Bénédicte Gérard

Centre Hospitalier Universitaire de Dijon, Dijon, Bourgogne, France

Are you Bénédicte Gérard?

Claim your profile

Publications (48)343.42 Total impact

  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microvillous inclusion disease (MVID) is a cause of intractable diarrhea in infancy. In its classic form, the disease is characterised by a severe persistent watery diarrhea starting within the first days of life. Parenteral nutrition and small bowel transplantation are the only known treatments of affected children. Histologically, Periodic acid-schiff (PAS) staining shows accumulation of PAS-positive staining material along the apical pole of enterocytes while transmission electronic microscopy exhibits microvillus inclusion bodies within the cytoplasm of enterocytes with rarefied and shortened microvilli and secretory granules. The objective of this work was to explore clinical, morphological and genetic findings in cases of MVID with unusual presentations.
    Journal of pediatric gastroenterology and nutrition. 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neonatal diabetes mellitus is a rare genetic form of pancreatic β-cell dysfunction. We compared phenotypic features and clinical outcomes according to genetic subtypes in a cohort of patients diagnosed with neonatal diabetes mellitus before age 1 year, without β-cell autoimmunity and with normal pancreas morphology. We prospectively investigated patients from 20 countries referred to the French Neonatal Diabetes Mellitus Study Group from 1995 to 2010. Patients with hyperglycaemia requiring treatment with insulin before age 1 year were eligible, provided that they had normal pancreatic morphology as assessed by ultrasonography and negative tests for β-cell autoimmunity. We assessed changes in the 6q24 locus, KATP-channel subunit genes (ABCC8 and KCNJ11), and preproinsulin gene (INS) and investigated associations between genotype and phenotype, with special attention to extra-pancreatic abnormalities. We tested 174 index patients, of whom 47 (27%) had no detectable genetic defect. Of the remaining 127 index patients, 40 (31%) had 6q24 abnormalities, 43 (34%) had mutations in KCNJ11, 31 (24%) had mutations in ABCC8, and 13 (10%) had mutations in INS. We reported developmental delay with or without epilepsy in 13 index patients (18% of participants with mutations in genes encoding KATP channel subunits). In-depth neuropsychomotor investigations were done at median age 7 years (IQR 1-15) in 27 index patients with mutations in KATP channel subunit genes who did not have developmental delay or epilepsy. Developmental coordination disorder (particularly visual-spatial dyspraxia) or attention deficits were recorded in all index patients who had this testing. Compared with index patients who had mutations in KATP channel subunit genes, those with 6q24 abnormalities had specific features: developmental defects involving the heart, kidneys, or urinary tract (8/36 [22%] vs 2/71 [3%]; p=0·002), intrauterine growth restriction (34/37 [92%] vs 34/70 [48%]; p<0·0001), and early diagnosis (median age 5·0 days, IQR 1·0-14·5 vs 45·5 days, IQR 27·2-95·0; p<0·0001). Remission of neonatal diabetes mellitus occurred in 89 (51%) index patients at a median age of 17 weeks (IQR 9·5-39·0; median follow-up 4·7 years, IQR 1·5-12·8). Recurrence was common, with no difference between the groups who had 6q24 abnormalities versus mutations in KATP channel subunit genes (82% vs 86%; p=0·36). Neonatal diabetes mellitus is often associated with neuropsychological dysfunction and developmental defects that are specific to the underlying genetic abnormality. A multidisciplinary assessment is therefore essential when patients are diagnosed. Features of neuropsychological dysfunction and developmental defects should be tested for in adults with a history of neonatal diabetes mellitus. Agence Nationale de la Recherche-Maladies Rares Research Program Grant, the Transnational European Research Grant on Rare Diseases, the Société Francophone du Diabète-Association Française du Diabète, the Association Française du Diabète, Aide aux Jeunes Diabétiques, a CIFRE grant from the French Government, HRA-Pharma, the French Ministry of Education and Research, and the Société Française de Pédiatrie.
