Ran Zhang

China Agricultural University, Peping, Beijing, China

Are you Ran Zhang?

Claim your profile

Publications (41)194.83 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatic ischemia/reperfusion (I/R) injury is characterised by anoxic cell injury and the generation of inflammatory mediators, leading to hepatic parenchymal cell death. The activation of interferon regulatory factors (IRFs) has been implicated in hepatic I/R injury, but the role of IRF9 in this progression is unclear.
    Journal of hepatology. 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Threonine is a nutritionally essential amino acid (EAA) for the growth and development of humans and other nonruminant animals and must be provided in diets to sustain life. The aim of this study was to synthesize threonine in mammalian cells through transgenic techniques. To achieve this goal, we combined the genes involved in bacterial threonine biosynthesis pathways into a single open reading frame separated by self-cleaving peptides (2A) and then linked it into a transposon system (piggyBac). The plasmids pEF1a-IRES-GFP-E2F-his and pEF1a-IRES-GFP-M2F-his expressed Escherichia coli homoserine kinase and threonine synthase efficiently in mouse cells and enabled cells to synthesize threonine from homoserine. This biosynthetic pathway occurred with a low level of efficiency in transgenic mice. Three transgenic mice were identified by Southern blot from 72 newborn mice, raising the possibility that a high level of expression of these genes in mouse embryos might be lethal. The results indicated that it is feasible to synthesize threonine in animal cells using genetic engineering technology. Further work is required to improve the efficiency of this method for introducing genes into mammals. We propose that the transgenic technology provides a promising means to enhance the synthesis of nutritionally EAAs in farm animals and to eliminate or reduce supplementation of these nutrients in diets for livestock, poultry and fish.
    Amino Acids 06/2014; · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: Mitofilin was originally described as a heart muscle protein (HMP) because of its abundance in heart tissue, however its function in the heart is still to be elucidated. Thus this study aims to investigate the role of mitofilin in the heart in response to hypertrophic stimuli. Results: In this study a significant increase in mitofilin expression was observed in the hearts of patients with hypertrophic cardiomyopathy. Transgenic mice with cardiomyocyte-specific overexpression of mitofilin were generated, and cardiac hypertrophy was introduced by transverse aortic constriction (TAC) or chronic infusion of isoproterenol (ISO). In transgenic mice (TG) overexpressing mitofilin, the level of cardiac hypertrophy was significantly greater than that in wild-type mice (WT) after TAC and ISO stimulation. Detailed analysis showed that compared to WT mice, the level of reactive oxygen species (ROS) was increased after TAC and ISO induction and mitochondrial oxidative phosphorylation (OXPHOS) activity in the TG hearts was lower. These alterations may contribute to the aggravated cardiac hypertrophy observed in response to TAC and ISO stimulation. Conclusion: Over-expression of mitofilin promotes cardiac hypertrophy under pathological conditions in vivo and in vitro. Innovation: Mitofilin, as a mitochondria protein, is shown to be related to cardiac hypertrophy for the first time, which enhances our understanding the role of mitochondria in cardiac hypertrophy.
    Antioxidants & Redox Signaling 02/2014; · 8.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SIRT1, a class III histone deacetylase, acts as a negative regulator for many transcription factors, and plays protective roles in inflammation and atherosclerosis. Transcription factor nuclear factor of activated T cells (NFAT) has been previously shown to play pro-inflammatory roles in endothelial cells. Inhibition of NFAT signaling may be an attractive target to regulate inflammation in atherosclerosis. However, whether NFAT transcriptional activity is suppressed by SIRT1 remains unknown. In this study, we found that SIRT1 suppressed NFAT-mediated transcriptional activity. SIRT1 interacted with NFAT, and the NHR and RHR domains of NFAT mediated the interaction with SIRT1. Moreover, we found that SIRT1 primarily deacetylated NFATc3. Adenoviral over-expression of SIRT1 suppressed PMA and calcium ionophore Ionomycin (PMA/Io)-induced COX-2 expression in human umbilical vein endothelial cells (HUVECs), while SIRT1 RNAi reversed the effects in HUVECs. Moreover, inhibition of COX-2 expression by SIRT1 in PMA/Io-treated HUVECs was largely abrogated by inhibiting NFAT activation. Furthermore, SIRT1 inhibited NFAT-induced COX-2 promoter activity, and reduced NFAT binding to the COX-2 promoter in PMA/Io-treated HUVECs. These results suggest that suppression of NFAT transcriptional activity is involved in SIRT1-mediated inhibition of COX-2 expression induced by PMA/Io, and that the negative regulatory mechanisms of NFAT by SIRT1 may contribute to its anti-inflammatory effects in atherosclerosis.
