T Dohi

Nihon Pharmaceutical University, Komoro, Nagano, Japan

Are you T Dohi?

Claim your profile

Publications (137)288.83 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have revealed the antinociceptive effects of glycine transporter (GlyT) inhibitors in neuropathic pain models such as sciatic nerve-injured and diabetic animals. Bone cancer can cause the most severe pain according to complex mechanisms in which a neuropathic element is included. Bone cancer modifies the analgesic action of opioids and limits their effectiveness, and thus novel medicament for bone cancer pain is desired.
    Anesthesia and analgesia. 07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone cancer pain is the most severe among cancer pain and is often resistant to current analgesics. Thus, the development of novel analgesics effective at treating bone cancer pain are desired. Platelet-activating factor (PAF) receptor antagonists were recently demonstrated to have effective pain relieving effects on neuropathic pain in several animal models. The present study examined the pain relieving effect of PAF receptor antagonists on bone cancer pain using the femur bone cancer (FBC) model in mice. Animals were injected with osteolytic NCTC2472 cells into the tibia, and subsequently the effects of PAF receptor antagonists on pain behaviors were evaluated. Chemical structurally different type of antagonists, TCV-309, BN 50739 and WEB 2086 ameliorated the allodynia and improved pain behaviors such as guarding behavior and limb-use abnormalities in FBC model mice. The pain relieving effects of these antagonists were achieved with low doses and were long lasting. Blockade of spinal PAF receptors by intrathecal injection of TCV-309 and WEB 2086 or knockdown of the expression of spinal PAF receptor protein by intrathecal transfer of PAF receptor siRNA also produced a pain relieving effect. The amount of an inducible PAF synthesis enzyme, lysophosphatidylcholine acyltransferase 2 (LPCAT2) protein significantly increased in the spinal cord after transplantation of NCTC 2472 tumor cells into mouse tibia. The combination of morphine with PAF receptor antagonists develops marked enhancement of the analgesic effect against bone cancer pain without affecting morphine-induced constipation. Repeated administration of TCV-309 suppressed the appearance of pain behaviors and prolonged survival of FBC mice. The present results suggest that PAF receptor antagonists in combination with, or without, opioids may represent a new strategy for the treatment of persistent bone cancer pain and improve the quality of life of patients.
    PLoS ONE 01/2014; 9(3):e91746. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Platelet-activating factor (PAF) has been implicated in the pathology of neuropathic pain. Previous studies reported that PAF receptor (PAF-R) antagonists have varied anti-allodynia effects by route of administration and nerve injury models in rats. METHODS: The present study elucidated the effectiveness of PAF antagonists against neuropathic pain in four different models of peripheral nerve injury and provided insights into the mode of anti-allodynia action. RESULTS: PAF antagonists, TCV-309, BN 50739 and WEB 2086 by intravenous (i.v.) and oral administration have potent and long-lasting anti-allodynia action in mice neuropathic pain models. Treatment with PAF antagonists before surgery delayed the initiation of allodynia until the effects of these treatments were abolished. Intrathecal (i.t.) injection of the PAF antagonists and siRNA against PAF receptor ameliorated allodynia. I.t. injection of the glycine receptor (GlyR)α3 siRNA reduced the anti-allodynia effect of PAF antagonists. This evidence suggests that the anti-allodynia effect of PAF antagonists is at least in part mediated by spinal relief of PAF-induced dysfunction of GlyRα3. An analysis of the mode of anti-allodynia action of TCV-309 in vivo revealed a competitive action against PAF shortly after the injection of TCV-309, converting to a non-competitive action later. CONCLUSIONS: The present results revealed the effectiveness in anti-allodynia of PAF antagonists in different nerve injury models, and the unique mode of action; long-lasting anti-allodynia effects mediated by spinal GlyRα3 with a competitive manner at the initial stage and the following non-competitive manner of inhibition.