    The lancet. Diabetes & endocrinology. 11/2013; 1(3):199-207.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intellectual disability (ID) is characterized by an extraordinary genetic heterogeneity, with >250 genes that have been implicated in monogenic forms of ID. Because this complexity precluded systematic testing for mutations and because clinical features are often non-specific, for some of these genes only few cases or families have been unambiguously documented. It is the case of the X-linked gene encoding monoamine oxidase A (MAOA), for which only one nonsense mutation has been identified in Brunner syndrome, characterized in a single family by mild non-dysmorphic ID and impulsive, violent and aggressive behaviors. We have performed targeted high-throughput sequencing of 220 genes, including MAOA, in patients with undiagnosed ID. We identified a c.797_798delinsTT (p.C266F) missense mutation in MAOA in a boy with autism spectrum disorder, attention deficit and autoaggressive behavior. Two maternal uncles carry the mutation and have severe ID, with a history of maltreatment in early childhood. This novel missense mutation decreases MAOA enzymatic activity, leading to abnormal levels of urinary monoamines. The identification of this new point mutation confirms, for the first time since 1993, the monogenic implication of the MAOA gene in ID of various degrees, autism and behavioral disturbances. The variable expressivity of the mutation observed in male patients of this family may involve gene-environment interactions, and the identification of a perturbation in monoamine metabolism should be taken into account when prescribing psychoactive drugs in such patients.European Journal of Human Genetics advance online publication, 30 October 2013; doi:10.1038/ejhg.2013.243.
    European journal of human genetics: EJHG 10/2013; · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: The high frequency of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene mutation p.Arg117His in patients with congenital bilateral absence of the vas deferens (CBAVD) and in newborns screened for CF has created a dilemma. METHODS: Phenotypic and genotypic data were retrospectively collected in 179 non-newborn French individuals carrying p.Arg117His and a second CFTR mutation referred for symptoms or family history, by all French molecular genetics laboratories, referring physicians, CF care centres and infertility clinics. RESULTS: 97% of the patients had the intronic T7 normal variant in cis with p.Arg117His. 89% patients were male, with CBAVD being the reason for referral in 76%. In 166/179 patients with available detailed clinical features, final diagnoses were: four late-onset marked pulmonary disease, 83 isolated CBAVD, 67 other CFTR-related phenotypes, including 44 CBAVD with pulmonary and/or pancreatic symptoms and 12 asymptomatic cases. Respiratory symptoms were observed in 30% of the patients, but the overall phenotype was mild. No correlation was observed between sweat chloride concentrations and disease severity. Five couples at risk of CF offspring were identified and four benefited from prenatal or preimplantation genetic diagnoses (PND or PGD). Eight children were born, including four who were compound heterozygous for p.Arg117His and one with a severe CF mutation. CONCLUSIONS: Patients with CBAVD carrying p.Arg117His and a severe CF mutation should benefit from a clinical evaluation and follow-up. Depending on the CBAVD patients' genotype, a CFTR analysis should be considered in their partners in order to identify CF carrier couples and offer PND or PGD.
    Journal of Medical Genetics 02/2013; · 5.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on a rare homozygous intragenic deletion encompassing exons 1-6 of the SMN1 gene in a patient with spinal muscular atrophy (SMA) born into a consanguineous family. This exceptional configuration induced misinterpretation of the molecular defect involved in this patient, who was first reported as having a classic SMN1 exon 7 deletion. This case points out the possible pitfalls in molecular diagnosis of SMA in affected patients and their relatives: exploration of the SMN1 exon 7 (c.840C/T alleles) may be disturbed by several non-pathological or pathological variants around the SMN1 exon 7. In order to accurately describe the molecular defect in an SMA-affected patient, we propose to apply the Human Genome Variation Society nomenclature. This widely accepted nomenclature would improve the reporting of the molecular defect observed in SMA patients and thus would avoid the commonly used but imprecise terminology "absence of SMN1 exon 7."
