Marguerite Koutsoukos

Universitair Ziekenhuis Ghent, Gand, Flanders, Belgium

Are you Marguerite Koutsoukos?

Claim your profile

Publications (17)64.08 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The HIV epidemic is greatest in Sub-Saharan Africa and India where HIV-1 subtype C is predominant. To control the spread of HIV in these parts of the world a preventive HIV-1 subtype C vaccine is urgently required. Here we report the immunogenicity of a candidate HIV-1 subtype C vaccine delivered by a recombinant measles vector carrying an insert encoding HIV-1 subtype C Gag, RT and Nef (MV1-F4), in MHC-typed non-human primates. HIV-1 specific cytokine secreting CD4+ and CD8+ T cell responses were detected in 15 out of 16 vaccinees. These HIV-specific T cell responses persisted in lymphoid tissues. Anti-HIV-1 antibody responses were detected in 15 out of 16 vaccinees and titres were boosted by a second immunisation carried out 84 days later. These findings support further exploration of the MV1-F4 vector as a candidate HIV-1 subtype C vaccine or as part of a wider vaccine strategy.
    Vaccine 10/2013; · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human immunodeficiency virus type-1 (HIV-1) vaccine candidate F4/AS01 has previously been shown to induce potent and persistent polyfunctional CD4(+) T-cell responses in HIV-1-seronegative volunteers. This placebo-controlled study evaluated two doses of F4/AS01 1-month apart in antiretroviral treatment (ART)-experienced and ART-naïve HIV-1-infected subjects (1:1 randomisation in each cohort). Safety, HIV-1-specific CD4(+) and CD8(+) T-cell responses, absolute CD4(+) T-cell counts and HIV-1 viral load were monitored for 12 months post-vaccination. Reactogenicity was clinically acceptable and no vaccine-related serious adverse events were reported. The frequency of HIV-1-specific CD4(+) T-cells 2 weeks post-dose 2 was significantly higher in the vaccine group than in the placebo group in both cohorts (p<0.05). Vaccine-induced HIV-1-specific CD4(+) T-cells exhibited a polyfunctional phenotype, expressing at least CD40L and IL-2. No increase in HIV-1-specific CD8(+) T-cells or change in CD8(+) T-cell activation marker expression profile was detected. Absolute CD4(+) T-cell counts were variable over time in both cohorts. Viral load remained suppressed in ART-experienced subjects. In ART-naïve subjects, a transient reduction in viral load from baseline was observed 2 weeks after the second F4/AS01 dose, which was concurrent with a higher frequency of HIV-1-specific CD4(+) T-cells expressing at least IL-2 in this cohort. In conclusion, F4/AS01 showed a clinically acceptable reactogenicity and safety profile, and induced polyfunctional HIV-1-specific CD4(+) T-cell responses in ART-experienced and ART-naïve subjects. These findings support further clinical investigation of F4/AS01 as a potential HIV-1 vaccine for therapeutic use in individuals with HIV-1 infection.
    Vaccine 10/2013; · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As a new human immunodeficiency virus type 1 (HIV-1) vaccine approach, the live-attenuated measles virus (MV) Schwarz vaccine strain was genetically engineered to express the F4 antigen (MV1-F4). F4 is a fusion protein comprising HIV-1 antigens p17 and p24, reverse transcriptase and Nef. This study assessed the toxicity, biodistribution and shedding profiles of MV1-F4. Cynomolgus macaques were intramuscularly immunized one or three times with the highest dose of MV1-F4 intended for clinical use, the reference (Schwarz) measles vaccine or saline, and monitored clinically for 11 or 85 days. Toxicological parameters included local and systemic clinical signs, organ weights, haematology, clinical and gross pathology and histopathology. Both vaccines were well tolerated, with no morbidity, clinical signs or gross pathological findings observed. Mean spleen weights were increased after three doses of either vaccine, which corresponded with increased numbers and/or sizes of germinal centers. This was likely a result of the immune response to the vaccines. Either vaccine virus replicated preferentially in secondary lymphoid organs and to a lesser extent in epithelium-rich tissues (e.g., intestine, urinary bladder and trachea) and the liver. At the expected peak of viremia, viral RNA was detected in some biological fluid samples from few animals immunized with either vaccine, but none of these samples contained infectious virus. In conclusion, no shedding of infectious viral particles was identified in cynomolgus monkeys after injection of MV1-F4 or Schwarz measles vaccines. Furthermore, no toxic effect in relation to the MV vaccination was found with these vaccines in this study.
