Eva Pérez-Martín

CReSA Research Centre for Animal Health, Cerdanyola del Vallès, Catalonia, Spain

Are you Eva Pérez-Martín?

Claim your profile

Publications (21)60.83 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals. We have previously demonstrated that a replication-defective human adenovirus 5 vector carrying the FMDV capsid coding region of serotype A24 Cruzeiro (Ad5-CI-A24-2B) protects swine and cattle against FMDV challenge by 7 days post-vaccination. However, since relatively large amounts of Ad5-CI-A24-2B are required to induce protection this strategy could be costly for livestock production. Poly ICLC is a synthetic double stranded RNA that activates multiple innate and adaptive immune pathways. In this study, we have tested for the first time, the adjuvant effect of poly ICLC in combination with Ad5-CI-A24-2B in swine. We found that the combination resulted in a reduction of the vaccine protective dose by 80-fold. Interestingly, the lowest dose of Ad5-CI-A24-2B plus 1mg of poly ICLC protected animals against challenge even in the absence of detectable FMDV-specific neutralizing antibodies at the time of challenge.
    Virology 09/2014; 468-470C:283-292. · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, we have developed novel strategies to control foot-and-mouth disease (FMD), including the use of biotherapeutics such as interferons (IFN) delivered by a replication-defective human adenovirus type 5 (Ad5). Swine can be sterilely protected after vaccination with an Ad5 that encodes porcine type I IFN (poIFN-α), and cattle can be similarly protected or develop significantly reduced disease when treated with an Ad5 delivering bovine type III IFN (boIFN-λ3). Here, we have evaluated the efficacy of porcine IFN-λ3 (poIFN-λ3) against FMD virus in vivo. Swine inoculated with different doses of Ad5-poIFN-λ3 were protected against disease in a dose-dependent manner. Despite the absence of systemic antiviral activity, 7 out of 10 Ad5-poIFN-λ3 inoculated animals did not develop disease or viremia, and the other 3 inoculated animals displayed delayed and milder disease by 7 days postchallenge as compared with control animals inoculated with an Ad5 control vector. While analysis of gene expression showed significant induction of IFN and IFN-stimulated genes in Ad5-poIFN-λ3-treated cultured porcine epithelial kidney cells, there was limited gene induction in peripheral blood monocytes isolated from treated swine. These results suggest that treatment with Ad5-poIFN-λ3 is an effective biotherapeutic strategy against FMD in swine.
    Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research 04/2014; · 1.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals. We have previously demonstrated that a replication-defective human adenovirus 5 vector carrying the FMDV capsid coding region of serotype A24 Cruzeiro (Ad5-CI-A24-2B) protects swine and cattle against FMDV challenge by 7 days post-vaccination. However, since relatively large amounts of Ad5-CI-A24-2B are required to induce protection this strategy could be costly for livestock production. Poly ICLC is a synthetic double stranded RNA that activates multiple innate and adaptive immune pathways. In this study, we have tested for the first time, the adjuvant effect of poly ICLC in combination with Ad5-CI-A24-2B in swine. We found that the combination resulted in a reduction of the vaccine protective dose by 80-fold. Interestingly, the lowest dose of Ad5-CI-A24-2B plus 1 mg of poly ICLC protected animals against challenge even in the absence of detectable FMDV-specific neutralizing antibodies at the time of challenge.
    Virology. 01/2014; s 468–470:283–292.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that delivery of the porcine type I interferon gene (poIFN-α/β) with a replication-defective human adenovirus vector (Ad5) can sterilely protect swine challenged with foot-and-mouth disease virus (FMDV) one day later. However, the need of relatively high doses of Ad5 limits the applicability of such a control strategy in the livestock industry. Venezuelan equine encephalitis (VEE) empty replicon particles (VRPs) can induce rapid protection of mice against either homologous or in some cases heterologous virus challenge. As an alternative approach to induce rapid protection against FMDV we have examined the ability of VRPs containing either the gene for green fluorescent protein (VRP-GFP) or poIFN-α (VRP-poIFNα) to block FMDV replication in vitro and in vivo. Pretreatment of swine or bovine cell lines with either VRP significantly inhibited subsequent infection with FMDV as early as 6 h after treatment and for at least 120 h post treatment. Furthermore, mice pretreated with either 107 or 108 infectious units of VRP-GFP and challenged with a lethal dose of FMDV 24 h later were protected from death. Protection was induced as early as 6 h after treatment and lasted for at least 48 h and correlated with induction of an antiviral response and production of IFN-α. By 6 h after treatment several genes were up-regulated and the number of genes and the level of induction increased at 24 h. Finally, we demonstrated that the chemokine IP-10, which is induced by IFN-α and VRP-GFP, is directly involved in protection against FMDV.
