Susanne Roberts

The Rockefeller University, New York City, NY, United States

Are you Susanne Roberts?

Claim your profile

Publications (3)24.25 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Microglia are resident macrophage-like APCs of the CNS. To avoid escalation of inflammatory processes and bystander damage within the CNS, microglia-driven inflammatory responses need to be tightly regulated and both spatially and temporally restricted. Following traumatic, infectious, and autoimmune-mediated brain injury, NK cells have been found in the CNS, but the functional significance of NK cell recruitment and their mechanisms of action during brain inflammation are not well understood. In this study, we investigated whether and by which mechanisms human NK cells might edit resting and activated human microglial cells via killing in vitro. IL-2-activated NK cells efficiently killed both resting allogeneic and autologous microglia in a cell-contact-dependent manner. Activated NK cells rapidly formed synapses with human microglial cells in which perforin had been polarized to the cellular interface. Ab-mediated NKG2D and NKp46 blockade completely prevented the killing of human microglia by activated NK cells. Up-regulation of MHC class I surface expression by TLR4 stimulation protected microglia from NK cell-mediated killing, whereas MHC class I blockade enhanced cytotoxic NK cell activity. These data suggest that brain-infiltrating NK cells might restrict innate and adaptive immune responses within the human CNS via elimination of resting microglia.
    The Journal of Immunology 12/2008; 181(9):6170-7. · 5.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Symptomatic primary Epstein-Barr virus (EBV) infection and elevated humoral immune responses to EBV are associated with an increased risk of developing multiple sclerosis (MS). We explored mechanisms leading to this change in EBV-specific immunity in untreated patients with MS and healthy virus carriers matched for MS-associated HLA alleles. MS patients showed selective increase of T cell responses to the EBV nuclear antigen 1 (EBNA1), the most consistently recognized EBV-derived CD4(+) T cell antigen in healthy virus carriers, but not to other EBV-encoded proteins. In contrast, influenza and human cytomegalovirus-specific immune control was unchanged in MS. The enhanced response to EBNA1 was mediated by an expanded reservoir of EBNA1-specific central memory CD4(+) T helper 1 (Th1) precursors and Th1 (but not Th17) polarized effector memory cells. In addition, EBNA1-specific T cells recognized myelin antigens more frequently than other autoantigens that are not associated with MS. Myelin cross-reactive T cells produced IFN-gamma, but differed from EBNA1-monospecific cells in their capability to produce interleukin-2, indicative of a polyfunctional phenotype as found in controlled chronic viral infections. Our data support the concept that clonally expanded EBNA1-specific CD4(+) T cells potentially contribute to the development of MS by cross-recognition of myelin antigens.
    Journal of Experimental Medicine 09/2008; 205(8):1763-73. · 13.21 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: EBV is a candidate trigger of rheumatoid arthritis (RA). We determined both EBV-specific T cell and B cell responses and cell-associated EBV DNA copies in patients with RA and demographically matched healthy virus carriers. Patients with RA showed increased and broadened IgG responses to lytic and latent EBV-encoded Ags and 7-fold higher levels of EBV copy numbers in circulating blood cells. Additionally, patients with RA exhibited substantial expansions of CD8(+) T cells specific for pooled EBV Ags expressed during both B cell transformation and productive viral replication and the frequency of CD8(+) T cells specific for these Ags correlated with cellular EBV copy numbers. In contrast, CD4(+) T cell responses to EBV and T cell responses to human CMV Ags were unchanged, altogether arguing against a defective control of latent EBV infection in RA. Our data show that the regulation of EBV infection is perturbed in RA and suggest that increased EBV-specific effector T cell and Ab responses are driven by an elevated EBV load in RA.
    The Journal of Immunology 08/2008; 181(2):991-1000. · 5.52 Impact Factor