    Archiv für Experimentelle Pathologie und Pharmakologie 09/2012; · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Live attenuated measles virus is one of the most efficient and safest vaccines available, making it an attractive candidate vector for a HIV/AIDS vaccine aimed at eliciting cell-mediated immune responses (CMI). Here we have characterized the potency of CMI responses generated in mice and non-human primates after intramuscular immunisation with a candidate recombinant measles vaccine carrying an HIV-1 insert encoding Clade B Gag, RT and Nef (MV1-F4). Eight Mauritian derived, MHC-typed cynomolgus macaques were immunised with 10(5) TCID(50) of MV1-F4, four of which were boosted 28 days later with the same vaccine. F4 and measles virus (MV)-specific cytokine producing T cell responses were detected in 6 and 7 out of 8 vaccinees, respectively. Vaccinees with either M6 or recombinant MHC haplotypes demonstrated the strongest cytokine responses to F4 peptides. Polyfunctional analysis revealed a pattern of TNFα and IL-2 responses by CD4+ T cells and TNFα and IFNγ responses by CD8+ T cells to F4 peptides. HIV-specific CD4+ and CD8+ T cells expressing cytokines waned in peripheral blood lymphocytes by day 84, but CD8+ T cell responses to F4 peptides could still be detected in lymphoid tissues more than 3 months after vaccination. Anti-F4 and anti-MV antibody responses were detected in 6 and 8 out of 8 vaccinees, respectively. Titres of anti-F4 and MV antibodies were boosted in vaccinees that received a second immunisation. MV1-F4 carrying HIV-1 Clade B inserts induces robust boostable immunity in non-human primates. These results support further exploration of the MV1-F4 vector modality in vaccination strategies that may limit HIV-1 infectivity.
    PLoS ONE 01/2012; 7(11):e50397. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Induction of HIV-1-specific CD4(+) T-cell responses by therapeutic vaccination represents an attractive intervention to potentially increase immune control of HIV-1. We performed a double-blinded, randomized, placebo-controlled clinical trial to determine the safety and immunogenicity of GlaxoSmithKline Biologicals' HIV-1 gp120/NefTat subunit protein vaccine formulated with the AS02(A) Adjuvant System in subjects with well-controlled chronic HIV-1 infection on highly active antiretroviral therapy. Ten individuals received the vaccine; whereas adjuvant alone or placebo was given to 5 subjects each. Immunogenicity was monitored by intracellular cytokine flow cytometry and carboxyfluorescein succinimidyl ester-based proliferation assays. The vaccine was well tolerated with no related serious adverse events. Vaccine recipients had significantly stronger gp120-specific CD4(+) T-cell responses which persisted until week 48 and greater gp120-specific CD4(+) T-cell proliferation activity as compared with controls. In the vaccine group, the number of participants who demonstrated positive responses for both gp120-specific CD4(+) T-cell interleukin-2 production and gp120-specific CD8(+) T-cell proliferation were significantly higher at week 6. The gp120/NefTat/AS02(A) vaccine induced strong gp120-specific CD4(+) T-cell responses and a higher number of vaccinees developed both HIV-1-specific CD4(+) T-cell responses and CD8(+) T-cell proliferation. The induction of these responses may be important in enhancing immune-mediated viral control.
