Luis B Barreiro

CHU Sainte-Justine, Montréal, Quebec, Canada

Are you Luis B Barreiro?

Claim your profile

Publications (43)429.71 Total impact

  • Luis B Barreiro, Lluis Quintana-Murci
    Current opinion in immunology. 09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The evolutionary history of the human pygmy phenotype (small body size), a characteristic of African and Southeast Asian rainforest hunter-gatherers, is largely unknown. Here we use a genome-wide admixture mapping analysis to identify 16 genomic regions that are significantly associated with the pygmy phenotype in the Batwa, a rainforest hunter-gatherer population from Uganda (east central Africa). The identified genomic regions have multiple attributes that provide supporting evidence of genuine association with the pygmy phenotype, including enrichments for SNPs previously associated with stature variation in Europeans and for genes with growth hormone receptor and regulation functions. To test adaptive evolutionary hypotheses, we computed the haplotype-based integrated haplotype score (iHS) statistic and the level of population differentiation (FST) between the Batwa and their agricultural neighbors, the Bakiga, for each genomic SNP. Both |iHS| and FST values were significantly higher for SNPs within the Batwa pygmy phenotype-associated regions than the remainder of the genome, a signature of polygenic adaptation. In contrast, when we expanded our analysis to include Baka rainforest hunter-gatherers from Cameroon and Gabon (west central Africa) and Nzebi and Nzime neighboring agriculturalists, we did not observe elevated |iHS| or FST values in these genomic regions. Together, these results suggest adaptive and at least partially convergent origins of the pygmy phenotype even within Africa, supporting the hypothesis that small body size confers a selective advantage for tropical rainforest hunter-gatherers but raising questions about the antiquity of this behavior.
    Proceedings of the National Academy of Sciences 08/2014; 111(35):E3596-E3603. · 9.81 Impact Factor
  • Alain Pacis, Yohann Nédélec, Luis B Barreiro
    [Show abstract] [Hide abstract]
    ABSTRACT: The response of host immune cells to microbial stimuli is dependent on robust and coordinated gene expression programs involving the transcription of thousands of genes. The dysregulation of such regulatory programs is likely to significantly contribute to the marked differences in susceptibility to infectious diseases observed among individuals and between human populations. Although the specific factors leading to a dysfunctional immune response to infection remain largely unknown, we are increasingly appreciating the importance of genetic variants in altering the expression levels of immune-related genes, possibly via epigenetic changes. This review describes how recent technological advances have profoundly contributed to our current understanding of the genetic architecture and the epigenetic rules controlling immune responses to infectious agents and how genetic and epigenetic data can be combined to unravel the mechanisms associated with host variation in transcriptional responses to infection.
    Current opinion in immunology. 06/2014; 29C:119-126.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The NKG2 family of NK receptors includes activating and inhibitory members. With the exception of the homodimer-forming NKG2D, NKG2 receptors recognize the nonclassical MHC class I molecule HLA-E, and they can be subdivided into two groups: those that associate with and signal through DAP12 to activate cells, and those that contain an ITIM motif to promote inhibition. The function of NKG2 family member NKG2E is unclear in humans, and its surface expression has never been conclusively established, largely because there is no Ab that binds specifically to NKG2E. Seeking to determine a role for this molecule, we chose to investigate its expression and ability to form complexes with intracellular signaling molecules. We found that NKG2E was capable of associating with CD94 and DAP12 but that the complex was retained intracellularly at the endoplasmic reticulum instead of being expressed on cell surfaces, and that this localization was dependent on a sequence of hydrophobic amino acids in the extracellular domain of NKG2E. Because this particular sequence has emerged and been conserved selectively among higher order primates evolutionarily, this observation raises the intriguing possibility that NKG2E may function as an intracellular protein.
