Martin Anger

Central European Institute of Technology-Czech Republic, Brünn, South Moravian, Czech Republic

Are you Martin Anger?

Claim your profile

Publications (26)171.45 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian female gametes frequently suffer from numerical chromosomal aberrations, the main cause of miscarriages and severe developmental defects. The underlying mechanisms responsible for the development of aneuploidy in oocytes are still not completely understood and remain a subject of extensive research. From studies focused on prevalence of aneuploidy in mouse oocytes, it has become obvious that reported rates of aneuploidy are strongly dependent on the method used for chromosome counting. In addition, it seems likely that differences between mouse strains could influence the frequency of aneuploidy as well; however, up till now, such a comparison has not been available. Therefore, in our study, we measured the levels of aneuploidy which has resulted from missegregation in meiosis I, in oocytes of three commonly used mouse strains-CD-1, C3H/HeJ, and C57BL/6. Our results revealed that, although the overall chromosomal numerical aberration rates were similar in all three strains, a different number of oocytes in each strain contained prematurely segregated sister chromatids (PSSC). This indicates that a predisposition for this type of chromosome segregation error in oocyte meiosis I is dependent on genetic background.
    06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SignificanceHybrid sterility contributes to speciation by restricting gene flow between related taxa. Although four hybrid sterility genes have been identified in Drosophila and mouse so far, the underlying molecular mechanisms are largely unknown. We describe extensive asynapsis of chromosomes in male and female meiosis of F1 hybrids between two closely related mouse subspecies. Using the intersubspecific chromosome-substitution strains, we demonstrate that the heterospecific pairing of homologous chromosomes is a preexisting condition of asynapsis and may represent a universal mechanism of pachytene arrest in interspecific hybrids. Sex-specific manifestation of asynapsis can explain the mechanism of Haldane's rule.
    Proceedings of the National Academy of Sciences 01/2013; · 9.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromosome segregation errors are highly frequent in mammalian female meiosis, and their incidence gradually increases with maternal age. The fate of aneuploid eggs is obviously dependent on the stringency of mechanisms for detecting unattached or repairing incorrectly attached kinetochores. In case of their failure, the newly formed embryo will inherit the impaired set of chromosomes, which will have severe consequences for its further development. Whether spindle assembly checkpoint (SAC) in oocytes is capable of arresting cell cycle progression in response to unaligned kinetochores was discussed for a long time. It is known that abolishing SAC increases frequency of chromosome segregation errors and causes precocious entry into anaphase; SAC, therefore, seems to be essential for normal chromosome segregation in meiosis I. However, it was also reported that for anaphase-promoting complex (APC) activation, which is a prerequisite for entering anaphase; alignment of only a critical mass of kinetochores on equatorial plane is sufficient. This indicates that the function of SAC and of cooperating chromosome attachment correction mechanisms in oocytes is different from somatic cells. To analyze this phenomenon, we used live cell confocal microscopy to monitor chromosome movements, spindle formation, APC activation and polar body extrusion (PBE) simultaneously in individual oocytes at various time points during first meiotic division. Our results, using oocytes from aged animals and interspecific crosses, demonstrate that multiple unaligned kinetochores and severe congression defects are tolerated at the metaphase to anaphase transition, although such cells retain sensitivity to nocodazole. This indicates that checkpoint mechanisms, operating in oocytes at this point, are essential for accurate timing of APC activation in meiosis I, but they are insufficient in detection or correction of unaligned chromosomes, preparing thus conditions for propagation of the aneuploidy to the embryo.