    JAIDS Journal of Acquired Immune Deficiency Syndromes 09/2011; 59(1):1-9. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vaccine-induced antibodies to envelope proteins frequently cause HIV seroconversion in uninfected recipients of HIV vaccine candidates and may thus have an impact on the vaccinee's ability to donate blood or acquire a life insurance policy. To determine the occurrence of positive test results when commonly used HIV immunoassays are used to screen sera of HIV-uninfected volunteers who received an adjuvanted HIV-1 vaccine candidate containing HIV-1 antigens p24, reverse transcriptase, Nef and p17. Sera of 50 subjects who received this polyprotein vaccine in a single center in Belgium were tested with 6 HIV screening assays and 1 confirmation test. All samples were drawn one year after the administration of the first of two vaccine doses given with one month interval. Forty-five (90%) sera showed a positive test result in at least one of the 7 HIV tests used. The positivity rates were 88% in the Elecsys HIV Combi assay, 74% in the ADVIA Centaur EHIV and 48% in the PRISM HIV O Plus assay. Interpretation of HIV test results is becoming increasingly complex with the growing number of volunteers participating in prophylactic HIV vaccine trials worldwide and the rising number of viral antigens included in these vaccine candidates. The results of this study in recipients of a highly immunogenic adjuvanted polyprotein HIV vaccine candidate devoid of envelope proteins, illustrate the increasing need for approaches that can discriminate HIV infection-induced antibodies from those elicited by a vaccine.
    Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology 02/2011; 50(4):334-7. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: This phase I/II partially blinded, randomized, dose-ranging study assessed the safety and immunogenicity of a novel human immunodeficiency virus type 1 (HIV-1) vaccine candidate consisting of a recombinant fusion protein (F4) containing 4 HIV-1 clade B antigens (Gag p24, Pol reverse transcriptase, Nef, and Gag p17) adjuvanted with AS01 in HIV-seronegative volunteers. Methods. Two doses of the recombinant F4 protein (10, 30, or 90 μg/dose), adjuvanted with AS01 or reconstituted with water for injection, were administered 1 month apart to 180 healthy volunteers aged 18-40 years. F4-specific CD4(+) T cell responses were measured using intracellular cytokine staining after in vitro stimulation by overlapping peptide pools covering the 4 individual antigens. Results. Reactogenicity was higher during the 7-day period after each vaccine dose in the adjuvanted than in the nonadjuvanted groups. In the adjuvanted groups, the overall immune response rate was high after the second vaccine dose, with highest responder rates seen in the 10-μg F4/AS01 group (100% to 3 HIV-1 antigens and 80% to all 4 HIV-1 antigens). High and long-lasting CD4(+) T cell frequencies were observed (up to a median value of 1.2% F4-specific CD4(+) T cells at day 44), with strongest responses directed against reverse transcriptase. Antigen-specific CD4(+) T cells exhibited a polyfunctional phenotype, expressing at least CD40 ligand and interleukin 2, often in combination with tumor necrosis factor α and/or interferon γ. Vaccine-induced CD4(+) T cell responses were broadly cross-reactive to all 4 antigens derived from HIV-1 clades A and C. Conclusions. These results support further clinical investigation of this HIV-1 vaccine candidate both in a prophylactic setting (alone, in conjunction with an envelope-based antigen or in combination with other vaccine approaches in a heterologous prime-boost regimen) and as a potentially disease-modifying therapeutic vaccine in HIV-1-infected subjects. CLINICAL TRIALS REGISTRATION: NCT00434512.