    Journal of Virology 03/2013; · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lack of vaccines and efficient control measures complicate the control and eradication of African swine fever (ASF). Limitations of conventional inactivated and attenuated virus-based vaccines against African swine fever virus (ASFV) highlight the need to use new technologies to develop efficient and safe vaccines against this virus. With this aim in mind, in this study we have constructed BacMam-sHAPQ, a baculovirus based vector for gene transfer into mammalian cells, expressing a fusion protein comprising three in tandem ASFV antigens: p54, p30 and the extracellular domain of the viral hemagglutinin (secretory hemagglutinin, sHA), under the control of the human cytomegalovirus immediate early promoter (CMVie). Confirming its correct in vitro expression, BacMam-sHAPQ induced specific T-cell responses directly after in vivo immunization. Conversely, no specific antibody responses were detectable prior to ASFV challenge. The protective potential of this recombinant vaccine candidate was tested by a homologous sublethal challenge with ASFV following immunization. Four out of six immunized pigs remained viremia-free after ASFV infection, while the other two pigs showed similar viremic titres to control animals. The protection afforded correlated with the presence of a large number of virus-specific IFNγ-secreting T-cells in blood at 17 days post-infection. In contrast, the specific antibody levels observed after ASFV challenge in sera from BacMam-sHAPQ immunized pigs were indistinguishable from those found in control pigs. These results highlight the importance of the cellular responses in protection against ASFV and point towards BacMam vectors as potential tools for future vaccine development.
    Antiviral research 02/2013; · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the development of cellular immunity to Porcine circovirus type 2 (PCV2) Cap and Rep proteins in pigs vaccinated with a commercial PCV2 genotype a (PCV2a) based sub-unit vaccine, before and after a heterologous challenge with a PCV2b isolate. At three weeks of age, 20 pigs were inoculated intramuscularly with either the vaccine product (V group, n=9) or phosphate buffered saline solution (PBS) (NV group, n=11). Three weeks after vaccination, pigs were challenged intranasally with PCV2b (V-C and NV-C groups) or PBS (V-NC and NV-NC groups). None of the pigs developed clinical signs during the whole experiment, but all NV-C and 3/5 V-C pigs developed viraemia. Vaccination induced the development IFN-γ-secreting cells in response to the Cap protein of PCV2, which appeared three weeks post-vaccination and increased after challenge. By that time, no significant differences were detected on PCV2 antibody titres between vaccinated and non-vaccinated pigs, although there were significant differences on day 7 post-challenge. PCV2-inoculation induced a cellular response against the Rep protein. Such response was significantly reduced or even absent in PCV2-inoculated pigs that were previously vaccinated (V-C group), presumably as a result of a lower PCV2 replication in vaccinated animals compared to non-vaccinated ones.
    Veterinary Immunology and Immunopathology 09/2012; 150(1-2):128-32. · 1.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals. Vaccines require ∼7 days to induce protection; thus, before this time, vaccinated animals are still susceptible to the disease. Our group has previously shown that swine inoculated with 1×10(11) focus forming units (FFU) of a replication-defective human adenovirus containing the gene for porcine interferon alpha (Adt-pIFN-α) are sterilely protected from FMDV serotypes A24, O1 Manisa, or Asia 1 when the animals are challenged 1 day postadministration, and protection can last for 3-5 days. Polyriboinosinic-polyribocytidylic acid stabilized with poly-l-lysine and carboxymethyl cellulose (poly ICLC) is a synthetic double-stranded RNA that is a viral mimic and activates multiple innate immune pathways through interaction with toll-like receptor 3 and MDA-5. It is a potent inducer of IFNs. In this study, we initially examined the effect of poly IC and IFN-α on FMDV replication and gene induction in cell culture. Poly ICLC alone or combined with Adt-pIFN-α was then evaluated for its therapeutic efficacy in swine against intradermal challenge with FMDV A24, 1 day post-treatment. Groups of swine were subcutaneously inoculated either with poly ICLC alone (4 or 8 mg) or in combination with different doses of Adt-pIFN-α (2.5×10(9), 1×10(9), or 2.5×10(8) FFU). While different degrees of protection were achieved in all the treated animals, a dose of 8 mg of poly ICLC alone or combined with 1×10(9) FFU of Adt-pIFN-α was sufficient to sterilely protect swine when challenged 24 h later with FMDV A24. IFN-stimulated gene (ISG) expression in peripheral blood mononuclear cells at 1 day post-treatment was broader and higher in protected animals than in nonprotected animals. These data indicate that poly ICLC is a potent stimulator of IFN and ISGs in swine and at an adequate dose is sufficient to induce complete protection against FMD.
    Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research 08/2012; 32(10):462-73. · 1.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interferons (IFNs) are the first line of defense against viral infections. Although type I and II IFNs have proven effective to inhibit foot-and-mouth disease virus (FMDV) replication in swine, a similar approach had only limited efficacy in cattle. Recently, a new family of IFNs, type III IFN or IFN-λ, has been identified in human, mouse, chicken, and swine. We have identified bovine IFN-λ3 (boIFN-λ3), also known as interleukin 28B (IL-28B), and demonstrated that expression of this molecule using a recombinant replication-defective human adenovirus type 5 (Ad5) vector, Ad5-boIFN-λ3, exhibited antiviral activity against FMDV in bovine cell culture. Furthermore, inoculation of cattle with Ad5-boIFN-λ3 induced systemic antiviral activity and upregulation of IFN-stimulated gene expression in the upper respiratory airways and skin. In the present study, we demonstrated that disease could be delayed for at least 6 days when cattle were inoculated with Ad5-boIFN-λ3 and challenged 24 h later by intradermolingual inoculation with FMDV. Furthermore, the delay in the appearance of disease was significantly prolonged when treated cattle were challenged by aerosolization of FMDV, using a method that resembles the natural route of infection. No clinical signs of FMD, viremia, or viral shedding in nasal swabs was found in the Ad5-boIFN-λ3-treated animals for at least 9 days postchallenge. Our results indicate that boIFN-λ3 plays a critical role in the innate immune response of cattle against FMDV. To this end, this work represents the most successful biotherapeutic strategy so far tested to control FMDV in cattle.
    Journal of Virology 02/2012; 86(8):4477-87. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lack of available vaccines against African swine fever virus (ASFV) means that the evaluation of new immunization strategies is required. Here we show that fusion of the extracellular domain of the ASFV Hemagglutinin (sHA) to p54 and p30, two immunodominant structural viral antigens, exponentially improved both the humoral and the cellular responses induced in pigs after DNA immunization. However, immunization with the resulting plasmid (pCMV-sHAPQ) did not confer protection against lethal challenge with the virulent E75 ASFV-strain. Due to the fact that CD8(+) T-cell responses are emerging as key components for ASFV protection, we designed a new plasmid construct, pCMV-UbsHAPQ, encoding the three viral determinants above mentioned (sHA, p54 and p30) fused to ubiquitin, aiming to improve Class I antigen presentation and to enhance the CTL responses induced. As expected, immunization with pCMV-UbsHAPQ induced specific T-cell responses in the absence of antibodies and, more important, protected a proportion of immunized-pigs from lethal challenge with ASFV. In contrast with control pigs, survivor animals showed a peak of CD8(+) T-cells at day 3 post-infection, coinciding with the absence of viremia at this time point. Finally, an in silico prediction of CTL peptides has allowed the identification of two SLA I-restricted 9-mer peptides within the hemagglutinin of the virus, capable of in vitro stimulating the specific secretion of IFNγ when using PBMCs from survivor pigs. Our results confirm the relevance of T-cell responses in protection against ASF and open new expectations for the future development of more efficient recombinant vaccines against this disease.
