Pengcheng Zhu

Harvard Medical School, Boston, MA, United States

Are you Pengcheng Zhu?

Claim your profile

Publications (12)139.55 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Granzyme A (GzmA) in killer cells induces caspase-independent programmed cell death. In this study, we show that GzmA cleaves the DNA damage sensor poly(adenosine 5'-diphosphate-ribose) polymerase-1 (PARP-1) after Lys(498) in its automodification domain, separating the DNA binding domain from the catalytic domain, which interferes with repair of GzmA-induced DNA damage and enhances susceptibility to GzmA-mediated death. Overexpressing K498A PARP-1 reduces GzmA-mediated death and drives dying cells to necrosis rather than apoptosis. Conversely, inhibiting or genetically disrupting PARP-1 enhances cell vulnerability. The N-terminal GzmA cleavage fragment of PARP-1 acts as a PARP-1 dominant negative, binding to DNA and blocking DNA repair. Disrupting PARP-1, which is also a caspase target, is therefore required for efficient apoptosis by both caspase-independent and caspase-dependent pathways.
    Blood 07/2009; 114(6):1205-16. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancers may arise from rare self-renewing tumor-initiating cells (T-IC). However, how T-IC self renewal, multipotent differentiation, and tumorigenicity are maintained remains obscure. Because miRNAs can regulate cell-fate decisions, we compared miRNA expression in self-renewing and differentiated cells from breast cancer lines and in breast T-IC (BT-IC) and non-BT-IC from 1 degrees breast cancers. let-7 miRNAs were markedly reduced in BT-IC and increased with differentiation. Infecting BT-IC with let-7-lentivirus reduced proliferation, mammosphere formation, and the proportion of undifferentiated cells in vitro and tumor formation and metastasis in NOD/SCID mice, while antagonizing let-7 by antisense oligonucleotides enhanced in vitro self renewal of non-T-IC. Increased let-7 paralleled reduced H-RAS and HMGA2, known let-7 targets. Silencing H-RAS in a BT-IC-enriched cell line reduced self renewal but had no effect on differentiation, while silencing HMGA2 enhanced differentiation but did not affect self renewal. Therefore let-7 regulates multiple BT-IC stem cell-like properties by silencing more than one target.
    Cell 01/2008; 131(6):1109-23. · 31.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Silencing gene expression by RNAi is a powerful method for exploring gene function and validating drug targets and potentially for therapy. Lymphocytes and other primary blood cells are resistant to lipid-based transfection in vitro and are difficult to target in vivo. We show here that antibody-protamine fusion proteins targeting the human integrin lymphocyte function-associated antigen-1 (LFA-1) efficiently deliver siRNAs and specifically induce silencing in primary lymphocytes, monocytes, and dendritic cells. Moreover, a fusion protein constructed from an antibody that preferentially recognizes activation-dependent conformational changes in LFA-1 selectively targets activated leukocytes and can be used to suppress gene expression and cell proliferation only in activated lymphocytes. The siRNA-fusion protein complexes do not cause lymphocyte activation or induce IFN responses. K562 cells expressing latent WT or constitutively activated LFA-1 engrafted in the lungs of SCID mice are selectively targeted by intravenously injected fusion protein-siRNA complexes, demonstrating the potential in vivo applicability of LFA-1-directed siRNA delivery.
    Proceedings of the National Academy of Sciences 04/2007; 104(10):4095-100. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Granzyme A (GzmA) activates a caspase-independent cell death pathway with morphological features of apoptosis. Single-stranded DNA damage is initiated when the endonuclease NM23-H1 becomes activated to nick DNA after granzyme A cleaves its inhibitor, SET. SET and NM23-H1 reside in an endoplasmic reticulum-associated complex (the SET complex) that translocates to the nucleus in response to superoxide generation by granzyme A. We now find the 3'-to-5' exonuclease TREX1, but not its close homolog TREX2, in the SET complex. TREX1 binds to SET and colocalizes and translocates with the SET complex. NM23-H1 and TREX1 work in concert to degrade DNA. Silencing NM23-H1 or TREX1 inhibits DNA damage and death of cells treated with perforin (PFN) and granzyme A, but not of cells treated with perforin and granzyme B (GzmB). After granzyme A activates NM23-H1 to make single-stranded nicks, TREX1 removes nucleotides from the nicked 3' end to reduce the possibility of repair by rejoining the nicked ends.