    Cell cycle (Georgetown, Tex.) 08/2012; 11(16):3011-8. · 5.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is generally accepted that mammalian oocytes are frequently suffering from chromosome segregation errors during meiosis I, which have severe consequences, including pregnancy loss, developmental disorders and mental retardation. In a search for physiologically more relevant model than rodent oocytes to study this phenomenon, we have employed comparative genomic hybridization (CGH), combined with whole genome amplification (WGA), to study the frequency of aneuploidy in porcine oocytes, including rare cells obtained from aged animals. Using this method, we were able to analyze segregation pattern of each individual chromosome during meiosis I. In contrast to the previous reports where conventional methods, such as chromosome spreads or FISH, were used to estimate frequency of aneuploidy, our results presented here show, that the frequency of this phenomenon was overestimated in porcine oocytes. Surprisingly, despite the results from human and mouse showing an increase in the frequency of aneuploidy with advanced maternal age, our results obtained by the most accurate method currently available for scoring the aneuploidy in oocytes indicated no increase in the frequency of aneuploidy even in oocytes from animals, whose age was close to the life expectancy of the breed.
    PLoS ONE 01/2011; 6(4):e18892. · 3.73 Impact Factor
  • Martin Anger
    Cell cycle (Georgetown, Tex.) 07/2010; 9(14):2708. · 5.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteolytic activity of separase is required for chiasma resolution during meiosis I in mouse oocytes. Rec8, the meiosis-specific alpha-kleisin subunit of cohesin, is a key target of separase in yeast. Is the equivalent protein also a target in mammals? We show here that separase cleaves mouse Rec8 at three positions in vitro but only when the latter is hyper-phosphorylated. Expression of a Rec8 variant (Rec8-N) that cannot be cleaved in vitro at these sites causes sterility in male mice. Their seminiferous tubules lack a normal complement of 2 C secondary spermatocytes and 1 C spermatids and contain instead a high proportion of cells with enlarged nuclei. Chromosome spreads reveal that Rec8-N expression has no effect in primary spermatocytes but produces secondary spermatocytes and spermatids with a 4 C DNA content, suggesting that the first and possibly also the second meiotic division is abolished. Expression of Rec8-N in oocytes causes chromosome segregation to be asynchronous and delays its completion by 2-3 hours during anaphase I, probably due to inefficient proteolysis of Rec8-N by separase. Despite this effect, chromosome segregation must be quite accurate as Rec8-N does not greatly reduce female fertility. Our data is consistent with the notion that Rec8 cleavage is important and probably crucial for the resolution of chiasmata in males and females.
    Journal of Cell Science 09/2009; 122(Pt 15):2686-98. · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accurate chromosome segregation during mitosis and meiosis depends on shugoshin proteins that prevent precocious dissociation of cohesin from centromeres. Shugoshins associate with PP2A, which is thought to dephosphorylate cohesin and thereby prevent cleavage by separase during meiosis I. A crystal structure of a complex between a fragment of human Sgo1 and an AB'C PP2A holoenzyme reveals that Sgo1 forms a homodimeric parallel coiled coil that docks simultaneously onto PP2A's C and B' subunits. Sgo1 homodimerization is a prerequisite for PP2A binding. While hSgo1 interacts only with the AB'C holoenzymes, its relative, Sgo2, interacts with all PP2A forms and may thus lead to dephosphorylation of distinct substrates. Mutant shugoshin proteins defective in the binding of PP2A cannot protect centromeric cohesin from separase during meiosis I or support the spindle assembly checkpoint in yeast. Finally, we provide evidence that PP2A's recruitment to chromosomes may be sufficient to protect cohesin from separase in mammalian oocytes.
    Molecular cell 09/2009; 35(4):426-41. · 14.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Missegregation of chromosomes during meiosis in human females causes aneuploidy, including trisomy 21, and is thought also to be the major cause of age-related infertility. Most errors are thought to occur at the first meiotic division. The high frequency of errors raises questions as to whether the surveillance mechanism known as the spindle assembly checkpoint (SAC) that controls the anaphase-promoting complex or cyclosome (APC/C) operates effectively in oocytes. Experimental approaches hitherto used to inactivate the SAC in oocytes suffer from a number of drawbacks. Bub1 protein was depleted specifically in oocytes with a Zp3-Cre transgene to delete exons 7 and 8 from a floxed BUB1(F) allele. Loss of Bub1 greatly accelerates resolution of chiasmata and extrusion of polar bodies. It also causes defective biorientation of bivalents, massive chromosome missegregation at meiosis I, and precocious loss of cohesion between sister centromeres. By using a quantitative assay for APC/C-mediated securin destruction, we show that the APC/C is activated in an exponential fashion, with activity peaking 12-13 hr after GVBD, and that this process is advanced by 5 hr in oocytes lacking Bub1. Importantly, premature chiasmata resolution does not occur in Bub1-deficient oocytes also lacking either the APC/C's Apc2 subunit or separase. Finally, we show that Bub1's kinase domain is not required to delay APC/C activation. We conclude that far from being absent or ineffective, the SAC largely determines the timing of APC/C and hence separase activation in oocytes, delaying it for about 5 hr.