    PLoS ONE 01/2014; 9(5):e97999. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of transgenic livestock is providing new methods for obtaining pharmaceutically useful proteins. However, the protein expression profiles of the transgenic animals, including expression of milk fat globule membrane (MFGM) proteins, have not been well characterized. In this study, we compared the MFGM protein expression profile of the colostrum and mature milk from three lines of transgenic cloned (TC) cattle, i.e., expressing recombinant human α-lactalbumin (TC-LA), lactoferrin (TC-LF) or lysozyme (TC-LZ) in the mammary gland, with those from cloned non-transgenic (C) and conventionally bred normal animals (N). We identified 1, 225 proteins in milk MFGM, 166 of which were specifically expressed only in the TC-LA group, 265 only in the TC-LF group, and 184 only in the TC-LZ group. There were 43 proteins expressed only in the transgenic cloned animals, but the concentrations of these proteins were below the detection limit of silver staining. Functional analysis also showed that the 43 proteins had no obvious influence on the bovine mammary gland. Quantitative comparison revealed that MFGM proteins were up- or down-regulated more than twofold in the TC and C groups compared to N group: 126 in colostrum and 77 in mature milk of the TC-LA group; 157 in colostrum and 222 in mature milk of the TC-LF group; 49 in colostrum and 98 in mature milk of the TC-LZ group; 98 in colostrum and 132 in mature milk in the C group. These up- and down-regulated proteins in the transgenic animals were not associated with a particular biological function or pathway, which appears that expression of certain exogenous proteins has no general deleterious effects on the cattle mammary gland.
    PLoS ONE 01/2014; 9(8):e105378. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interferon regulatory factor 8 (IRF8), a member of IRF transcription factor family, was recently implicated in vascular diseases. In the present study, using the mouse left carotid artery wire injury model, we unexpectedly observed that the expression of IRF8 was greatly enhanced in SMCs by injury. Compared with wild-type controls, IRF8 global knockout mice exhibited reduced neointimal lesions and maintained SMC-marker gene expression. We further generated SMC-specific IRF8 transgenic mice using an SM22α-driven IRF8 plasmid construct. In contrast to the knockout mice, the SMCs-overexpressing IRF8 exhibited a synthetic phenotype and enhanced neointima formation in the mice. Mechanistically, IRF8 inhibited SMC-marker gene expression through regulating serum response factor (SRF) transactivation in a myocardin-dependent manner. Furthermore, co-immunoprecipitation assay indicated a direct interaction of IRF8 with myocardin, in which a specific region of myocardin was essential for recruiting acetyltransferase p300. Altogether, IRF8 is crucial in modulating SMC phenotype switching and neointima formation in response to vascular injury via direct interaction with SRF/myocardin complex.
    Molecular and cellular biology 11/2013; · 6.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pathological cardiac hypertrophy is a major risk factor for heart failure. In this study, we identified interferon regulatory factor 9 (IRF9), a member of the IRF family, as a previously unidentified negative regulator of cardiac hypertrophy. The level of IRF9 expression was remarkably elevated in the hearts from animals with aortic banding-induced cardiac hypertrophy. IRF9-deficient mice exhibited pronounced cardiac hypertrophy after pressure overload, as demonstrated by increased cardiomyocyte size, extensive fibrosis, reduced cardiac function, and enhanced expression of hypertrophy markers, whereas transgenic mice with cardiac-specific overexpression of murine IRF9 exhibited a significant reduction in the hypertrophic response. Mechanistically, IRF9 competes with p300 for binding to the transcription activation domain of myocardin, a coactivator of serum response factor (SRF). This interaction markedly suppresses the transcriptional activity of myocardin because IRF9 overexpression strongly inhibits the ability of myocardin to activate CArG box-dependent reporters. These results provide compelling evidence that IRF9 inhibits the development of cardiac hypertrophy by suppressing the transcriptional activity of myocardin in the heart.