    Clinical Infectious Diseases 02/2011; 52(4):522-31. · 9.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tuberculosis (TB) remains a major cause of illness and death worldwide, making a new TB vaccine an urgent public health priority. Purified protein derivative (PPD)-negative adults (n = 50) were equally randomized to receive 3 doses at 1-month intervals (at 0, 1, and 2 months) of one of the following vaccines: Mtb72F/AS02(A) (10 or 40 μg antigen), Mtb72F/saline (10 or 40 μg antigen), or AS02(A). Mtb72F/AS02(A) recipients received an additional dose 1 year after the first dose to evaluate if the elicited immune response could be boosted. Mtb72F/AS02(A) vaccines were locally reactogenic but clinically well tolerated, with transient adverse events (usually lasting between 1 and 4 days) that resolved without sequelae being observed. No vaccine-related serious adverse events were reported. Vaccination with Mtb72F/AS02(A) induced a strong Mtb72F-specific humoral response and a robust Mtb72F-specific CD4(+) T-cell response, both of which persisted at 9 months after primary immunization and for 1 year after the booster immunization. There was no significant difference between the magnitude of the CD4(+) T-cell response induced by the 10-μg and 40-μg Mtb72F/AS02(A) vaccines. The Mtb72F-specific CD4(+) T cells predominantly expressed CD40L; CD40L and interleukin-2 (IL-2); CD40L and tumor necrosis factor alpha (TNF-α); CD40L, IL-2, and TNF-α; and CD40L, IL-2, TNF-α, and gamma interferon (IFN-γ). Serum IFN-γ, but not TNF-α, was detected 1 day after doses 2 and 3 for the Mtb72F/AS02(A) vaccine but did not persist. Vaccine-induced CD8(+) T-cell responses were not detected, and no immune responses were elicited with AS02(A) alone. In conclusion, Mtb72F/AS02(A) is clinically well tolerated and is highly immunogenic in TB-naïve adults. The 10- and 40-μg Mtb72F/AS02(A) vaccines show comparable safety and immunogenicity profiles.
    Clinical and vaccine Immunology: CVI 11/2010; 17(11):1763-71. · 2.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This randomized double-blind study aimed to determine the safety and immunogenicity of a gp120/NefTat candidate human immunodeficiency virus type 1 (HIV-1) vaccine formulated with one of three different Adjuvant Systems (AS02(A), AS02(V) and AS01(B)) in healthy HIV-seronegative adults. All vaccine formulations induced strong HIV-specific CD4(+) T-cell responses characterized by high lymphoproliferative capacity and IL-2 production that were still detectable 18 months after last immunization, with strongest responses seen in the AS01(B) group. Broad coverage was demonstrated against gp120, and to a lesser extent Nef, derived from the most common circulating clades (B, C and circulating recombinant form [CRF]-01). All vaccine formulations exhibited acceptable safety and reactogenicity profiles. The demonstration of superior CD4(+) T-cell induction by AS01(B) provides important guidance for future HIV vaccine development.
    Vaccine 10/2010; 28(43):7016-24. · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tuberculosis (TB) remains uncontrolled in many parts of the world and the development of an effective vaccine against TB represents a high priority unmet medical need. Healthy PPD (tuberculin purified protein derivative)-negative adult volunteers, aged 18-40 years received three doses of the candidate Mtb72F/AS02A vaccine according to a 0-1-2 months schedule in an open-label Phase I study (NCT00730795). Solicited, unsolicited and serious adverse events (AEs), hematological and biochemical laboratory parameters were assessed. Mtb72F-specific humoral responses were assessed by ELISA and cell-mediated immune (CMI) responses by intracellular cytokine staining (ICS) and short-term ELISPOT assays. CMI responses to the component peptides (Mtb39a and the Mtb32a C- and N-terminal antigen domains, Mtb32C and Mtb32N) were also assessed by ICS. The Mtb72F/AS02A vaccine appeared to be mainly locally reactogenic but this was considered acceptable, since these AEs were usually transient and resolved within 1-2 days. Most AEs reported were mild in intensity, no serious AEs occurred, no medically significant biochemical or hematological abnormalities related to vaccination were measured and all AEs resolved without sequelae. The vaccine induced statistically significant changes in humoral and CMI response measures. The Mtb72F antigen induced good production of IL-2 and IFNgamma in the ELISPOT assay and CD4(+) T cells expressing at least two activation markers (mainly CD40-L and IL-2) were observed with ICS. A similar CMI profile was observed with Mtb39a and Mtb32N. The induced CMI responses persisted for at least 6 months post-vaccination. All subjects were seropositive for anti-Mtb72F antibodies one month post-dose 2 and 6 months post-dose 3. This first trial in humans found Mtb72F/AS02A to have an acceptable tolerability, to be immunogenic in healthy adults and warrants further development of the vaccine.