    Molecular Cell 08/2006; 23(1):133-42. · 15.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Granzyme A (GzmA) induces caspase-independent cell death with morphological features of apoptosis. Here, we show that GzmA at nanomolar concentrations cleaves Ku70, a key double-strand break repair (DSBR) protein, in target cells. Ku70 is cut after Arg(301), disrupting Ku complex binding to DNA. Cleaving Ku70 facilitates GzmA-mediated cell death, as silencing Ku70 by RNA interference increases DNA damage and cell death by GzmB cluster-deficient cytotoxic T lymphocytes or by GzmA and perforin, whereas Ku70 overexpression has the opposite effect. Ku70 has two known antiapoptotic effects-facilitating DSBR and sequestering bax to prevent its translocation to mitochondria. However, GzmA triggers single-stranded, not double-stranded, DNA damage, and GzmA-induced cell death does not involve bax. Therefore, Ku70 has other antiapoptotic functions in GzmA-induced cell death, which are blocked when GzmA proteolyses Ku70.
    EMBO Reports 05/2006; 7(4):431-7. · 7.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The intracellular bacterium Listeria monocytogenes infects dendritic cells (DC) and other APCs and induces potent cell-mediated protective immunity. However, heat-killed bacteria fail to do so. This study explored whether DC differentially respond to live and killed Listeria and how this affects T cell activation. To control for bacterial number, a replication-deficient strain, Lmdd, defective in D-alanine biosynthesis, was used. We found that DC internalize both live and heat-killed Lmdd and similarly up-regulate the expression of costimulatory molecules, a necessary step for T cell activation. However, only live Lmdd-infected DC stimulate T cells to express the early activation marker CD69 and enhance T cell activation upon TCR engagement. Infection with live, but not heat-killed, Lmdd induces myeloid DC to secrete copious amounts of IFN-beta, which requires bacterial cytosolic invasion. Exposure to high concentrations of IFN-beta sensitizes naive T cells for Ag-dependent activation.
    The Journal of Immunology 08/2005; 175(1):421-32. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Delivery of small interfering RNAs (siRNAs) into cells is a key obstacle to their therapeutic application. We designed a protamine-antibody fusion protein to deliver siRNA to HIV-infected or envelope-transfected cells. The fusion protein (F105-P) was designed with the protamine coding sequence linked to the C terminus of the heavy chain Fab fragment of an HIV-1 envelope antibody. siRNAs bound to F105-P induced silencing only in cells expressing HIV-1 envelope. Additionally, siRNAs targeted against the HIV-1 capsid gene gag, inhibited HIV replication in hard-to-transfect, HIV-infected primary T cells. Intratumoral or intravenous injection of F105-P-complexed siRNAs into mice targeted HIV envelope-expressing B16 melanoma cells, but not normal tissue or envelope-negative B16 cells; injection of F105-P with siRNAs targeting c-myc, MDM2 and VEGF inhibited envelope-expressing subcutaneous B16 tumors. Furthermore, an ErbB2 single-chain antibody fused with protamine delivered siRNAs specifically into ErbB2-expressing cancer cells. This study demonstrates the potential for systemic, cell-type specific, antibody-mediated siRNA delivery.
    Nature Biotechnology 07/2005; 23(6):709-17. · 32.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellular adhesion plays important roles in a variety of biological processes. The ADAM family contains disintegrin-like and metalloproteinase-like domains which potentially have cell adhesion and protease activities. Recent studies suggest that the interaction between 14-3-3zeta and ADAM22cyt can regulate cell adhesion and spreading, therefore it has a potential role in neural development and function. 14-3-3 family has seven highly conserved members that regulate various cellular functions. Using yeast two-hybrid method, we identified that ADAM22cyt bound some other 14-3-3 family members. The interaction was further confirmed by in vitro protein pull-down assay and co-immunoprecipitation. We also found that the overexpression of exogenous ADAM22 in HEK293 cells could significantly enhance cell adhesion and spreading, compared with the truncated ADAM22 lack of 14-3-3 binding motifs. These results strongly demonstrated a functional role for ADAM22/14-3-3 in cell adhesion and spreading.