    Hypertension 10/2013; · 6.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obesity and related metabolic diseases associated with chronic low-grade inflammation greatly compromise human health. Our previous observations on the roles of interferon regulatory factors (IRFs) in the regulation of metabolism prompted us to investigate the involvement of a key family member, IRF3, in metabolic disorders. Here we demonstrate that IRF3 expression in the liver is decreased in subjects with diet-induced and genetic obesity. The global knockout (KO) of IRF3 significantly promotes chronic high-fat diet (HFD)-induced hepatic insulin resistance and steatosis; in contrast, adenoviral-mediated hepatic IRF3 overexpression preserves glucose and lipid homeostasis. Furthermore, systemic and hepatic inflammation, which is increased in IRF3 KO mice, is attenuated by the overexpression of hepatic IRF3. Importantly, inhibitor of nuclear factor kappa B kinase beta subunit / nuclear factor kappa B (IKKβ/NF-κB) signaling is repressed by IRF3, and hepatic overexpression of the inhibitor of κB-α (IκBα) reverses HFD-induced insulin resistance and steatosis in IRF3 KO mice. Mechanistically, IRF3 interacts with the kinase domain of IKKβ in the cytoplasm and inhibits its downstream signaling. Moreover, deletion of the region of IRF3 responsible for the IRF3/IKKβ interaction inhibits the capacity of IRF3 to preserve glucose and lipid homeostasis. Conclusion: IRF3 interacts with IKKβ in the cytoplasm to inhibit IKKβ/NF-κB signaling, thus alleviating hepatic inflammation, insulin resistance, and hepatic steatosis. (Hepatology 2013).
    Hepatology 10/2013; · 12.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Obesity-related inflammation has been implicated in the pathogenesis of insulin resistance and type 2 diabetes. In this study, we addressed the potential role of interferon regulatory factor 7 (IRF7), a master regulator of type I interferon-dependent immune responses, in the regulation of energy metabolism. The expression levels of IRF7 were increased in white adipose tissue (WAT), liver tissue and gastrocnemius muscle of both diet-induced obese mice and ob/ob mice compared with their lean counterparts. After feeding a high fat diet (HFD) for 24 weeks, IRF7 knockout (KO) mice showed less weight gain and adiposity than wild-type (WT) controls. KO of IRF7 improved glucose and lipid homeostasis and insulin sensitivity. Additionally, KO of IRF7 ameliorated diet-induced hepatic steatosis. Then, we assessed the inflammatory state of the IRF7 KO mice on the HFD. These mice showed less macrophage infiltration into multiple organs and were protected from local and systemic inflammation. This study demonstrates a role for IRF7 in diet-induced alterations in energy metabolism and insulin sensitivity. Our results also suggest that IRF7 is involved in the etiology of metabolic abnormalities, which suggests a new strategy for treating obesity and type 2 diabetes. KEY WORDS interferon regulatory factor 7; obesity; insulin resistance; type 2 diabetes; inflammation.
    AJP Endocrinology and Metabolism 05/2013; · 4.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is a calorie excessive state that is associated with high risk of diabetes, atherosclerosis and certain types of tumors. Obesity may induce inflammation and insulin resistance. We found that the expression of interferon regulatory factor 9 (IRF9), a major transcription factor mediating interferon (IFN) responses, was lower in the livers of obese mice than in those of their lean counterparts. Furthermore, whole-body IRF9 knockout (KO) mice were more obese and had aggravated insulin resistance, hepatic steatosis and inflammation after chronic high-fat diet (HFD) feeding. In contrast, adenoviral-mediated hepatic IRF9 overexpression in both diet-induced and genetically (ob/ob) obese mice showed markedly improved hepatic insulin sensitivity and attenuated hepatic steatosis and inflammation. We further employed a yeast two-hybrid screening system to investigate the interactions between IRF9 and its cofactors. Importantly, we identified that IRF9 interacts with peroxisome proliferator-activated receptor α (PPARα), an important metabolism-associated nuclear receptor, to activate PPARα target genes. In addition, liver-specific PPARα overexpression rescued insulin sensitivity and ameliorated hepatic steatosis and inflammation in IRF9 KO mice. Taken together, our results indicate that IRF9 attenuates hepatic insulin resistance, steatosis and inflammation through interaction with PPARα. (HEPATOLOGY 2013.).