    American Journal of Medical Genetics Part A 06/2012; 158A(7):1735-41. · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the cases of 2 patients with late-onset spinal muscular atrophy (SMA) type III, who were hemizygous for SMN1 deletion and carriers of novel SMN1 intragenic missense mutations, and we investigate the genotype-phenotype relationship. Patients were tested for SMN1 deletions with standard methodology. Sequencing of all exons, exon-intron junctions, and flanking sequences of SMN1 by nested PCR was used to detect intragenic point mutations. SMN1 and SMN2 quantification was undertaken to investigate the genotype-phenotype relationship. Two novel point mutations were identified in exon 3 of SMN1 (p.Tyr130Cys and p.Tyr130His) in the highly conserved Tudor domain of the Smn protein. The genetic basis of SMA in the rare cases of compound heterozygous carriers of SMN1 deletions is complex. Small intragenic SMN1 mutations often lead to severe SMA phenotypes, especially if the point mutations lie in exon 3 that codes for the highly conserved Tudor domain of the Smn protein. Although both our patients were carriers of intragenic SMN1 mutations in the coding region of the Tudor domain, they presented with a mild SMA phenotype despite a low SMN2 copy number. We discuss the possible determinant role of these novel missense mutations in the phenotypic outcome and compensatory mechanisms that may account for the genotype-phenotype discrepancy.
    Neurology 02/2012; 78(8):551-6. · 8.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder resulting, in most cases, from homozygous deletions of the SMN1 gene or, in rare cases, from SMN1 intragenic mutations. Here we describe the identification and characterization of c.835-3C>T, a novel SMA-causing mutation detected in the intron 6 of the single SMN1 allele of a type IV SMA patient. We demonstrate both ex vivo and in vivo that c.835-3C>T is a deleterious splicing mutation that induces a modest but unequivocal exclusion of exon 7 from the SMN1 transcripts, its "leakiness" explaining the exceptionally mild phenotype of this patient. This mutation creates a putative high-affinity binding site for the splicing repressor protein hnRNP A1 overlapping the splice acceptor site of exon 7 (UAG∣GGU). Our findings support the current therapeutic strategies aiming at correcting exon 7 splicing in SMA patients, and bring clues about the level of exon 7 inclusion required to achieve a therapeutic effect. © 2011 Wiley-Liss, Inc.
    Human Mutation 05/2011; · 5.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The SAPHO syndrome (synovitis, acne, pustulosis, hyperostosis, and osteitis) is a rare disorder that mainly affects bone and skin. Chronic multifocal osteitis is the main diagnostic feature. Genetic studies of HLA genes have shown no role for these class II antigens, whereas studies of 2 mouse models (cmo and Lupo) point to a role of the PSTPIP2 gene. We analyzed the PSTPIP2 gene in patients with SAPHO syndrome. In a cohort of 38 patients with SAPHO we analyzed PSTPIP2 and 2 other candidate genes, NOD2/CARD15 (Crohn's disease occurs in about 10% of SAPHO patients), and LPIN2 (clinical similarities of SAPHO with Majeed syndrome). Rare variants of the 3 genes observed in patients with SAPHO were not specific or were not found more frequently compared to controls, suggesting no major pathogenetic role of these genes in the SAPHO syndrome. We found no association between PSTPIP2, NOD2, and LPIN2 variants and the SAPHO syndrome.
    The Journal of Rheumatology 02/2010; 37(2):401-9. · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The prognosis of autosomal recessive polycystic kidney disease is known to correlate with genotype. The presence of two truncating mutations in the PKHD1 gene encoding the fibrocystin protein is associated with neonatal death while patients who survive have at least one missense mutation. To determine relationships between genotype and renal and hepatic abnormalities we correlated the severity of renal and hepatic histological lesions to the type of PKHD1 mutations in 54 fetuses (medical pregnancy termination) and 20 neonates who died shortly after birth. Within this cohort, 55.5% of the mutations truncated fibrocystin. The severity of cortical collecting duct dilatations, cortical tubule and glomerular lesions, and renal cortical and hepatic portal fibrosis increased with gestational age. Severe genotypes, defined by two truncating mutations, were more frequent in patients of less than 30 weeks gestation compared to older fetuses and neonates. When adjusted to gestational age, the extension of collecting duct dilatation into the cortex and cortical tubule lesions, but not portal fibrosis, was more prevalent in patients with severe than in those with a non-severe genotype. Our results show the presence of two truncating mutations of the PKHD1 gene is associated with the most severe renal forms of prenatally detected autosomal recessive polycystic kidney disease. Their absence, however, does not guarantee survival to the neonatal period.