    European journal of pain (London, England) 01/2013; · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spinal astrocytes have key roles in the regulation of pain transmission. However, the relationship between astrocytes and the circadian system in the spinal cord remains poorly defined. In the current study, the circadian variations in the expression of several clock genes in the lumbar spinal cord of mice were examined by using real-time PCR. The expression of Period1, Period2 and Cryptochrome1 showed significant circadian oscillations, each gene peaking in the early evening. The expression of Bmal1 mRNA also exhibited a circadian pattern, peaking from around midnight to early morning. The mRNA levels of Cryptochrome2 were slightly, but not significantly altered. Molecules related to pain transmission were also investigated. The mRNA expression of glutamine synthase (GS), and cyclooxygenases (COXs), known to be involved in various spinal sensory functions, showed rhythmicity with a peak in the early evening, although the expression of the neurokinin-1 receptor, subunits of the N-methyl-d-aspartate receptor, and glutamate transporters did not change. In addition, we found that protein levels of GS and COX-1 were also high at midnight compared with midday. Furthermore, we examined the effect of intrathecal fluorocitrate (100pmol), an inhibitor of astrocytic metabolism, on the expression of oscillating genes in lumbar spinal cord. Fluorocitrate significantly suppressed astrocyte function. Furthermore, the circadian oscillation of clock gene expression and GS and COX-1 expression were suppressed. Together, these results suggest that a significant circadian rhythmicity of the expression of clock genes is present in the spinal cord and that the components of the circadian clock timed by astrocytes might contribute to spinal functions, including nociceptive processes.
    Neurochemistry International 03/2012; 60(8):817-26. · 2.66 Impact Factor
  • European Journal of Pain Supplements 04/2010; 4(1):97-97.
  • European Journal of Pain Supplements 04/2010; 4(1):95-95.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nicotine modulates dopaminergic activity in the central nervous system by acting on the reuptake system, including the dopamine transporter (DAT), although precisely remains unclear. Here we investigated the effect of nicotine on the transcriptional regulation of the human DAT (hDAT) gene by conducting luciferase reporter assays. Nicotine enhanced the transcription of hDAT gene constructs in transiently transfected SK-N-SH cells. Hexamethonium, a neuronal (ganglionic) nicotinic acetylcholine receptor antagonist, blocked the action of nicotine. Functional analyses placed the nicotine-responsive region -3.5 to -1.0 kb (from the transcription start site) upstream of the core promotor region. Deletion of intron 1, known as a silencer element of the hDAT gene, abolished nicotine's stimulatory effect. Nicotine failed to stimulate DAT promotor activity in non-neuronal CHO or COS-7 cells or in SK-N-AS cells, another neuronal cell line recently reported as a model for investigating DAT gene expression. These results suggest a nicotinic cholinergic mechanism to be involved in the nicotine-induced up-regulation of DAT gene expression.
    Neuroscience Letters 02/2010; 471(1):34-7. · 2.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transporters for dopamine (DAT) and norepinephrine (NET) are members of the Na+- and Cl--dependent neurotransmitter transporter family SLC6. There is a line of evidence that alternative splicing results in several isoforms of neurotransmitter transporters including NET. However, its relevance to the physiology and pathology of the neurotransmitter reuptake system has not been fully elucidated. We found novel isoforms of human DAT and NET produced by alternative splicing in human blood cells (DAT) and placenta (NET), both of which lacked the region encoded by exon 6. RT-PCR analyses showed a difference in expression between the full length (FL) and truncated isoforms in the brain and peripheral tissues, suggesting tissue-specific alternative splicing. Heterologous expression of the FL but not truncated isoforms of DAT and NET in COS-7 cells revealed transport activity. However, immunocytochemistry with confocal microscopy and a cell surface biotinylation assay demonstrated that the truncated as well as FL isoform was expressed at least in part in the plasma membrane at the cell surface, although the truncated DAT was distributed to the cell surface slower than FL DAT. A specific antibody to the C-terminus of DAT labeled the variant but not FL DAT, when cells were not treated with Triton for permeabilization, suggesting the C-terminus of the variant to be located extracellulary. Co-expression of the FL isoform with the truncated isoform in COS-7 cells resulted in a reduced uptake of substrates, indicating a dominant negative effect of the variant. Furthermore, an immunoprecipitation assay revealed physical interaction between the FL and truncated isoforms. The unique expression and function and the proposed membrane topology of the variants suggest the importance of isoforms of catecholamine transporters in monoaminergic signaling in the brain and peripheral tissues.