    Human vaccines 08/2009; 5(7):475-82. · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human immunodeficiency virus (HIV) infection in humans and simian immunodeficiency virus (SIV) infection in macaques are accompanied by a combined early loss of CCR5 (CD195)-expressing CD4(+) memory T cells, loss of T-helper function and T-cell hyperactivation, which have all been associated with development of high virus load and disease progression. Here, a cohort of vaccinated simian-human immunodeficiency virus strain 89.6p (SHIV(89.6p))-infected rhesus macaques, where preferential depletion of these memory T-cell subsets does not take place and CD4(+) T cells are relatively well maintained, was used to study the role of hyperactivation as an independent factor in the establishment of set-point virus load. In the acute phase of the infection, a transient loss of CD4(+) T cells, as well as strong increases in expression of proliferation and activation markers on CD4(+) and CD8(+) T cells, together with CD152 expression on CD4(+) T cells, were observed. Peak expression levels of these markers on CD4(+) T cells, but not on CD8(+) T cells, were correlated with high virus replication in the chronic phase of the infection. In addition, the peak expression level of these markers was correlated inversely with acute-phase, but not chronic-phase, HIV/SIV-specific gamma interferon responses. These data highlight a central role for an acute but transient CD4 decrease, as well as CD4(+) T-cell activation, as independent factors for prediction of set-point levels of virus replication.
    Journal of General Virology 03/2009; 90(Pt 4):915-26. · 3.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A randomised, double-blind study assessing the potential of four adjuvants in combination with recombinant hepatitis B surface antigen has been conducted to evaluate humoral and cell-mediated immune responses in healthy adults after three vaccine doses at months 0, 1 and 10. Three Adjuvant Systems (AS) contained 3-O-desacyl-4'-monophosphoryl lipid A (MPL) and QS21, formulated either with an oil-in-water emulsion (AS02B and AS02V) or with liposomes (AS01B). The fourth adjuvant was CpG oligonucleotide. High levels of antibodies were induced by all adjuvants, whereas cell-mediated immune responses, including cytolytic T cells and strong and persistent CD4(+) T cell response were mainly observed with the three MPL/QS21-containing Adjuvant Systems. The CD4(+) T cell response was characterised in vitro by vigorous lymphoproliferation, high IFN-gamma and moderate IL-5 production. Antigen-specific T cell immune response was further confirmed ex vivo by detection of IL-2- and IFN-gamma-producing CD4(+) T cells, and in vivo by measuring increased levels of IFN-gamma in the serum and delayed-type hypersensitivity (DTH) responses. The CpG adjuvanted vaccine induced consistently lower immune responses for all parameters. All vaccine adjuvants were shown to be safe with acceptable reactogenicity profiles. The majority of subjects reported local reactions at the injection site after vaccination while general reactions were recorded less frequently. No vaccine-related serious adverse event was reported. Importantly, no increase in markers of auto-immunity and allergy was detected over the whole study course. In conclusion, the Adjuvant Systems containing MPL/QS21, in combination with hepatitis B surface antigen, induced very strong humoral and cellular immune responses in healthy adults. The AS01B-adjuvanted vaccine induced the strongest and most durable specific cellular immune responses after two doses. These Adjuvant Systems, when added to recombinant protein antigens, can be fundamental to develop effective prophylactic vaccines against complex pathogens, e.g. malaria, HIV infection and tuberculosis, and for special target populations such as subjects with an impaired immune response, due to age or medical conditions.