    Hepatology 03/2013; · 12.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interferon regulatory factor (IRF) 3, a member of the highly conserved IRF family transcription factors, plays a pivotal role in innate immune response, apoptosis, and oncogenesis. Recent studies have implicated IRF3 in a wide range of host defense. However, whether IRF3 induces defensive responses to hypertrophic stresses such as biomechanical stress and neurohumoral factors remains unclear. Herein, we employed an IRF3-deficient mouse model, cardiac-specific IRF3-overexpression mouse model and isolated cardiomyocytes to investigate the role of IRF3 in cardiac hypertrophy induced by aortic banding (AB) or isoproterenol (ISO). The extent of cardiac hypertrophy was quantitated by echocardiography as well as by pathological and molecular analysis. Our results demonstrate that IRF3 deficiency profoundly exacerbated cardiac hypertrophy, whereas overexpression of IRF3 in the heart significantly blunted pathological cardiac remodeling induced by pressure overload. Similar results were also observed in cultured cardiomyocytes upon the treatment with ISO. Mechanistically, we discovered that IRF3 interacted with ERK2 and thereby inhibited the ERK1/2 signaling. Furthermore, inactivation of ERK1/2 by U0126 offset the IRF3-deficient-mediated hypertrophic response induced by aortic banding. Altogether, these data demonstrate that IRF3 plays a protective role in AB-induced hypertrophic response by inactivating ERK1/2 in the heart. Therefore, IRF3 could be a new target for the prevention and therapy of cardiac hypertrophy and failure.
    Archiv für Kreislaufforschung 03/2013; 108(2):326. · 7.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Caspase activation and recruitment domain 3 (CARD3) is a 61-kDa protein kinase with an N-terminal serine/threonine kinase domain and a C-terminal CARD. Previous research on the function of CARD3 has focused on its role in the immune response and inflammatory diseases. Obesity is now a worldwide health problem and is generally recognized as an inflammatory disease. Unexpectedly, we found that CARD3 expression was lower during obesity. In this study, we explored the biological and genetic bases of obesity using CARD3-knockout (KO) and wild-type (WT) mice fed a high-fat diet (HFD) for 24 weeks. We demonstrate that KO mice were more obese than their WT littermates, and KO mice exhibited obvious visceral fat accumulation and liver weight gains after 24 weeks of HFD feeding. We also observed more severe hepatosteatosis in KO mice compared with the WT controls. Hepatic steatosis in the HFD-fed KO mice was linked to a significant increase in the expression of key lipogenic and cholesterol synthesis enzymes, whereas the expression of the enzymes involves in β-oxidation was dramatically reduced. Furthermore, we confirmed the repression of AMP-activated protein kinase signaling and activation of the endoplasmic reticulum stress response. Fatty liver impaired the global glucose and lipid metabolism, which further exacerbated the insulin resistance associated with the repression of Akt signaling and up-regulated systemic inflammation through the M1/M2 (pro- and anti-inflammation) type switch and the activation of the nuclear factor-κB pathway. Our studies demonstrate the crucial role of CARD3 in metabolism and indicate that CARD3 deficiency promotes the diet-induced phenotype of type 2 diabetes.
    Endocrinology 01/2013; · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intercellular adhesion molecule-1 (ICAM-1) plays an important role in the recruitment of leukocytes to the endothelium, which causes inflammation and initiation of atherosclerosis. We have previously shown that endothelium-specific over-expression of class III deacetylase SIRT1 decreases atherosclerosis. We therefore addressed the hypothesis that SIRT1 suppresses ICAM-1 expression in the endothelial cells. Here, we found that expression of SIRT1 and ICAM-1 was significantly induced by PMA and ionomycin (PMA/Io) in human umbilical vein endothelial cells (HUVECs). Adenovirus-mediated over-expression of SIRT1 significantly inhibited PMA/Io-induced ICAM-1 expression in HUVECs. Knockdown of SIRT1 by RNA interference (RNAi) resulted in increased expression of ICAM-1 in HUVECs. Luciferase report assay showed that over-expression of SIRT1 suppressed ICAM-1 promoter activity both in basic and in PMA/Io-induced conditions. We further found that SIRT1 was involved in transcription complex binding on the ICAM-1 promoter by chromatin immunoprecipitation (ChIP) assays. Furthermore, SIRT1 RNAi increased NF-κB p65 binding ability to the ICAM-1 promoter by ChIP assays. Overall, these data suggests that SIRT1 inhibits ICAM-1 expression in endothelial cells, which may contribute to its anti-atherosclerosis effect.
    Science China. Life sciences 12/2012; · 2.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: IgY(ΔFc), containing only CH1 and CH2 domains, is expressed in the serum of some birds and reptiles, such as ducks and turtles. The duck IgY(ΔFc) is produced by the same υ gene that expresses the intact IgY form (CH1-4) using different transcriptional termination sites. In this study, we show that intact IgY and IgY(ΔFc) are encoded by distinct genes in the red-eared turtle (Trachemys scripta elegans). At least eight IgY and five IgY(ΔFc) transcripts were found in a single turtle. Together with Southern blotting, our data suggest that multiple genes encoding both IgY forms are present in the turtle genome. Both of the IgY forms were detected in the serum using rabbit polyclonal Abs. In addition, we show that multiple copies of the turtle δ gene are present in the genome and that alternative splicing is extensively involved in the generation of both the secretory and membrane-bound forms of the IgD H chain transcripts. Although a single μ gene was identified, the α gene was not identified in this species.