    PLoS ONE 01/2010; 5(8):e11945. · 3.53 Impact Factor
  • Journal of Pharmacological Sciences - J PHARMACOL SCI. 01/2010; 113(3):234-245.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytes in the hypothalamic suprachiasmatic nucleus, site of the master circadian pacemaker, play an essential role in the regulation of systemic circadian rhythms. To evaluate involvement of noradrenergic systems in regulation of circadian variation of clock-genes in astrocytes, we investigated effects of noradrenaline (NA) on expression of several clock genes in C6 glioma cells by using real-time PCR analysis. Treatment with NA (10 microM) induced transient expression of Per1 mRNA, but not of Per2, Bmal1, Clock, Cry1, or Cry2 mRNA, through activation of beta(2) adrenoceptors. Action of NA was partially blocked by H-89 [protein kinase A (PKA) inhibitor] or KG-501 [inhibitor of cAMP response element binding protein (CREB)]. We found that pretreatment with genistein or PP2 (general or Src tyrosine kinase inhibitors, respectively) or LiCl [inhibitor of glycogen synthase kinase-3beta (GSK-3beta)] significantly inhibited NA-induced Per1 mRNA expression. In addition, treatment with H-89 and either genistein or LiCl completely blocked NA stimulatory effects. NA markedly induced tyrosine phosphorylation of Src and GSK-3beta via activation of beta(2) adrenoceptors. Phosphorylation of GSK-3beta by NA was completely eliminated by genistein or PP2. These results primarily suggest that two distinct NA-mediating pathways, PKA-CREB and Src-GSK-3beta, play crucial roles in regulation of Per1 expression in astroglial cells.
    Journal of Pharmacological Sciences 01/2010; 113(3):234-45. · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To elucidate the involvement of the noradrenergic system in the regulation of spinal microglial activity, we examined the effects of noradrenaline (NA) on the phosphorylation of three MAP kinases (extracellular signal-regulated kinase (ERK), p38, or c-Jun N-terminal kinase (JNK)) stimulated by ATP in rat cultured spinal microglia using Western blotting. ATP (100 microM) quickly induced the phosphorylation of three MAP kinases and MKK3/6, which are upstream kinases of p38. Under these conditions, NA inhibited only the ATP-stimulated phosphorylation of p38 in a time (30-60 min)- and dose (10-100 microM)-dependent manner, but did not affect those of ERK, JNK, or MKK3/6. The inhibitory action of NA was completely reversed by pretreatment with propranolol, an antagonist for beta-adrenoceptors, or both atenolol and ICI118551, selective antagonists for beta1 and beta2, respectively. Treatment with dibutyryl cAMP or the selective activator of PKA mimicked the inhibitory effect of NA. Furthermore, treatment with KT5720, an inhibitor of protein kinase A, completely blocked the action of NA. These data suggest that NA could control the activation of p38 through the beta1/2-adrenergic pathways, which include the production of cAMP and the activation of PKA. Simultaneously, we found that NA also markedly inhibited the ATP-induced increase in the expression of tumor necrosis factor (TNF)-alpha mRNA through beta-adrenergic pathways. Furthermore, preincubation with either actinomycin D or cyclohexamide, general inhibitors of transcription or protein synthesis, respectively, almost completely blocked the inhibitory action of NA on the ATP-stimulated phosphorylation of p38. These results suggest that de novo synthesis of certain factors by NA through beta-adrenoceptors would participate in the modulation of p38 activity. Thus, the inhibitory system via beta1/2-adrenergic pathways in spinal microglia appears to have an important role in the modulation of microglial functions through the downregulation of p38 activity.