    Kidney International 11/2009; 77(4):350-8. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cystic fibrosis (CF) is caused by compound heterozygosity or homozygosity of CF transmembrane conductance regulator gene (CFTR) mutations. Phenotypic variability associated with certain mutations makes genetic counselling difficult, notably for R117H, whose disease phenotype varies from asymptomatic to classical CF. The high frequency of R117H observed in CF newborn screening has also introduced diagnostic dilemmas. The aim of this study was to evaluate the disease penetrance for R117H in order to improve clinical practice. The phenotypes in all individuals identified in France as compound heterozygous for R117H and F508del, the most frequent CF mutation, were described. The allelic prevalences of R117H (p(R117H)), on either intron 8 T5 or T7 background, and F508del (p(F508del)) were determined in the French population, to permit an evaluation of the penetrance of CF for the [R117H]+[F508del] genotype. Clinical details were documented for 184 [R117H]+[F508del] individuals, including 72 newborns. The disease phenotype was predominantly mild; one child had classical CF, and three adults' severe pulmonary symptoms. In 5245 healthy adults, p(F508del) was 1.06%, p(R117H;T7) 0.27% and p(R117H;T5)<0.01%. The theoretical number of [R117H;T7]+[F508del] individuals in the French population was estimated at 3650, whereas only 112 were known with CF related symptoms (3.1%). The penetrance of classical CF for [R117H;T7]+[F508del] was estimated at 0.03% and that of severe CF in adulthood at 0.06%. These results suggest that R117H should be withdrawn from CF mutation panels used for screening programmes. The real impact of so-called disease mutations should be assessed before including them in newborn or preconceptional carrier screening programmes.
    Journal of Medical Genetics 11/2009; 46(11):752-8. · 5.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The large number of CFTR [cystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub-family C, member 7)] mutations and the existence of variants of unclear significance complicate the prenatal diagnosis of cystic fibrosis (CF). The aim of this study was to determine whether the pattern of amniotic fluid digestive enzymes (AF-DEs) could be correlated with the severity of CFTR mutations. The AF-DE pattern (gamma-glutamyltranspeptidase, aminopeptidase M, and the intestinal isoform of alkaline phosphatase) was retrospectively analyzed in 43 AF samples. All fetuses presented 2 CFTR mutations, which were classified according to the severity of the disease: CF/CF (n = 38); CF/CFTR-related disorders (n = 1); and CF/unknown variant (n = 4). The relationships between clinical CF status, CFTR mutations, and AF-DE pattern were studied. Of 38 severely affected CF fetuses, an "obstructive" AF-DE pattern was observed in 15 of 15 samples collected before 22 weeks, irrespective of the CFTR mutation (diagnostic sensitivity, 100%; diagnostic specificity, 99.8%). In the 23 fetuses evaluated after 22 weeks, the AF-DE pattern was abnormal in 7 cases and noncontributive in 16 (diagnostic sensitivity, 30.4%; diagnostic specificity, 99.8%). Of the 5 questionable cases (F508del/N1224K, F508del/L73F, 3849+10kbC>T/G1127E, F508del/S1235R, F508del/G622D), all were CF symptom free at 2-4 years of follow-up. The AF-DE pattern (<22 weeks) was typical in 3 cases but abnormal in the last 2 cases. AF-DE analysis is of value for prenatal CF diagnosis in classic forms of CF and could be helpful in nonclassic CF.
    Clinical Chemistry 10/2009; 55(12):2214-7. · 7.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Impaired renal phosphate reabsorption, as measured by dividing the tubular maximal reabsorption of phosphate by the glomerular filtration rate (TmP/GFR), increases the risks of nephrolithiasis and bone demineralization. Data from animal models suggest that sodium-hydrogen exchanger regulatory factor 1 (NHERF1) controls renal phosphate transport. We sequenced the NHERF1 gene in 158 patients, 94 of whom had either nephrolithiasis or bone demineralization. We identified three distinct mutations in seven patients with a low TmP/GFR value. No patients with normal TmP/GFR values had mutations. The mutants expressed in cultured renal cells increased the generation of cyclic AMP (cAMP) by parathyroid hormone (PTH) and inhibited phosphate transport. These NHERF1 mutations suggest a previously unrecognized cause of renal phosphate loss in humans.