    Journal of immunology (Baltimore, Md. : 1950). 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide scans for selection have identified multiple regions of the human genome as being targeted by positive selection. However, only a small proportion has been replicated across studies, and the prevalence of positive selection as a mechanism of adaptive change in humans remains controversial. Here we explore the power of two haplotype-based statistics - the integrated haplotype score (iHS) and the Derived Intra-allelic Nucleotide Diversity (DIND) test - in the context of next-generation sequencing data, and evaluate their robustness to demography and other selection modes. We show that these statistics are both powerful for the detection of recent positive selection, regardless of population history, and robust to variation in coverage, with DIND being insensitive to very low coverage. We apply these statistics to whole-genome sequence datasets from the 1000 Genomes Project and Complete Genomics. We found that putative targets of selection were highly significantly enriched in genic and non-synonymous SNPs, and that DIND was more powerful than iHS in the context of small sample sizes, low-quality genotype calling or poor coverage. As we excluded genomic confounders and alternative selection models, such as background selection, the observed enrichment attests to the action of recent, strong positive selection. Further support to the adaptive significance of these genomic regions came from their enrichment in functional variants detected by genome-wide association studies, informing the relationship between past selection and current benign and disease-related phenotypic variation. Our results indicate that hard sweeps targeting low-frequency standing variation have played a moderate, albeit significant, role in recent human evolution.
    Molecular Biology and Evolution 04/2014; · 10.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Granulomas are the hallmark of Mycobacterium tuberculosis infection. As the host fails to control the bacteria, the center of the granuloma exhibits necrosis resulting from the dying of infected macrophages. The release of the intracellular pool of nucleotides into the surrounding medium may modulate the response of newly infected macrophages, although this has never been investigated. Here, we show that extracellular ATP indirectly modulates the expression of 272 genes in human macrophages infected with M. tuberculosis, and that it induces their alternative activation. ATP is rapidly hydrolyzed by the ecto-ATPase CD39 into AMP, and it is AMP that regulates the macrophage response through the adenosine A2A receptor. Our findings reveal a previously unrecognized role for the purinergic pathway in the host response to M. tuberculosis. Dampening inflammation through signaling via the adenosine A2A receptor may limit tissue damage, but may also favor bacterial immune escape.
    The Journal of Infectious Diseases 03/2014; · 5.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The emergence of agriculture in West-Central Africa approximately 5,000 years ago, profoundly modified the cultural landscape and mode of subsistence of most sub-Saharan populations. How this major innovation has had an impact on the genetic history of rainforest hunter-gatherers-historically referred to as 'pygmies'-and agriculturalists, however, remains poorly understood. Here we report genome-wide SNP data from these populations located west-to-east of the equatorial rainforest. We find that hunter-gathering populations present up to 50% of farmer genomic ancestry, and that substantial admixture began only within the last 1,000 years. Furthermore, we show that the historical population sizes characterizing these communities already differed before the introduction of agriculture. Our results suggest that the first socio-economic interactions between rainforest hunter-gatherers and farmers introduced by the spread of farming were not accompanied by immediate, extensive genetic exchanges and occurred on a backdrop of two groups already differentiated by their specialization in two ecotopes with differing carrying capacities.
    Nature Communications 02/2014; 5:3163. · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are critical regulators of gene expression and their role in a wide variety of biological processes, including host antimicrobial defense, is increasingly well described. Consistent with their diverse functional effects, miRNA expression is highly context-dependent and shows marked changes upon cellular activation. However, the genetic control of miRNA expression in response to external stimuli and the impact of such perturbations on miRNA-mediated regulatory networks at the population level remain to be determined. Here we assessed changes in miRNA expression upon Mycobacterium tuberculosis infection and mapped expression quantitative trait loci (eQTL) in dendritic cells from a panel of healthy individuals. Genome-wide expression profiling revealed that ~40% of miRNAs are differentially expressed upon infection. We find that the expression of 3% of miRNAs is controlled by proximate genetic factors, which are enriched in a promoter-specific histone modification associated with active transcription. Notably, we identify two infection-specific response eQTLs, for miR-326 and miR-1260, providing an initial assessment of the impact of genotype-environment interactions on miRNA molecular phenotypes. Furthermore, we show that infection coincides with a marked remodeling of the genome-wide relationships between miRNA and mRNA expression levels. This observation, supplemented by experimental data using the model of miR-29a, sheds light on the role of a set of miRNAs in cellular responses to infection. Collectively, this study increases our understanding of the genetic architecture of miRNA expression in response to infection, and highlights the wide-reaching impact of altering miRNA expression on the transcriptional landscape of a cell.