    Neurochemistry International 10/2009; 55(4):226-34. · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Injury to peripheral or spinal nerves following either trauma or disease has several consequences including the development of neuropathic pain. This syndrome is often refractory against conventional analgesics; and thus, novel medicaments are desired for its treatment. Recent studies have emphasized that dysfunction of inhibitory neuronal regulation of pain signal transduction may be relevant to the development of neuropathic pain. Glycinergic neurons are localized in specific brain regions and the spinal cord, where they play an important role in the prevention of pathological pain symptoms. Thus, an enhancement of glycinergic control in the spinal cord is a promising strategy for pain relief from neuropathic pain. Glycine transporter (GlyT) 1 and GlyT2, which are located in glial cells and neurons, respectively play important roles by clearing synaptically released glycine or supplying glycine to glycinergic neurons to regulate glycinergic neurotransmission. Thus, an inhibition of GlyTs could be used to modify pain signal transmission in the spinal cord. Recently developed specific inhibitors of GlyTs have made this possibility a reality. Both GlyT1 and GlyT2 inhibitors produced potential anti-nociceptive effect in various neuropathic pain models, chronic and acute inflammatory models in animals. Their anti-allodynia effects are mediated by the inhibition of GlyTs following activation of spinal glycine receptor alpha3. These results established GlyTs as target molecules for medicaments for neuropathic pain. Moreover, the phase-dependent anti-allodynia effects of GlyT inhibitors have provided important information on effective therapeutic strategies and also understanding the underlying molecular mechanisms of the development of neuropathic pain.
    Pharmacology [?] Therapeutics 05/2009; 123(1):54-79. · 7.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glycine has been shown to possess important functions as a bidirectional neurotransmitter. At synaptic clefts, the concentration of glycine is tightly regulated by the uptake of glycine released from nerve terminals into glial cells by the transporter GLYT1. It has been recently demonstrated that protein kinase C (PKC) mediates the downregulation of GLYT1 activity in several cell systems. However, it remains to be elucidated which subtypes of PKC might be important in the regulation of GLYT1 activity. In this study, we attempted to make clear the mechanism of the phorbol 12-myristate 13-acetate (PMA)-suppressed uptake of glycine in C6 glioma cells which have the native expression of GLYT1. In C6 cells, the expression of PKCalpha, PKCdelta, and PKCvarepsilon of the PMA-activated subtypes was detected. The PMA-suppressed action was fully reversed by the removal of both extracellular and intracellular Ca(2+). Furthermore, the inhibitory effects of PMA or thymeleatoxin (THX), which is a selective activator of conventional PKC (cPKC), were blocked by the downregulation of all PKCs expressed in C6 cells by long-term incubation with THX, or pretreatment with GF109203X or Gö6983, which are broad inhibitors of PKC, or Gö6976, a selective inhibitor of cPKC. On the other hand, treatment of C6 cells with ingenol, a selective activator of novel PKCs, especially PKCdelta and PKCvarepsilon, did not affect the transport of glycine. Silencing of PKCdelta expression by using RNA interference or pretreatment with the inhibitor peptide for PKCvarepsilon had no effect on the PMA-suppressed uptake of glycine. Together, these results suggest PKCalpha to be a crucial factor in the regulation of glycine transport in C6 cells.
    Neurochemistry International 09/2008; 53(6-8):248-54. · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuropathic pain is refractory against conventional analgesics, and thus novel medicaments are desired for the treatment. Glycinergic neurons are localized in specific brain regions, including the spinal cord, where they play an important role in the regulation of pain signal transduction. Glycine transporter (GlyT)1, present in glial cells, and GlyT2, located in neurons, play roles in modulating glycinergic neurotransmission by clearing synaptically released glycine or supplying glycine to the neurons and thus could modify pain signal transmission in the spinal cord. In this study, we demonstrated that i.v. or intrathecal administration of GlyT1 inhibitors, cis-N-methyl-N-(6-methoxy-1-phenyl-1,2,3,4-tetrahydronaphthalen-2-yl methyl)amino methylcarboxylic acid (ORG25935) or sarcosine, and GlyT2 inhibitors, 4-benzyloxy-3,5-dimethoxy-N-[1-(dimethylaminocyclopently)-methyl]benzamide (ORG25543) and (O-[(2-benzyloxyphenyl-3-fluorophenyl)methyl]-L-serine) (ALX1393), or knockdown of spinal GlyTs by small interfering RNA of GlyTs mRNA produced a profound antiallodynia effect in a partial peripheral nerve ligation model and other neuropathic pain models in mice. The antiallodynia effect is mediated through spinal glycine receptor alpha3. These results established GlyTs as the target molecules for the development of medicaments for neuropathic pain. However, these manipulations to stimulate glycinergic neuronal activity were without effect during the 4 days after nerve injury, whereas manipulations to inhibit glycinergic neuronal activity protected against the development of allodynia in this phase. The results implied that the timing of medication with their inhibitors should be considered, because glycinergic control of pain was reversed in the critical period of 3 to 4 days after surgery. This may also provide important information for understanding the underlying molecular mechanisms of the development of neuropathic pain.