    PLoS ONE 01/2012; 7(9):e40942. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parasitic diseases plague billions of people among the poorest, killing millions annually, and causing additional millions of disability-adjusted life years lost. Leishmaniases affect more than 12 million people, with over 350 million people at risk. There is an urgent need for efficacious and cheap vaccines and treatments against visceral leishmaniasis (VL), its most severe form. Several vaccination strategies have been proposed but to date no head-to-head comparison was undertaken to assess which is the best in a clinical model of the disease. We simultaneously assayed three vaccination strategies against VL in the hamster model, using KMPII, TRYP, LACK, and PAPLE22 vaccine candidate antigens. Four groups of hamsters were immunized using the following approaches: 1) raw extracts of baculovirus-infected Trichoplusia ni larvae expressing individually one of the four recombinant proteins (PROT); 2) naked pVAX1 plasmids carrying the four genes individually (DNA); 3) a heterologous prime-boost (HPB) strategy involving DNA followed by PROT (DNA-PROT); and 4) a Control including empty pVAX1 plasmid followed by raw extract of wild-type baculovirus-infected T. ni larvae. Hamsters were challenged with L. infantum promastigotes and maintained for 20 weeks. While PROT vaccine was not protective, DNA vaccination achieved protection in spleen. Only DNA-PROT vaccination induced significant NO production by macrophages, accompanied by a significant parasitological protection in spleen and blood. Thus, the DNA-PROT strategy elicits strong immune responses and high parasitological protection in the clinical model of VL, better than its corresponding naked DNA or protein versions. Furthermore, we show that naked DNA coupled with raw recombinant proteins produced in insect larvae biofactories -the cheapest way of producing DNA-PROT vaccines- is a practical and cost-effective way for potential "off the shelf" supplying vaccines at very low prices for the protection against leishmaniases, and possibly against other parasitic diseases affecting the poorest of the poor.
    PLoS ONE 01/2012; 7(12):e51181. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Foot-and-mouth disease virus (FMDV) leader proteinase (L(pro)) cleaves itself from the viral polyprotein and cleaves the translation initiation factor eIF4G. As a result, host cell translation is inhibited, affecting the host innate immune response. We have demonstrated that L(pro) is also associated with degradation of nuclear factor κB (NF-κB), a process that requires L(pro) nuclear localization. Additionally, we reported that disruption of a conserved protein domain within the L(pro) coding sequence, SAP mutation, prevented L(pro) nuclear retention and degradation of NF-κB, resulting in in vitro attenuation. Here we report that inoculation of swine with this SAP-mutant virus does not cause clinical signs of disease, viremia, or virus shedding even when inoculated at doses 100-fold higher than those required to cause disease with wild-type (WT) virus. Remarkably, SAP-mutant virus-inoculated animals developed a strong neutralizing antibody response and were completely protected against challenge with WT FMDV as early as 2 days postinoculation and for at least 21 days postinoculation. Early protection correlated with a distinct pattern in the serum levels of proinflammatory cytokines in comparison to the levels detected in animals inoculated with WT FMDV that developed disease. In addition, animals inoculated with the FMDV SAP mutant displayed a memory T cell response that resembled infection with WT virus. Our results suggest that L(pro) plays a pivotal role in modulating several pathways of the immune response. Furthermore, manipulation of the L(pro) coding region may serve as a viable strategy to derive live attenuated strains with potential for development as effective vaccines against foot-and-mouth disease.
    Journal of Virology 11/2011; 86(3):1316-27. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Development of efficient and safer vaccines against foot-and-mouth disease virus (FMDV) is a must. Previous results obtained in our laboratory have demonstrated that DNA vaccines encoding B and T cell epitopes from type C FMDV, efficiently controlled virus replication in mice, while they did not protect against FMDV challenge in pigs, one of the FMDV natural hosts. The main finding of this work is the ability to improve the protection afforded in swine using a new DNA-vaccine prototype (pCMV-APCH1BTT), encoding FMDV B and T-cell epitopes fused to the single-chain variable fragment of the 1F12 mouse monoclonal antibody that recognizes Class-II Swine Leukocyte antigens. Half of the DNA-immunized pigs were fully protected upon viral challenge, while the remaining animals were partially protected, showing a delayed, shorter and milder disease than control pigs. Full protection in a given vaccinated-pig correlated with the induction of specific IFNγ-secreting T-cells, detectable prior to FMDV-challenge, together with a rapid development of neutralizing antibodies after viral challenge, pointing towards the relevance that both arms of the immune response can play in protection. Our results open new avenues for developing future FMDV subunit vaccines.
    Antiviral research 07/2011; 92(2):359-63. · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the main criticisms to DNA vaccines is the poor immunogenicity that they confer on occasions, at least in large animals. Confirming this theory, immunization with plasmid DNA encoding two African swine fever virus genes in frame (pCMV-PQ), failed in inducing detectable immune responses in pigs, while it was successful in mice. Aiming to improve the immune responses induced in swine, a new plasmid was constructed, encoding the viral genes fused in frame with a single chain variable fragment of an antibody specific for a swine leukocyte antigen II (pCMV-APCH1PQ). Our results clearly demonstrate that targeting antigens to antigen professional cells exponentially enhanced the immune response induced in pigs, albeit that the DNA vaccine was not able to confer protection against lethal viral challenge. Indeed, a viremia exacerbation was observed in each of the pigs that received the pCMV-APCH1PQ plasmid, this correlating with the presence of non-neutralizing antibodies and antigen-specific SLA II-restricted T-cells. The implications of our discoveries for the development of future vaccines against African swine fever virus and other swine pathogens are discussed.