    Vaccine 04/2008; 26(10):1375-86. · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Current data suggest that prophylactic human immunodeficiency virus type 1 (HIV) vaccines will be most efficacious if they elicit a combination of adaptive humoral and T-cell responses. Here, we explored the use of different vaccine strategies in heterologous prime-boost regimes and evaluated the breadth and nature of immune responses in rhesus monkeys induced by epidermally delivered plasmid DNA or recombinant HIV proteins formulated in the AS02A adjuvant system. These immunogens were administered alone or as either prime or boost in mixed-modality regimes. DNA immunization alone induced cell-mediated immune (CMI) responses, with a strong bias towards Th1-type cytokines, and no detectable antibodies to the vaccine antigens. Whenever adjuvanted protein was used as a vaccine, either alone or in a regime combined with DNA, high-titre antibody responses to all vaccine antigens were detected in addition to strong Th1- and Th2-type CMI responses. As the vaccine antigens included HIV-1 Env, Nef and Tat, as well as simian immunodeficiency virus (SIV)mac239 Nef, the animals were subsequently exposed to a heterologous, pathogenic simian-human immunodeficiency virus (SHIV)89.6p challenge. Protection against sustained high virus load was observed to some degree in all vaccinated groups. Suppression of virus replication to levels below detection was observed most frequently in the group immunized with protein followed by DNA immunization, and similarly in the group immunized with DNA alone. Interestingly, control of virus replication was associated with increased SIV Nef- and Gag-specific gamma interferon responses observed immediately following challenge.
    Journal of General Virology 03/2008; 89(Pt 2):540-53. · 3.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Use of the recombinant proteins NefTat and gp120(W61D) formulated with the AS02A adjuvant system was previously shown to protect against AIDS in a rhesus macaque SHIV animal model system. Eighty-four HIV uninfected human participants were vaccinated intramuscularly at 0, 1, and 3 months and evaluated for safety. Immune responses were analyzed for the presence of vaccine-induced antibody and T lymphocyte responses. The vaccines were safe and well tolerated at all doses. Nef-, Tat-, and gp120-specific binding antibodies were induced in all individuals that received the respective antigen, lasting up to 9 months after the final immunization. Antibodies able to neutralize the T-cell laboratory-adapted strain of HIV-1(W61D) were detected in the majority of vacinees, but did not neutralize primary isolates. Envelope-specific antibody-dependent cell cytoxicity was detected in most of the individuals receiving gp120. Robust and persistent HIV-specific lymphoproliferative responses were detected against all subunit proteins in the majority of immunized participants. As expected, HIV-specific CD8 T-cell responses were not detected. Despite the lack of primary isolate neutralizing antibody induction, the observed high frequency and magnitude of other immune responses warrant further work with this vaccine or vaccine components.
    Vaccine 02/2007; 25(3):510-8. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous trials of the RTS, S malaria candidate vaccine have shown that this vaccine is safe, tolerated and immunogenic. The development plan for this vaccine aims at administering it in the first year of life through the Expanded Program on Immunization (EPI). The objective was to evaluate the safety and reactogenicity of RTS, S/AS02D (0.5 ml dose), a pediatric formulation of GlaxoSmithKline Biologicals' current malaria candidate vaccine RTS, S/AS02A (0.25 ml dose). A 0.5 ml dose of AS02D is composed of the same active ingredients in the same quantities as in a 0.25 ml dose of AS02A and has been developed to be easily introduced into routine EPI practices. We performed a phase I/IIb randomized double-blind bridging study in a malaria-endemic region of Mozambique, to compare the safety and immunogenicity of both candidate vaccines with the aim of replacing RTS, S/AS02A with RTS, S/AS02D as the candidate pediatric vaccine. 200 Mozambican children aged 3 to 5 years were randomized 1:1 to receive one of the 2 vaccines according to a 0, 1, 2 month schedule. Both vaccines were safe and had similar reactogenicity profiles. All subjects with paired pre and post-vaccination samples showed a vaccine response with respect to anti-circumsporozoite (CS) antibodies irrespective of initial anti-CS serostatus. Geometric mean titers (GMTs) were 191 EU/ml (95% CI 150-242) in recipients of RTS, S/AS02D compared to 180 EU/ml (95% CI 146-221) in recipients of RTS, S/AS02A. For the anti-hepatitis B surface antigen (HBsAg), all subjects were seroprotected at day 90, and the GMTs were 23,978 mIU/ml (95% CI 17,896-32,127) in RTS, S/AS02D recipients and 17,410 mIU/ml (95% CI 13,322-22,752) in RTS, S/AS02A recipients. There was a decrease in anti-CS GMTs between months 3 and 14 in both groups (191 vs 22 EU/mL in RTS, S/AS02D group and 180 vs 29 EU/mL in RTS, S/AS02A group). Our data show that the RTS, S/AS02D is safe, well tolerated, and demonstrates non-inferiority (defined as upper limit of the 95% confidence interval of the anti-CS GMT ratio of RTS, S/AS02A to RTS, S/AS02D below 3.0) of the antibody responses to circumsporozoite and HBsAg induced by the RTS, S/AS02D as compared to the RTS, S/AS02A.