    Genome Research 01/2014; · 14.40 Impact Factor
  • Alain Pacis, Yohann Nédélec, Luis B Barreiro
    [Show abstract] [Hide abstract]
    ABSTRACT: The response of host immune cells to microbial stimuli is dependent on robust and coordinated gene expression programs involving the transcription of thousands of genes. The dysregulation of such regulatory programs is likely to significantly contribute to the marked differences in susceptibility to infectious diseases observed among individuals and between human populations. Although the specific factors leading to a dysfunctional immune response to infection remain largely unknown, we are increasingly appreciating the importance of genetic variants in altering the expression levels of immune-related genes, possibly via epigenetic changes. This review describes how recent technological advances have profoundly contributed to our current understanding of the genetic architecture and the epigenetic rules controlling immune responses to infectious agents and how genetic and epigenetic data can be combined to unravel the mechanisms associated with host variation in transcriptional responses to infection.
    Current Opinion in Immunology. 01/2014; 29:119–126.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The composition of the human gut microbiome is influenced by many environmental factors. Diet is thought to be one of the most important determinants, though we have limited understanding of the extent to which dietary fluctuations alter variation in the gut microbiome between individuals. In this study, we examined variation in gut microbiome composition between winter and summer over the course of one year in 60 members of a founder population, the Hutterites. Because of their communal lifestyle, Hutterite diets are similar across individuals and remarkably stable throughout the year, with the exception that fresh produce is primarily served during the summer and autumn months. Our data indicate that despite overall gut microbiome stability within individuals over time, there are consistent and significant population-wide shifts in microbiome composition across seasons. We found seasonal differences in both (i) the abundance of particular taxa (false discovery rate <0.05), including highly abundant phyla Bacteroidetes and Firmicutes, and (ii) overall gut microbiome diversity (by Shannon diversity; P = 0.001). It is likely that the dietary fluctuations between seasons with respect to produce availability explain, at least in part, these differences in microbiome composition. For example, high levels of produce containing complex carbohydrates consumed during the summer months might explain increased abundance of Bacteroidetes, which contain complex carbohydrate digesters, and decreased levels of Actinobacteria, which have been negatively correlated to fiber content in food questionnaires. Our observations demonstrate the plastic nature of the human gut microbiome in response to variation in diet.
    PLoS ONE 01/2014; 9(3):e90731. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chiari-like malformation (CM) is a developmental abnormality of the craniocervical junction that is common in the Griffon Bruxellois (GB) breed with an estimated prevalence of 65%. This disease is characterized by overcrowding of the neural parenchyma at the craniocervical junction and disturbance of cerebrospinal fluid (CSF) flow. The most common clinical sign is pain either as a direct consequence of CM or neuropathic pain as a consequence of secondary syringomyelia. The etiology of CM remains unknown but genetic factors play an important role. To investigate the genetic complexity of the disease, a quantitative trait locus (QTL) approach was adopted. A total of 14 quantitative skull and atlas measurements were taken and were tested for association to CM. Six traits were found to be associated to CM and were subjected to a whole-genome association study using the Illumina canine high density bead chip in 74 GB dogs (50 affected and 24 controls). Linear and mixed regression analyses identified associated single nucleotide polymorphisms (SNPs) on 5 Canis Familiaris Autosomes (CFAs): CFA2, CFA9, CFA12, CFA14 and CFA24. A reconstructed haplotype of 0.53 Mb on CFA2 strongly associated to the height of the cranial fossa (diameter F) and an haplotype of 2.5 Mb on CFA14 associated to both the height of the rostral part of the caudal cranial fossa (AE) and the height of the brain (FG) were significantly associated to CM after 10 000 permutations strengthening their candidacy for this disease (P = 0.0421, P = 0.0094 respectively). The CFA2 QTL harbours the Sall-1 gene which is an excellent candidate since its orthologue in humans is mutated in Townes-Brocks syndrome which has previously been associated to Chiari malformation I. Our study demonstrates the implication of multiple traits in the etiology of CM and has successfully identified two new QTL associated to CM and a potential candidate gene.