    The Journal of Immunology 09/2012; 189(8):3995-4004. · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transgenic techniques in chickens have been developed much more slowly than in mammals due to chickens' unique reproduction mechanism. Retroviral methods have been the most successful. piggyBac (PB) is a transposon that has a 13 bp perfect terminal invert repeat sequence. PB can be inserted into TTAA sites and can also be precisely excised in mammals. Therefore, we have selected PB as a candidate to establish a new method to produce transgenic chickens. We constructed three donor vectors (ZGl-neo, ZGm-neo and ZGs-neo) expressing a GFP marker-gene and a neomycin resistant gene based on PB. We co-transfected each donor vector with a helper vector (CAG-PBase). We found that ZGl-neo was the most efficient PB vector. This vector could insert into TTAA sites in DF-1 cells. PB vectors were microinjected into sub-germinal cavity of newly laid eggs, and electroporation was then performed with a 20-V pulse for 5 cycles of 50 ms on and 100 ms off. GFP was expressed in different tissues of the embryos, including the gonads. Twenty-two chickens hatched after microinjection with compounds ZGl-neo and CAG-PBase (3:1). When we screened the blood DNA, 73 % (16/22) of the individuals were positive. Thirteen of the chickens grew to adulthood, 11 of which were males. 40 % (4/10) of the individuals were semen positive, and their copy numbers ranged from 0.05 to 0.21 (0.11, 0.21, 0.05, 0.06). No G1 offspring containing the integrated transposon were produced. We conclude that the PB transposon system is a novel useful tool for the efficient production of transgenic chickens.
    Transgenic Research 08/2012; · 2.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The rapidly increasing prevalence of diabetes mellitus worldwide is one of the most serious and challenging health problems in the 21st century. Mammalian sirtuin 1 (SIRT1) has been shown to decrease high-glucose-induced endothelial cell senescence in vitro and prevent hyperglycemia-induced vascular dysfunction. However, a role for SIRT1 in prevention of hyperglycemia-induced vascular cell senescence in vivo remains unclear. We used endothelium-specific SIRT1 transgenic (SIRT1-Tg) mice and wild-type (WT) mice to construct a 40-week streptozotocin (STZ)-induced diabetic mouse model. In this mode, 42.9% of wild-type (WT) mice and 38.5% of SIRT1-Tg mice were successfully established as diabetic. Forty weeks of hyperglycemia induced significant vascular cell senescence in aortas of mice, as indicated by upregulation of expression of senescence-associated markers including p53, p21 and plasminogen activator inhibitor-1 (PAI-1). However, SIRT1-Tg diabetic mice displayed dramatically decreased expression of p53, p21 and PAI-1 compared with diabetic WT mice. Moreover, manganese superoxide dismutase expression (MnSOD) was significantly downregulated in the aortas of diabetic WT mice, but was preserved in diabetic SIRT1-Tg mice. Furthermore, expression of the oxidative stress adaptor p66Shc was significantly decreased in aortas of SIRT1-Tg diabetic mice compared with WT diabetic mice. Overall, these findings suggest that SIRT1-mediated inhibition of hyperglycemia-induced vascular cell senescence is mediated at least partly through the reduction of oxidative stress.
    Science China. Life sciences 06/2012; 55(6):467-73. · 2.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polyunsaturated fatty acids (PUFAs) are important molecules for human health. We investigated the effects of three major omega-3 PUFAs on C2C12 myoblast proliferation. Both docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids decreased cell growth, whereas linolenic (ALA) acid did not, compared with the control. Cell cycle analysis showed that G(1) phase duration was increased markedly and S-phase duration was decreased by DHA and EPA. In contrast, there was no change in the G(1) or S-phase duration when the cells were treated with linolenic acid. To determine how DHA and EPA affected the cell cycle, cyclins and MAPK proteins were investigated. Western blotting and real-time quantitative PCR showed that DHA and EPA decreased cyclin E and CDK2 levels at both the protein and mRNA level. Also, MAPK phosphorylation levels were decreased by treatment with DHA and EPA. Our results indicated that different kinds of n-3 PUFA differentially affected myoblast cell proliferation. DHA and EPA decreased skeletal muscle cell proliferation through a mechanism involving MAPK-ERK.