    Current biology: CB 03/2009; 19(5):369-80. · 10.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pseudogenes populate the mammalian genome as remnants of artefactual incorporation of coding messenger RNAs into transposon pathways. Here we show that a subset of pseudogenes generates endogenous small interfering RNAs (endo-siRNAs) in mouse oocytes. These endo-siRNAs are often processed from double-stranded RNAs formed by hybridization of spliced transcripts from protein-coding genes to antisense transcripts from homologous pseudogenes. An inverted repeat pseudogene can also generate abundant small RNAs directly. A second class of endo-siRNAs may enforce repression of mobile genetic elements, acting together with Piwi-interacting RNAs. Loss of Dicer, a protein integral to small RNA production, increases expression of endo-siRNA targets, demonstrating their regulatory activity. Our findings indicate a function for pseudogenes in regulating gene expression by means of the RNA interference pathway and may, in part, explain the evolutionary pressure to conserve argonaute-mediated catalysis in mammals.
    Nature 06/2008; 453(7194):534-8. · 38.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The step-wise assembly of a functional nucleolus, which occurs over the first few cell cycles during preimplantation development, is poorly understood. In this study, we examined the function of the evolutionary conserved nucleolar protein SURF6 in preimplantation mouse embryo development. Immunocytochemical analyses revealed that the localization of SURF6 was similar but not identical to those of fibrillarin and B23/nucleophosmin 1, which are involved in rRNA processing and ribosome biogenesis in mammalian somatic cells. Surf6 mRNA, which is expressed in oocytes and maternally inherited in the zygote, reached a peak level of expression during the 8-cell stage of embryo development, at which time rDNA is highly transcribed. Knock-down of Surf6 mRNA by RNAi led to a decrease in both the mRNA and protein levels, and resulted in developmental arrest at the 8-cell/morula stage, as well as a decrease in the level of 18S rRNA. These results suggest that Surf6 is essential for mouse preimplantation development, presumably by regulating ribosome biogenesis.
    Biology of Reproduction 12/2006; 75(5):690-6. · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In yeast, resolution of chiasmata in meiosis I requires proteolytic cleavage along chromosome arms of cohesin's Rec8 subunit by separase. Since activation of separase by the anaphase-promoting complex (APC/C) is supposedly not required for meiosis I in Xenopus oocytes, it has been suggested that animal cells might resolve chiasmata by a separase-independent mechanism related to the so-called "prophase pathway" that removes cohesin from chromosome arms during mitosis. By expressing Cre recombinase from a zona pellucida promoter, we have deleted a floxed allele of separase specifically in mouse oocytes. This prevents removal of Rec8 from chromosome arms and resolution of chiasmata. It also hinders extrusion of the first polar body (PBE) and causes female sterility. mRNA encoding wild-type but not catalytically inactive separase restores chiasma resolution. Both types of mRNA restore PBE. Proteolytic activity of separase is therefore essential for Rec8's removal from chromosome arms and for chiasma resolution but not for PBE.