    Vaccine 06/2011; 29(33):5379-85. · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Foot-and-mouth disease (FMD) is one of the most serious threats to the livestock industry. Despite the availability of a vaccine, recent outbreaks in disease-free countries have demonstrated that development of novel FMD control strategies is imperative. Here we report the identification and characterization of bovine (bo) interferon lambda 3 (IFN-λ3), a member of the type III IFN family. Expression of boIFN-λ3 using a replication-defective human adenovirus type 5 vector (Ad5-boIFN-λ3) yielded a glycosylated secreted protein with antiviral activity against FMD virus (FMDV) and vesicular stomatitis virus in bovine cell culture. Inoculation of cattle with Ad5-boIFN-λ3 induced systemic antiviral activity and up-regulation of IFN stimulated gene expression in multiple tissues susceptible to FMDV infection. Our results demonstrate that the type III IFN family is conserved in bovines and boIFN-λ3 has potential for further development as a biotherapeutic candidate to inhibit FMDV or other viruses in cattle.
    Virology 03/2011; 413(2):283-92. · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to investigate the role of the capside (Cap) and replicase (Rep) proteins of Porcine circovirus type 2 (PCV2) as well as the whole PCV2 (both PCV2a and PCV2b genotypes) in the induction of cell-mediated immunity upon infection. At 6 weeks of age, six pigs were intranasally inoculated with the Stoon 1010 (Stoon) isolate (PCV2a) and seven with the Sp-7-10-54-13 (Sp) isolate (PCV2b). None of the pigs developed clinical disease but the Sp group had significantly higher proportion of pigs with PCV2-associated lesions and PCV2 load in tissues compared to the Stoon group. In both groups, development of IFN-gamma secreting cells (SC) in response to the whole PCV2 and Cap protein was detected by means of an ELISPOT from day 7 post-inoculation (PI) to the end of the study (21 days PI). Significant responses against Rep protein were only detected in Sp-inoculated pigs. No differences in ELISPOT results were seen when either PCV2a or PCV2b was used in vitro to recall peripheral blood mononuclear cells (PBMC) in any group. Stimulation of PBMC with the whole virus but not with Cap or Rep protein induced IL-10-SC in all pigs regardless of their PCV2 infection status, indicating an innate origin of this response. The results from this study demonstrate that PCV2-infected pigs developed cell-mediated immunity to Cap and Rep proteins and that, in the course of a sub-clinical infection, development and strength of such responses are possibly related to the levels of PCV2 replication.
    Veterinary Immunology and Immunopathology 10/2010; 137(3-4):226-34. · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Porcine circovirus type 2 (PCV2) vaccination has been recently included as a measure to control postweaning multisystemic wasting syndrome (PMWS) in the field. Aiming to obtain a more affordable vaccine to be extensively implemented in the field, a highly efficient non-fermentative expression platform based on Trichoplusia ni (T. ni) larvae was used to produce a baculovirus-derived recombinant PCV2 Cap protein (rCap) for vaccine purposes. Vaccination of pigs with rCap induced solid protection against PCV2 experimental infection, inhibiting both the viremia and the viral shedding very efficiently. The protection afforded by the rCap vaccine strongly correlated with the induction of specific humoral immune responses, even in the presence of PCV2-specific maternal immunity, although cellular responses also seemed to play a partial role. In summary, we have shown that rCap expressed in T. ni larvae could be a cost-effective PCV2 vaccine candidate to be tested under field conditions.