    New England Journal of Medicine 10/2008; 359(11):1128-35. · 51.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PTHR1-signaling pathway is critical for the regulation of endochondral ossification. Thus, abnormalities in genes belonging to this pathway could potentially participate in the pathogenesis of Ollier disease/Maffucci syndrome, two developmental disorders defined by the presence of multiple enchondromas. In agreement, a functionally deleterious mutation in PTHR1 (p.R150C) was identified in enchondromas from two of six unrelated patients with enchondromatosis. However, neither the p.R150C mutation (26 tumors) nor any other mutation in the PTHR1 gene (11 patients) could be identified in another study. To further define the role of PTHR1-signaling pathway in Ollier disease and Maffucci syndrome, we analyzed the coding sequences of four genes (PTHR1, IHH, PTHrP and GNAS1) in leucocyte and/or tumor DNA from 61 and 23 patients affected with Ollier disease or Maffucci syndrome, respectively. We identified three previously undescribed missense mutations in PTHR1 in patients with Ollier disease at the heterozygous state. Two mutations (p.G121E, p.A122T) were present only in enchondromas, and one (p.R255H) in both enchondroma and leukocyte DNA. Assessment of receptor function demonstrated that these three mutations impair PTHR1 function by reducing either the affinity of the receptor for PTH or the receptor expression at the cell surface. These mutations were not found in DNA from 222 controls. Including our data, PTHR1 functionally deleterious mutations have now been identified in five out 31 enchondromas from Ollier patients. These findings provide further support for the idea that heterozygous mutations in PTHR1 that impair receptor function participate in the pathogenesis of Ollier disease in some patients.
    Human Molecular Genetics 07/2008; 17(18):2766-75. · 7.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic granulomatous disease (CGD) results from constitutional inactivating mutations in the CYBB, NCF1, CYBA or NCF2 genes that encode subunits of phagocyte NADPH oxidase. We report the findings of molecular analysis of 80 kindred. In 75 unrelated male and 5 female probands, CGD was suspected on the basis of clinical symptoms, and biological samples were referred to our laboratory between 2000 and 2007. Seventy seven patients were found to have mutations in CYBB, NCF1, CYBA or NCF2 (52 different mutations including 31 mutations not previously reported). CYBB was the most frequently mutated gene (58 males and 3 females, 76%). In autosomal recessive forms of the disease, mutations were found in NCF1 (11 patients), NCF2 (3 patients) and CYBA (2 patients). We observed that significantly fewer females were affected by autosomal recessive CGD than expected (2 females/14 males; p=0.002), suggesting that female patients with CGD may be under diagnosed.
    Human Mutation 07/2008; 29(9):E132-49. · 5.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polymorphonuclear neutrophils (PMN) play a key role in innate immunity. Their activation and survival are tightly regulated by microbial products via pattern recognition receptors such as TLRs, which mediate recruitment of the IL-1R-associated kinase (IRAK) complex. We describe a new inherited IRAK-4 deficiency in a child with recurrent pyogenic bacterial infections. Analysis of the IRAK4 gene showed compound heterozygosity with two mutations: a missense mutation in the death domain of the protein (pArg12Cys) associated in cis-with a predicted benign variant (pArg391His); and a splice site mutation in intron 7 that led to the skipping of exon 7. A nontruncated IRAK-4 protein was detected by Western blotting. The patient's functional deficiency of IRAK-4 protein was confirmed by the absence of IRAK-1 phosphorylation after stimulation with all TLR agonists tested. The patient's PMNs showed strongly impaired responses (L-selectin and CD11b expression, oxidative burst, cytokine production, cell survival) to TLR agonists which engage TLR1/2, TLR2/6, TLR4, and TLR7/8; in contrast, the patient's PMN responses to CpG-DNA (TLR9) were normal, except for cytokine production. The surprisingly normal effect of CpG-DNA on PMN functions and apoptosis disappeared after pretreatment with PI3K inhibitors. Together, these results suggest the existence of an IRAK-4-independent TLR9-induced transduction pathway leading to PI3K activation. This alternative pathway may play a key role in PMN control of infections by microorganisms other than pyogenic bacteria in inherited IRAK-4 deficiency.