    Cell 08/2006; 126(1):135-46. · 31.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A master regulator of DNA replication, CDC6 also functions in the DNA-replication checkpoint by preventing DNA rereplication. Cyclin-dependent kinases (CDKs) regulate the amount and localization of CDC6 throughout the cell cycle; CDC6 phosphorylation after DNA replication initiation leads to its proteolysis in yeast or translocation to the cytoplasm in mammals. Overexpression of CDC6 during the late S phase prevents entry into the M phase by activating CHEK1 kinase that then inactivates CDK1/cyclin B, which is essential for the G2/M-phase transition. We analyzed the role of CDC6 during resumption of meiosis in mouse oocytes, which are arrested in the first meiotic prophase with low CDK1/cyclin B activity; this is similar to somatic cells at the G2/M-phase border. Overexpression of CDC6 in mouse oocytes does not prevent resumption of meiosis. The RNA interference-mediated knockdown of CDC6, however, reveals a new and unexpected function for CDC6; namely, it is essential for spindle formation in mouse oocytes.
    Biology of Reproduction 02/2005; 72(1):188-94. · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A Polo-like kinase 1 (Plk1) appears involved in an autocatalytic loop between CDC25C phosphatase and M phase promoting factor (MPF) in Xenopus oocytes and leads to activation of MPF that is required for germinal vesicle breakdown (GVBD). Although similar evidence for such a role of Plk1 in MPF activation during maturation of mammalian oocytes is absent, changes in Plk1 enzyme activity correlate with MPF activation, Plk1 co-localizes with MPF, and microinjection of antibodies neutralizing Plk1 delays GVBD. In this study, we exploited the prolonged time required for maturation of porcine oocytes to define precisely the timing of Plk1 and MPF activation during maturation. GVBD typically occurs between 24 and 26 hr of culture in vitro and meiotic maturation is completed after 40-44-hr culture. We find that Plk1 is activated before MPF, which is consistent with its role in activating MPF in mammalian oocytes.
    Molecular Reproduction and Development 10/2004; 69(1):11-6. · 2.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Both murine endogenous retrovirus-L (MuERV-L) and intracisternal A particle (IAP), two autonomous long terminal repeat (LTR) retrotransposons, are activated during genome activation in the preimplantation mouse embryo, and both sense and antisense transcripts are detected in 2-cell and 8-cell stage embryos. Because RNA interference (RNAi) functions in the preimplantation mouse embryo, we analyzed the relationship between RNAi and MuERV-L and IAP expression by inhibiting RNAi and measuring relative changes of the levels of these transcripts. We inhibited the initial step in the RNAi pathway by injecting 1-cell embryos with mDicer siRNA or long mDicer dsRNA and analyzed MuERV-L and IAP expression at the 8-cell stage. This approach resulted in the targeted destruction of mDicer mRNA, but not Hdac1 mRNA, inhibited the RNAi pathway, and resulted in a 50% increase in IAP and MuERV-L transcript abundance. These results suggest that RNAi constrains expression of repetitive parasitic sequences in preimplantation embryos, and thereby contributes to preserving genomic integrity at a stage of development when the organism consists of only a few cells.
    Developmental Biology 06/2004; 269(1):276-85. · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enzymes of the Polo-like kinase (Plk) family are active in the pathways controlling mitosis in several species. We have cloned cDNA fragments of the porcine homologues of Plk1, Plk2, and Plk3 employing fetal fibroblasts as source. All three partial cDNAs showed high sequence homology with their mouse and human counterparts and contained the Polo box, a domain characteristic for all Polo kinases. The expression levels of Plk1 mRNA at various points of the cell cycle in synchronized porcine fetal fibroblasts were analyzed by both RT-PCR and the ribonuclease protection assay. Plk1 mRNA was barely detectable in G0 and G1, increased during S phase and peaked after the G2/M transition. A monoclonal antibody was generated against an in vitro expressed porcine Plk1-protein fragment and used to detect changes in Plk1 expression at the protein level. Plk1 protein was first detected by immunoblotting at the beginning of S phase and was highest after the G2/M transition. In summary, the Plk1 expression pattern in the pig is similar to that reported for other species. The absence of Plk1 mRNA and protein appears to be a good marker for G0/G1 and thus for the selection of donor cells for nuclear transfer based somatic cloning.