    Journal of Pharmacology and Experimental Therapeutics 09/2008; 326(2):633-45. · 3.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been shown that spinal microglia expressing certain types of glutamate transporters function in the modulation of neuropathogenesis. In this study, the effect of ATP, potentially able to mediate the communication between neurons and glial cells in the spinal cord on the transport of glutamate in cultured spinal microglia, was investigated. Both GLAST and GLT-1 were detected in the cells. Preincubation with ATP or 2'-3'-O-(4-benzoyl-benzoyl) ATP (BzATP), a selective agonist for the P2X(7) receptor, significantly blocked the uptake of glutamate. The effect of BzATP was reversed by pretreatment with brilliant blue G or oxidized ATP, each a selective antagonist for P2X(7). The inhibitory effect of P2X(7) receptor activation also occurred in the absence of extracellular Na(+) or Ca(2+), suggesting that the receptor regulates glutamate transport by a metabotropic pathway. Furthermore, pretreatment with inhibitors of mitogen-activated protein kinase kinase, or antioxidants, significantly reversed the inhibitory effect of BzATP on the uptake of glutamate. Incubation with BzATP led to a marked decrease in the V(max), but not the K(m), of glutamate transport. However, treatment with BzATP did not induce the trafficking of glutamate transporters. These results suggest that the activation of P2X(7) receptors in spinal microglia is important in the regulation of glutamate transport via activation of the extracellular signal-regulated kinase cascade and production of oxidants.
    Glia 05/2008; 56(5):528-38. · 5.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although cyclic ADP-ribose (cADPR), a novel Ca(2+)-mobilizing mediator, is suggested to be involved in the functions of neutrophils in rodents, its role in human neutrophils remains unclear. The present study examined the ability of cADPR to mobilize Ca(2+) and mediate formyl methionyl leucyl phenylalanine (fMLP)-stimulated increase in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and migration in human neutrophils. cADPR induced Ca(2+) release from digitonin-permeabilized neutrophils, and the release was blocked by 8Br-cADPR, an antagonist of cADPR. Immunophilin ligands, FK506 and rapamycin, but not cyclosporine A, inhibited cADPR-induced Ca(2+) release. 8Br-cADPR partially reduced fMLP-induced [Ca(2+)](i) rise and abolished the rise in combination with 2APB, an IP(3)-receptor antagonist. Anti-CD38Ab and NADase that interfere with cADPR formation, reduced the fMLP-induced [Ca(2+)](i) rise. When beta-NAD(+), a substrate of ADP-ribosyl cyclase, and cADPR were added to the medium, the former gradually increased [Ca(2+)](i) and the latter potentiated the fMLP-induced [Ca(2+)](i) rise. The beta-NAD(+)-induced [Ca(2+)](i) rise in Ca(2+)-free medium was inhibited by anti-CD38Ab, 8Br-cADPR, FK506, ruthenium red, and thapsigargin. mRNAs of nucleoside transporter (NT), ENT1, ENT2, CNT, and CNT3 were expressed in neutrophils; and their inhibitors, inosine, uridine, and s-(4-nitrobenzyl)-6-thioinosine, reduced the [Ca(2+)](i) rise induced by beta-NAD(+) and fMLP. fMLP-timulated migration was inhibited by the removal of Ca(2+) from the medium or by the addition of 8Br-cADPR, anti-CD38Ab, NADase, and NT inhibitors. These results suggest that cADPR was synthesized extracellularly by CD38, transported into the cells through NTs, and then Ca(2+) was mobilized by FK506-binding protein-dependent process. This process may be involved in fMLP-induced intracellular Ca(2+) signaling and migration in human neutrophils.
