.1158/1078-0432.CCR-09-3272 · 8.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Normal human epithelial cells in culture have generally shown a limited proliferative potential of approximately 10 to 40 population doublings before encountering a stress-associated senescence barrier (stasis) associated with elevated levels of cyclin-dependent kinase inhibitors p16 and/or p21. We now show that simple changes in medium composition can expand the proliferative potential of human mammary epithelial cells (HMEC) initiated as primary cultures to 50 to 60 population doublings followed by p16-positive, senescence-associated beta-galactosidase-positive stasis. We compared the properties of growing and senescent pre-stasis HMEC with growing and senescent post-selection HMEC, that is, cells grown in a serum-free medium that overcame stasis via silencing of p16 expression and that display senescence associated with telomere dysfunction. Cultured pre-stasis populations contained cells expressing markers associated with luminal and myoepithelial HMEC lineages in vivo in contrast to the basal-like phenotype of the post-selection HMEC. Gene transcript and protein expression, DNA damage-associated markers, mean telomere restriction fragment length, and genomic stability differed significantly between HMEC populations at the stasis versus telomere dysfunction senescence barriers. Senescent isogenic fibroblasts showed greater similarity to HMEC at stasis than at telomere dysfunction, although their gene transcript profile was distinct from HMEC at both senescence barriers. These studies support our model of the senescence barriers encountered by cultured HMEC in which the first barrier, stasis, is retinoblastoma-mediated and independent of telomere length, whereas a second barrier (agonescence or crisis) results from telomere attrition leading to telomere dysfunction. Additionally, the ability to maintain long-term growth of genomically stable multilineage pre-stasis HMEC populations can greatly enhance experimentation with normal HMEC.
    Cancer Research 09/2009; 69(19):7557-68. DOI:10.1158/0008-5472.CAN-09-0270 · 9.28 Impact Factor

Publication Stats

1k Citations
211.37 Total Impact Points

Institutions

  • 2013–2014
    • Wistar Institute
      Filadelfia, Pennsylvania, United States
  • 2010–2013
    • Moffitt Cancer Center
      • Department of Immunology
      Tampa, Florida, United States
  • 2008–2013
    • University of South Florida
      • • Department of Oncologic Sciences
      • • Division of Molecular Medicine
      Tampa, Florida, United States