    PLoS ONE 01/2014; 9(4):e89816. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study of the genetic and selective landscape of immunity genes across primates can provide insight into the existing differences in susceptibility to infection observed between human and non-human primates. Here, we explored how selection has driven the evolution of a key family of innate immunity receptors, the Toll-like receptors (TLRs), in African great ape species. We sequenced the ten TLRs in various populations of chimpanzees and gorillas, and analysed these data jointly with a human dataset. We found that purifying selection has been more pervasive in great apes than in humans. Furthermore, in chimpanzees and gorillas, purifying selection has targeted TLRs irrespectively of whether they are endosomal or cell-surface, in contrast with humans where strong selective constraints are restricted to endosomal TLRs. These observations suggest important differences in the relative importance of TLR-mediated pathogen sensing, such as that of recognition of flagellated bacteria by TLR5, between human and great apes. Lastly, we used a population genetics-phylogenetics method that jointly analyse polymorphism and divergence data to detect fine-scale variation in selection pressures at specific codons within TLR genes. We identified different codons at different TLRs as being under positive selection in each species, highlighting that functional variation at these genes has conferred a selective advantage in immunity to infection to specific primate species. Overall, this study showed that the degree of selection driving the evolution of TLRs has largely differed between human and non-human primates, increasing our knowledge on their respective biological contribution to host defence in the natural setting.
    Human Molecular Genetics 07/2013; · 7.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leprosy reversal reactions type 1 (T1R) are acute immune episodes that affect a subset of leprosy patients and remain a major cause of nerve damage. Little is known about the relative importance of innate versus environmental factors in the pathogenesis of T1R. In a retrospective design, we evaluated innate differences in response to Mycobacterium leprae between healthy individuals and former leprosy patients affected or free of T1R by analyzing the transcriptome response of whole blood to M. leprae sonicate. Validation of results was conducted in a subsequent prospective study. We observed the differential expression of 581 genes upon exposure of whole blood to M. leprae sonicate in the retrospective study. We defined a 44 T1R gene set signature of differentially regulated genes. The majority of the T1R set genes were represented by three functional groups: i) pro-inflammatory regulators; ii) arachidonic acid metabolism mediators; and iii) regulators of anti-inflammation. The validity of the T1R gene set signature was replicated in the prospective arm of the study. The T1R genetic signature encompasses genes encoding pro- and anti-inflammatory mediators of innate immunity. This suggests an innate defect in the regulation of the inflammatory response to M. leprae antigens. The identified T1R gene set represents a critical first step towards a genetic profile of leprosy patients who are at increased risk of T1R and concomitant nerve damage.
    PLoS Genetics 07/2013; 9(7):e1003624. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Only a small fraction of individuals infected with Mycobacterium tuberculosis develop clinical tuberculosis (TB) in their lifetime. Genetic epidemiological evidence suggests a genetic determinism of pulmonary TB (PTB), but the molecular basis of genetic predisposition to PTB remains largely unknown. We used a positional-cloning approach to carry out ultrafine linkage-disequilibrium mapping of a previously identified susceptibility locus in chromosomal region 8q12-13 by genotyping 3,216 SNPs in a family-based Moroccan sample including 286 offspring with PTB. We observed 44 PTB-associated SNPs (p < 0.01), which were genotyped in an independent set of 317 cases and 650 controls from Morocco. A single signal, consisting of two correlated SNPs close to TOX, rs1568952 and rs2726600 (combined p = 1.1 × 10(-5) and 9.2 × 10(-5), respectively), was replicated. Stronger evidence of association was found in individuals who developed PTB before the age of 25 years (combined p for rs1568952 = 4.4 × 10(-8); odds ratio of PTB for AA versus AG/GG = 3.09 [1.99-4.78]). The association with rs2726600 (p = 0.04) was subsequently replicated in PTB-affected subjects under 25 years in a study of 243 nuclear families from Madagascar. Stronger evidence of replication in Madagascar was obtained for additional SNPs in strong linkage disequilibrium with the two initial SNPs (p = 0.003 for rs2726597), further confirming the signal. We thus identified around rs1568952 and rs2726600 a cluster of SNPs strongly associated with early-onset PTB in Morocco and Madagascar. SNP rs2726600 is located in a transcription-factor binding site in the 3' region of TOX, and further functional explorations will focus on CD4 T lymphocytes.
    The American Journal of Human Genetics 02/2013; · 11.20 Impact Factor
  • Source
    L B Barreiro, J Tung
    [Show abstract] [Hide abstract]
    ABSTRACT: Amphibian species around the world are currently becoming endangered or lost at a rate that outstrips other vertebrates—victims of a combination of habitat loss, climate change and susceptibility to emerging infectious disease (Stuart et al. 2004). One of the most devastating such diseases is caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), which infects hundreds of amphibian species on multiple continents. While Bd itself has been characterized for some time, we still know little about the mechanisms that make it so deadly. In this issue of Molecular Ecology, Rosenblum et al. describe a genomic approach to this question, reporting the results of a genome-wide analysis of the transcriptional response to Bd in the liver, skin and spleen of mountain yellow-legged frogs (Rana mucosa and R. sierrae: Fig. 1) (Rosenblum et al. 2012). Their results indicate that the skin is not only the first, but likely the most important, line of defence in these animals. Strikingly, they describe a surprisingly modest immune response to infection in Rana, a result that may help explain variable Bd susceptibility across populations and species.