    The Journal of Immunology 11/2007; 179(7):4754-65. · 5.52 Impact Factor
  • European Journal of Pediatrics 11/2007; 166(10):1069-70. · 1.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic granulomatous disease (CGD) is a rare primary immunodeficiency caused by mutations of one of the subunits of phagocyte reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase leading to decreased or complete absence of neutrophil oxidative burst. We report the clinical and laboratory findings in two young unrelated females 14 and 9 years of age and natives of Tahiti and Reunion Islands, respectively, with severe X-linked granulomatous disease. In both cases, the infectious pattern was unusual, with convergent symptoms suggesting underlying mycobacterial infection. Functional analysis revealed low residual NADPH oxidase activity with about 5-10% of normal neutrophil population. De novo null mutations affecting the CYBB gene that encodes the gp91 protein were found in both cases in the heterozygous state (in patient 1, p.Arg130X in exon 5, and in patient 2, a novel insertion in exon 6, c.632_633insCATC). Methylation analysis confirmed that phenotype expression was linked to skewed X inactivation and showed that the de novo mutation arose on the maternally inherited chromosome in one case and on the paternally inherited chromosome in the other case. In conclusion, X-linked CGD carriers could therefore be at risk for severe infectious diseases depending on the skewed X inactivation pattern and the infectious context.
    European Journal of Pediatrics 03/2007; 166(2):153-9. · 1.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The patched (PTCH) mutation rate in nevoid basal cell carcinoma syndrome (NBCCS) reported in various studies ranges from 40 to 80%. However, few studies have investigated the role of PTCH in clinical conditions suggesting an inherited predisposition to basal cell carcinoma (BCC), although it has been suggested that PTCH polymorphisms could predispose to multiple BCC (MBCC). In this study, we therefore performed an exhaustive analysis of PTCH (mutations detection and deletion analysis) in 17 patients with the full complement of criteria for NBCCS (14 sporadic and three familial cases), and in 48 patients suspected of having a genetic predisposition to BCC (MBCC and/or age at diagnosis < or =40 years and/or familial BCC). Eleven new germline alterations of the PTCH gene were characterised in 12 out of 17 patients harbouring the full complement of criteria for the syndrome (70%). These were frameshift mutations in five patients, nonsense mutations in five patients, a small inframe deletion in one patient, and a large germline deletion in another patient. Only one missense mutation (G774R) was found, and this was in a patient affected with MBCC, but without any other NBCCS criterion. We therefore suggest that patients harbouring the full complement of NBCCS criteria should as a priority be screened for PTCH mutations by sequencing, followed by a deletion analysis if no mutation is detected. In other clinical situations that suggest genetic predisposition to BCC, germline mutations of PTCH are not common.
    British Journal of Cancer 09/2006; 95(4):548-53. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CI, confidence interval; MPM, multiple primary melanoma; OR, Odds ratio
    Journal of Investigative Dermatology 08/2006; 126(7):1657-60. · 6.19 Impact Factor

Publication Stats

1k Citations
343.42 Total Impact Points

Institutions

  • 2012
    • Centre Hospitalier Universitaire de Dijon
      Dijon, Bourgogne, France
  • 1995–2011
    • Hôpital Universitaire Robert Debré
      Lutetia Parisorum, Île-de-France, France
  • 2008
    • Paris Diderot University
      Lutetia Parisorum, Île-de-France, France
  • 2005–2007
    • Hôpital Bichat - Claude-Bernard (Hôpitaux Universitaires Paris Nord Val de Seine)
      • • Service d’Immuno-Hématologie
      • • Service de Dermatologie
      Lutetia Parisorum, Île-de-France, France