    Molecular Reproduction and Development 08/2003; 65(3):245-53. · 2.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The presence of a form of cyclin A2 with an N-terminal truncation has recently been reported in various murine cell lines and tissues. The truncated cyclin A2 binds to and activates the cyclin-dependent kinase 2 (CDK2). However, CDK2 bound by the truncated cyclin A2 is located in the cytoplasm in contrast to CDK2 bound to full-length cyclin A2, which is in the nucleus. Here, we show that proliferating mouse embryonic stem cells (ES cells) contain very little truncated cyclin A2 but as the cells are induced to differentiate the amount of truncated cyclin A2 increases. The expression pattern of truncated cyclin A2 was the same in p27(Kip1) -/- differentiating ES cells as in the differentiating wild-type cells. We conclude that p27(Kip1) is not necessary for the proteolytic cleavage that gives rise to the truncated form of cyclin A2 in differentiating ES cells and that this post-translational modification is not a function of the cell density but is correlated with differentiation.
    Biochemical and Biophysical Research Communications 04/2003; 302(4):825-30. · 2.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies in mutant organisms deficient in RNA interference (RNAi) and related post-transcriptional gene silencing implicated a role for a single class of RNA-dependent RNA polymerases (RdRp). Nevertheless, sequence homologs to these RdRps have not been found in coelomate organisms such as Drosophila or mammals. This lack of homologous sequences does not exclude that an RdRp functions in RNAi in these organisms because an RdRp could be acquired by horizontal transfer from an RNA virus. In fact, such a sequence is found in mice (Aquarius) and we observe that it is expressed in mouse oocytes and early embryos, which exhibit RNAi. We report here that cordycepin, an inhibitor of RNA synthesis, does not prevent Mos double-strand RNA (dsRNA) to target endogenous Mos mRNA in mouse oocytes and that targeting a chimeric Mos-EGFP mRNA with dsRNA to EGFP does not reduce the endogenous Mos mRNA, but does target the chimeric mRNA. These results indicate that an RdRp is not involved in dsRNA-mediated mRNA degradation in mammalian oocytes, and possibly in mammals in general, and therefore that only homologous sequences to the dsRNA are targeted for degradation.
    RNA 03/2003; 9(2):187-92. · 5.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, butyrolactone I (BL I), a potent and specific inhibitor of cyclin-dependent kinases (cdk), is shown to inhibit germinal vesicle breakdown (GVBD) in pig oocytes. Oocytes treated with 100 microM BL I were arrested in the germinal vesicle (GV)-stage and displayed low activity of cdc2 kinase and MAP kinase. Nevertheless, chromosome condensation occurred and highly condensed bivalents were seen within an intact GV after a 24-hr culture in the presence of BL I. The inhibitory effect of BL I on MAP kinase activation during culture was likely mediated through a cdk-dependent pathway, since MAP kinase activity present in extracts derived from metaphase II eggs was not inhibited by BL I. The block of GVBD could be released by treating oocytes with okadaic acid (OA), an inhibitor of type 1 and 2A phosphatases; 82% of the oocytes treated with the combination of OA/BL I underwent GVBD, and MAP kinase became activated, while cdc2 kinase remained inhibited. These results suggest that both chromosome condensation and GVBD could occur without activation of cdc2 kinase, whereas an increase in MAP kinase activity may be a requisite for GVBD in pig oocytes in conditions when cdc2 kinase activation is blocked by BL I.