    Molecular and Cellular Biochemistry 05/2012; 367(1-2):165-73. · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anti-HBV monoclonal antibodies (mAbs) have been successfully applied in clinic for the prevention and treatment of liver diseases caused by Hepatitis B virus (HBV). However, the mammalian cell culture technique used to produce mAbs provides low yield. Production capacity may be increased by manipulating the mammary gland of transgenic animals to produce mAbs which may be secreted in the milk and readily purified. In this study, we established a transgenic mouse model expressing anti-HBV mAbs and assessed the quantity and quality of such in milk secretions. Eight transgenic founders were generated by co-microinjection of two gene cassettes encoding the heavy- and light-chain of a neutralizing anti-HBV antibody. Both the heavy- and light-chain transgenes produced sufficient transcript expression in the transgenic mice. The expressed anti-HBV mAb was correctly assembled and modified in the mammary gland, as detected by western blotting. ELISA was used to determine the expression level of anti-HBV mAb, which reached up to 17.8 mg/mL, and the affinity of anti-HBV mAb for HBV surface antigen HBsAg, which reached up to 1,577 IU/mg. Therefore, our work confirms the concept of using transgenic animals for large-scale production of therapeutic anti-HBV mAb.
    Transgenic Research 01/2012; · 2.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As the number of transgenic livestock increases, reliable detection and molecular characterization of transgene integration sites and copy number are crucial not only for interpreting the relationship between the integration site and the specific phenotype but also for commercial and economic demands. However, the ability of conventional PCR techniques to detect incomplete and multiple integration events is limited, making it technically challenging to characterize transgenes. Next-generation sequencing has enabled cost-effective, routine and widespread high-throughput genomic analysis. Here, we demonstrate the use of next-generation sequencing to extensively characterize cattle harboring a 150-kb human lactoferrin transgene that was initially analyzed by chromosome walking without success. Using this approach, the sites upstream and downstream of the target gene integration site in the host genome were identified at the single nucleotide level. The sequencing result was verified by event-specific PCR for the integration sites and FISH for the chromosomal location. Sequencing depth analysis revealed that multiple copies of the incomplete target gene and the vector backbone were present in the host genome. Upon integration, complex recombination was also observed between the target gene and the vector backbone. These findings indicate that next-generation sequencing is a reliable and accurate approach for the molecular characterization of the transgene sequence, integration sites and copy number in transgenic species.
    PLoS ONE 01/2012; 7(11):e50348. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies on the immunoglobulin (Ig) genes in avian species are limited (mainly to galliformes and anseriformes) but have revealed several interesting features, including the absence of the IgD and Igκ encoding genes, inversion of the IgA encoding gene and the use of gene conversion as the primary mechanism to generate an antibody repertoire. To better understand the Ig genes and their evolutionary development in birds, we analyzed the Ig genes in the ostrich (Struthio camelus), which is one of the most primitive birds. Similar to the chicken and duck, the ostrich expressed only three IgH chain isotypes (IgM, IgA and IgY) and λ light chains. The IgM and IgY constant domains are similar to their counterparts described in other vertebrates. Although conventional IgM, IgA and IgY cDNAs were identified in the ostrich, we also detected a transcript encoding a short membrane-bound form of IgA (lacking the last two C(H) exons) that was undetectable at the protein level. No IgD or κ encoding genes were identified. The presence of a single leader peptide in the expressed heavy chain and light chain V regions indicates that gene conversion also plays a major role in the generation of antibody diversity in the ostrich. Because the ostrich is one of the most primitive living aves, this study suggests that the distinct features of the bird Ig genes appeared very early during the divergence of the avian species and are thus shared by most, if not all, avian species.
    PLoS ONE 01/2012; 7(3):e34346. · 3.73 Impact Factor

Publication Stats

335 Citations
194.83 Total Impact Points

Institutions

  • 2007–2014
    • China Agricultural University
      • State Key Laboratory for Agrobiotechnology
      Peping, Beijing, China
  • 2013
    • Beijing FivePlus Molecular Medicine Institute
      Peping, Beijing, China
    • Wuhan University
      • Department of Cardiology
      Wuhan, Hubei, China
    • Renmin University of China
      Peping, Beijing, China
  • 2009
    • Peking Union Medical College Hospital
      Peping, Beijing, China