    Journal of Pharmacological Sciences 04/2008; 106(3):492-504. · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our previous study showed that intrathecal (i.t.) injection of platelet-activating factor (PAF) induced tactile allodynia, suggesting that spinal PAF is a mediator of neuropathic pain. The present study further examined the spinal molecules participating in PAF-induced tactile allodynia in mice. I.t. injection of L-arginine, NO donor (5-amino-3-morpholinyl-1,2,3-oxadiazolium (SIN-1) or 3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene (NOC-18)) or cGMP analog (8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphate; pCPT-cGMP) induced tactile allodynia. PAF- and glutamate- but not SIN-1- or pCPT-cGMP-induced tactile allodynia was blocked by an NO synthase inhibitor. NO scavengers and guanylate cyclase inhibitors protected mice against the induction of allodynia by PAF, glutamate and SIN-1, but not by pCPT-cGMP. cGMP-dependent protein kinase (PKG) inhibitors blocked the allodynia induced by PAF, glutamate, SIN-1 and pCPT-cGMP. To identify signalling molecules through which PKG induces allodynia, glycine receptor alpha3 (GlyR alpha3) was knocked down by spinal transfection of siRNA for GlyR alpha3. A significant reduction of GlyR alpha3 expression in the spinal superficial layers of mice treated with GlyR alpha3 siRNA was confirmed by immunohistochemical and Western blotting analyses. Functional targeting of GlyR alpha3 was suggested by the loss of PGE(2)-induced thermal hyperalgesia and the enhancement of allodynia induced by bicuculline, a GABA(A) receptor antagonist in mice after GlyR alpha3 siRNA treatment. pCPT-cGMP, PAF, glutamate and SIN-1 all failed to induce allodynia after the knockdown of GlyR alpha3. These results suggest that the glutamate-NO-cGMP-PKG pathway in the spinal cord may be involved in the mechanism of PAF-induced tactile allodynia, and GlyR alpha3 could be a target molecule through which PKG induces allodynia.
    Pain 04/2008; 138(3):525-36. · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that chronic administration of the antidepressant desipramine, a norepinephrine transporter (NET) inhibitor to mice markedly enhanced convulsions induced by local anesthetics and that behavioral sensitization may be relevant to decreased [(3)H]norepinephrine uptake by the isolated hippocampus. The co-administration of local anesthetics with desipramine reversed the behavioral sensitization and down-regulation of NET function induced by desipramine. The present study aimed to elucidate whether chronic treatment with desipramine regulates the expression of NET protein examined in membrane fractions in various brain regions and whether co-administration of local anesthetics affects the desipramine-induced alteration of NET expression. Desipramine with or without local anesthetics was injected intraperitoneally once a day for 5 days. The animals were decapitated 48 h after the last administration of drugs and the whole cell fraction, membrane fraction and cell-surface protein fraction were prepared. [(3)H]nisoxetine binding was significantly reduced in the P2 fraction of the hippocampus by chronic administration of desipramine, and the reduction was overcome by co-administration of lidocaine with desipramine. Immunoreactive NET was detected by SDS-PAGE and immunoblotting in the murine hippocampus. NET protein expression in the whole cell fraction and membrane fraction was not affected by treatment with any drugs. However, administration of desipramine significantly reduced the amount of immunoreactive NET in the cell-surface protein fraction. This reduction was blocked by simultaneous injection of lidocaine, bupivacaine or tricaine. These results indicate that the NET down-regulation indicated by the reduction of [(3)H]nisoxetine binding was induced by administration of desipramine via decrease of NET localization on the cell surface. The antagonistic actions of local anesthetics against NET down-regulation by desipramine were related to alterations of the cell-surface localization of NET.
    Neurochemistry International 01/2008; 52(4-5):826-33. · 2.66 Impact Factor
  • Shigeo Kitayama, Toshihiro Dohi
    Folia Pharmacologica Japonica 01/2008; 130(6):443.
  • Shigeo Kitayama, Chiharu Sogawa, Toshihiro Dohi
    Folia Pharmacologica Japonica 01/2008; 130(6):444-9.

Publication Stats

1k Citations
288.83 Total Impact Points

Institutions

  • 2010–2013
    • Nihon Pharmaceutical University
      Komoro, Nagano, Japan
  • 1977–2012
    • Hiroshima University
      • • Department of Pharmacology
      • • Department of Dental Pharmacology
      • • Department of Dental Anesthesiology
      • • Faculty of Dentistry
      Hiroshima-shi, Hiroshima-ken, Japan
  • 2003–2010
    • Okayama University
      • • RI Research Center
      • • Department of Dental Pharmacology
      Okayama, Okayama, Japan