    Biochemical and Biophysical Research Communications 07/2005; 331(4):938-46. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Psychological distress reduces the efficacy of chemotherapy in breast cancer patients. The mechanism may be related to the altered neuronal or hormonal secretions during stress. Here, we reported that adrenaline, a hormone mediating the biological activities of stress, upregulates mdr1 gene expression in MCF-7 breast cancer cells via alpha(2)-adrenergic receptors in a dose-dependent manner. Mdr1 upregulation can be specifically inhibited by pretreatment with mdr1-siRNA. Consequently, adrenergic stimulation enhances the pump function of P-glycoprotein and confers resistance of MCF-7 cells to paclitaxel. In vivo, restraint stress increases mdr1 gene expression in the MCF-7 cancers that are inoculated subcutaneously into the SCID mice and provokes resistance to doxorubicin in the implanted tumors. The effect can be blocked by injection of yohimbine, an alpha(2)-adrenergic inhibitor, but not by metyrapone, a corticosterone synthesis blocker. Therefore, we conclude that breast cancers may develop resistance against chemotherapeutic drugs under psychological distress by over-expressing mdr1 via adrenergic stimulation.
    Biochemical and Biophysical Research Communications 05/2005; 329(3):888-97. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Granzyme A (GzmA) triggers cell death with apoptotic features by targeting the endoplasmic reticulum-associated SET complex, which contains the GzmA-activated DNase NM23-H1, its inhibitor SET, and Ape1. The SET complex was postulated to translocate to the nucleus in response to oxidative stress and participate in its repair. Because mitochondrial damage is important in apoptosis, we investigated whether GzmA damages mitochondria. GzmA induces a rapid increase in reactive oxygen species and mitochondrial transmembrane potential loss, but does not cleave bid or cause apoptogenic factor release. The mitochondrial effect is direct, does not require cytosol, and is insensitive to bcl-2 and caspase inhibition. SET complex nuclear translocation, which occurs within minutes of peroxide or GzmA treatment, is dependent on superoxide generation since superoxide scavengers block it. Superoxide scavengers also block apoptosis by CTLs expressing GzmA and/or GzmB. Therefore, mitochondrial damage is an essential first step in killer cell granule-mediated pathways of apoptosis.
    Immunity 04/2005; 22(3):355-70. · 19.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ADAM family consists of a number of transmembrane proteins that contain a disintegrin and metalloprotease domain. ADAMs are involved in a highly diverse set of biological processes, including fertilization, neurogenesis, myogenesis and inflammatory response. The ADAM proteins have both cell adhesion and protease activities. Adam22 is highly expressed in human brain. The adam22-/- mice presented severe ataxia and died before weaning, but the function of ADAM22 is still unknown. 14-3-3 beta interacting with ADAM22 was detected by using yeast two-hybrid assay. The specificity of interaction between ADAM22 and 14-3-3beta was proved by in vitro binding assay and immunoprecipitation. The major 14-3-3beta binding site was located in the last 28 amino acid residues of ADAM22 cytoplasmic tail. Protein 14-3-3beta is abundant and plays an important role in mediating cell diffusion, migration and cell cycle control. The interaction of ADAM22 and 14-3-3beta suggests that the ADAM22 may play a crucial role in neural function and development.
    Science in China Series C Life Sciences 01/2003; 45(6):577-82. · 1.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ADAM is a family of type I integral membrane proteins which are characterized by sharing a disintegrin and metalloprotease domain and involved in many important physiological processes such as fertilization, neurogenesis and inflammatory response. A novel human ADAM gene-ADAM29, which was cloned in our laboratory, is exclusively expressed in human testis and contains a potential fusion domain. A full-length cDNA of ADAM29 was obtained by using multiple-step PCR. Phylogenetic tree of known mammalian ADAMs specifically expressed in testis was reconstructed. Polyclonal antiserum was raised by immunizing the rabbits with sub-peptide of ADAM29 (Leu268-Asp374) as immunogen. The result of immunohistochemical test on human testis showed that ADAM29 is expressed in different stages of spermatogenesis and in interstitial cells. ADAM29 may play a certain role in the signal transduction during the maturation of testis-associated cells.
    Science in China Series C Life Sciences 09/2001; 44(4):392-9. · 1.61 Impact Factor

Publication Stats

2k Citations
139.55 Total Impact Points

Institutions

  • 2005–2009
    • Harvard Medical School
      • • Immune Disease Institute
      • • Department of Pediatrics
      Boston, MA, United States
  • 2003–2005
    • Fudan University
      • Institute of Genetics
      Shanghai, Shanghai Shi, China