    Vaccine 03/2010; 28(11):2340-9. · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Classical swine fever (CSF) is a highly contagious viral infection affecting domestic and wild pigs. For classical swine fever virus (CSFV), immunization with plasmids expressing different versions of glycoprotein E2 has proven an effective way to induce protection. Previously, we have also shown that immunization with DNA vaccine expressing glycoprotein E2 (DNA-E2) induced specific T helper cell responses in the absence of neutralizing antibodies. However, the role of T cell responses in protection against CSFV is largely unknown. Here we have extended these studies to deeply characterize the role of T cell responses by a DNA-E2 and their correlation with protection against CSFV infection. Thus, pigs vaccinated with the DNA vaccine induced a strong cellular immune response, characterized by the specific induction IFN-gamma expressing T cells after vaccination without any detectable levels of CSFV neutralizing antibodies. Constant levels of CSFV-specific IFN-gamma producing cells observed from the beginning of the infection until 7 days after challenge in vaccinated animals might contribute to early control of CSFV replication, at least until neutralizing antibodies are developed. Severe clinical signs of the disease, including high titers of viremia, pyrexia and virus spread to different organs, were recorded in the non-vaccinated challenged animals, in comparison to the vaccinated animals where only one animal showed mild clinical signs and a short peak of viremia. Lack of complete protection in this animal correlated with a delay on the induction of neutralizing antibodies, detectable only from day 11 post-CSFV challenge. Conversely, the rest of the pigs within the group developed neutralizing antibodies as early as at day two post-challenge, correlating with sterile protection. Finally, an inverse correlation seemed to exist between early induction of IFN-alpha and the protection observed, while IL-10 seemed to be differentially regulated in vaccinated and non-vaccinated animals. Our results support the relevance of the induction of a strong T cellular response to confer a solid protection upon DNA vaccination against CSFV. Further experiments are needed to be done in order to clarify the key cytokines playing a role in CSFV-protection and to obtain emergency vaccines capable to confer robust and fast protection.
    Veterinary Microbiology 09/2009; 142(1-2):51-8. · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A truncated ORF2 capsid HEV antigen derived from a genotype 3 strain was developed in insect cells and insect larvae, and compared with the Sar55 antigen and a commercial ELISA. The antigen expressed in insect cells showed a better correlation with Sar55 (kappa value (k)=0.84) than the insect larvae antigen (k=0.69), and a better reproducibility as indicated by the intra and interplate variation coefficients. Commercial ELISA designed for human diagnosis but adapted to animal use using specific secondary antibodies demonstrated to have a very low sensitivity. The insect cell expressed antigen was used to develop an ELISA to detect anti-HEV-IgG in serum samples of different domestic animal and rodents. Seropositivity in the studied animal populations was 71.4% for pigs, 0.60% for goats, 1.92% for sheep, and 11.11% for cats. None of the 1170 cattle samples or 166 rodent samples analyzed was positive.
    Veterinary Microbiology 02/2009; 137(1-2):66-73. · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The immunogenicity and efficacy generated by one dose of a PCV2 sub-unit vaccine (Porcilis PCV®) were evaluated in 3-week-old conventional piglets. Vaccination induced both humoral and cell-mediated responses against PCV2, which were increased after the challenge with a PCV2 genotype “b” isolate. High levels of maternally derived antibodies (IPMA ≥ 10 log2) at the time of vaccination were found to interfere with the active seroconversion, whereas titres below 8 log2 allowed the development of a proper antibody response. Nevertheless, the immunity induced by one dose of the product was partly protective against PCV2 infection, since viremia, shedding and viral load in tissues were significantly reduced in vaccinated pigs compared to controls.
    Vaccine. 01/2009;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The main aim of the present study was to describe new methods for the identification of antibodies against the PCV2 capsid (Cap) and replicase (Rep) proteins in pig sera. Specifically, two new indirect enzyme-linked immunosorbent assays (ELISA) were developed based on recombinant PCV2 Cap (rCap) and Rep/Rep' (rRep) proteins expressed in baculovirus and produced in Trichoplusia ni insect larvae. Both assays were validated by testing serum samples in a longitudinal study of 107 animals with different clinico-pathological features of PCV2 infection: pigs with postweaning multisystemic wasting syndrome (PMWS), wasted pigs without a diagnosis of PMWS and healthy animals. Longitudinal antibody profiles indicated that healthy animals had significantly higher anti-Cap and anti-Rep antibody levels than the rest of the animal groups at 11 weeks of age. Moreover, PMWS affected pigs could be distinguished from the rest of the pig groups by their lower anti-Rep antibody levels at 11 weeks of age and at necropsy. The results demonstrate the potential of these two ELISAs for large-scale serological studies. This study represents the first longitudinal study of the induction of anti-Cap and anti-Rep antibodies in farms affected by PMWS, from 1 week of age until the occurrence of disease.
    Journal of Virological Methods 10/2008; 154(1-2):167-74. · 1.90 Impact Factor