    Molecular Reproduction and Development 10/2002; 63(1):110-8. · 2.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Meiotic maturation of mammalian oocytes (transition from prophase I to metaphase II) is accompanied by complex changes in the protein phosphorylation pattern. At least two major protein kinases are involved in these events; namely, cdc2 kinase and mitogen-activated protein (MAP) kinase, because the inhibition of these kinases arrest mammalian oocytes in the germinal vesicle (GV) stage. We show that during meiotic maturation of bovine oocytes, the translation initiation factor, eIF4E (the cap binding protein), gradually becomes phosphorylated. This substantial phosphorylation begins at the time of germinal vesicle breakdown (GVBD) and continues to the metaphase II stage. The onset of eIF4E phosphorylation occurs in parallel with a significant increase in overall protein synthesis. However, although eIF4E is nearly fully phosphorylated in metaphase II oocytes, protein synthesis reaches only basal levels at this stage, similar to that of prophase I oocytes, in which the factor remains unphosphorylated. We present evidence that a specific repressor of eIF4E, the binding protein 4E-BP1, is present and could be involved in preventing eIF4E function in metaphase II stage oocytes. Recently, two protein kinases, called Mnk1 and Mnk2, have been identified in somatic cells as eIF4E kinases, both of which are substrates of MAP kinase in vivo. In bovine oocytes, a specific inhibitor of cdk kinases, butyrolactone I, arrests oocytes in GV stage and prevents activation of both cdc2 and MAP kinase. Under these conditions, the phosphorylation of eIF4E is also blocked, and its function in initiation of translation is impaired. In contrast, PD 098059, a specific inhibitor of the MAP kinase activation pathway, which inhibits the MAP kinase kinase, called MEK function, leads only to a postponed GVBD, and a delay in MAP kinase and eIF4E phosphorylation. These results indicate that in bovine oocytes, 1) MAP kinase activation is only partially dependent on MEK kinase, 2) MAP kinase is involved in eIF4E phosphorylation, and 3) the abundance of fully phosphorylated eIF4E does not necessarily directly stimulate protein synthesis. A possible MEK kinase-independent pathway of MAP kinase phosphorylation and the role of 4E-BP1 in repressing translation in metaphase II oocytes are discussed.
    Biology of Reproduction 06/2002; 66(5):1274-82. · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study a specific inhibitor of cyclin-dependent kinases (cdks), butyrolactone I (BL I), was used for activation of pig and cattle metaphase II (MII) oocytes. BL I at a concentration of 100 microM was able to induce activation of both pig and cattle MII oocytes in a manner dependent on exposure time; however, precise timing of BL I exposure was required for the best activation results. The optimum activation rates were obtained when cattle MII oocytes were treated for 5 h with BL I and subsequently for 3-11 h in control medium, and pig MII oocytes for 8 h in BL I and then for 8-16 h in control medium; the percentage of activated oocytes after such treatment varied between 55% and 74% and between 53% and 81% for cattle and pig oocytes, respectively. Shorter exposures to BL I led to re-entry of the oocytes to the metaphase state in 35-50% of oocytes, the remaining oocytes forming a pronuclear stage; longer exposure to BL I led to increased numbers of oocytes being abnormal or degenerated. The behaviour of histone H1 kinase and mitogen activated protein (MAP) kinase, also measured during the experiment, reflected the morphological changes in the oocytes: both were inactivated after BL I treatment, though the inactivation of histone H1 kinase occurred 2 h ahead of that of MAP kinase. However, in the oocytes treated for a shorter time with BL I, with the reoccurrence of condensed chromatin in proportion of the oocytes cultured in control medium after BL I treatment, both kinases became reactivated. Taken together, these results suggest the possibility of using BL I for activation and cloning experiments in both species.
    Zygote 03/2002; 10(1):47-57. · 1.50 Impact Factor

Publication Stats

1k Citations
171.45 Total Impact Points

Institutions

  • 2013
    • Central European Institute of Technology-Czech Republic
      Brünn, South Moravian, Czech Republic
  • 2011
    • Veterinary Research Institute, Brno
      Brünn, South Moravian, Czech Republic
  • 2002–2010
    • Institute Animal Physiology and Genetics AS CR, v.v.i.
      Praha, Praha, Czech Republic
  • 2006–2009
    • University of Oxford
      • Department of Biochemistry
      Oxford, ENG, United Kingdom
    • Research Institute of Molecular Pathology
      Wien, Vienna, Austria
  • 2003–2008
    • University of Pennsylvania
      • Department of Biology
      Philadelphia, Pennsylvania, United States