    Trials 02/2007; 8:11. · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Induction of broadly cross-reactive neutralizing antibodies is a high priority for AIDS vaccine development but one that has proven difficult to be achieved. While most immunogens generate antibodies that neutralize a subset of T-cell-line-adapted strains of human immunodeficiency virus type 1 (HIV-1), none so far have generated a potent, broadly cross-reactive response against primary isolates of the virus. Even small increments in immunogen improvement leading to increases in neutralizing antibody titers and cross-neutralizing activity would accelerate vaccine development; however, a lack of uniformity in target strains used by different investigators to assess cross-neutralization has made the comparison of vaccine-induced antibody responses difficult. Thus, there is an urgent need to establish standard panels of HIV-1 reference strains for wide distribution. To facilitate this, full-length gp160 genes were cloned from acute and early subtype B infections and characterized for use as reference reagents to assess neutralizing antibodies against clade B HIV-1. Individual gp160 clones were screened for infectivity as Env-pseudotyped viruses in a luciferase reporter gene assay in JC53-BL (TZM-bl) cells. Functional env clones were sequenced and their neutralization phenotypes characterized by using soluble CD4, monoclonal antibodies, and serum samples from infected individuals and noninfected recipients of a recombinant gp120 vaccine. Env clones from 12 R5 primary HIV-1 isolates were selected that were not unusually sensitive or resistant to neutralization and comprised a wide spectrum of genetic, antigenic, and geographic diversity. These reference reagents will facilitate proficiency testing and other validation efforts aimed at improving assay performance across laboratories and can be used for standardized assessments of vaccine-elicited neutralizing antibodies.
    Journal of Virology 09/2005; 79(16):10108-25. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recombinant subunit protein vaccines generally elicit good humoral immune responses, weak helper T cell responses and no cytotoxic T cell responses. Certain adjuvants are known to enhance humoral and cellular immune responses. This study evaluated the humoral, CD4+ T helper and CTL responses induced by the recombinant SL* protein adjuvanted with AS02A in comparison with non-adjuvanted SL* in PBS in two groups of 15 healthy adult volunteers. The AS02A adjuvant contains monophosphoryl lipid A (MPL), QS21 and an oil in water emulsion. The adjuvanted vaccine induced fast and vigorous humoral and helper T cell responses of the Th1 type. Using a pool of overlapping 20mer peptides a cytotoxic response was detected in 6 out of 14 HLA-A2-positive (+) and HLA-A2-negative (-) recipients of the adjuvanted vaccine. All HLA-A2-positive subjects in the adjuvanted group and up to 30% of the subjects in the SL* PBS group displayed a CTL response against selected HLA-A2-restricted CD8+ T cell epitopes. The non-adjuvanted vaccine induced a very weak antibody response and no helper T cell responses. Local and general reactions were more frequently reported by AS02A recipients than in the non-adjuvanted group but the safety profile was considered acceptable. AS02A can be considered as a useful adjuvant that strongly enhances the cellular and humoral responses of subunit protein vaccines.
    Vaccine 05/2005; 23(20):2591-601. · 3.49 Impact Factor