    Molecular Ecology 07/2012; 21(13):3095-7. · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Variation in the social environment is a fundamental component of many vertebrate societies. In humans and other primates, adverse social environments often translate into lasting physiological costs. The biological mechanisms associated with these effects are therefore of great interest, both for understanding the evolutionary impacts of social behavior and in the context of human health. However, large gaps remain in our understanding of the mechanisms that mediate these effects at the molecular level. Here we addressed these questions by leveraging the power of an experimental system that consisted of 10 social groups of female macaques, in which each individual's social status (i.e., dominance rank) could be experimentally controlled. Using this paradigm, we show that dominance rank results in a widespread, yet plastic, imprint on gene regulation, such that peripheral blood mononuclear cell gene expression data alone predict social status with 80% accuracy. We investigated the mechanistic basis of these effects using cell type-specific gene expression profiling and glucocorticoid resistance assays, which together contributed to rank effects on gene expression levels for 694 (70%) of the 987 rank-related genes. We also explored the possible contribution of DNA methylation levels to these effects, and identified global associations between dominance rank and methylation profiles that suggest epigenetic flexibility in response to status-related behavioral cues. Together, these results illuminate the importance of the molecular response to social conditions, particularly in the immune system, and demonstrate a key role for gene regulation in linking the social environment to individual physiology.
    Proceedings of the National Academy of Sciences 04/2012; 109(17):6490-5. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tuberculosis (TB) is a major public health problem. One-third of the world's population is estimated to be infected with Mycobacterium tuberculosis (MTB), the etiological agent causing TB, and active disease kills nearly 2 million individuals worldwide every year. Several lines of evidence indicate that interindividual variation in susceptibility to TB has a heritable component, yet we still know little about the underlying genetic architecture. To address this, we performed a genome-wide mapping study of loci that are associated with functional variation in immune response to MTB. Specifically, we characterized transcript and protein expression levels and mapped expression quantitative trait loci (eQTL) in primary dendritic cells (DCs) from 65 individuals, before and after infection with MTB. We found 198 response eQTL, namely loci that were associated with variation in gene expression levels in either untreated or MTB-infected DCs, but not both. These response eQTL are associated with natural regulatory variation that likely affects (directly or indirectly) host interaction with MTB. Indeed, when we integrated our data with results from a genome-wide association study (GWAS) for pulmonary TB, we found that the response eQTL were more likely to be genetically associated with the disease. We thus identified a number of candidate loci, including the MAPK phosphatase DUSP14 in particular, that are promising susceptibility genes to pulmonary TB.
    Proceedings of the National Academy of Sciences 01/2012; 109(4):1204-9. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interferons (IFNs) are cytokines that play a key role in innate and adaptive immune responses. Despite the large number of immunological studies of these molecules, the relative contributions of the numerous IFNs to human survival remain largely unknown. Here, we evaluated the extent to which natural selection has targeted the human IFNs and their receptors, to provide insight into the mechanisms that govern host defense in the natural setting. We found that some IFN-α subtypes, such as IFN-α6, IFN-α8, IFN-α13, and IFN-α14, as well as the type II IFN-γ, have evolved under strong purifying selection, attesting to their essential and nonredundant function in immunity to infection. Conversely, selective constraints have been relaxed for other type I IFNs, particularly for IFN-α10 and IFN-ε, which have accumulated missense or nonsense mutations at high frequencies within the population, suggesting redundancy in host defense. Finally, type III IFNs display geographically restricted signatures of positive selection in European and Asian populations, indicating that genetic variation at these genes has conferred a selective advantage to the host, most likely by increasing resistance to viral infection. Our population genetic analyses show that IFNs differ widely in their biological relevance, and highlight evolutionarily important determinants of host immune responsiveness.
    Journal of Experimental Medicine 12/2011; 208(13):2747-59. · 13.21 Impact Factor
  • Bana Jabri, Luis B Barreiro
    Nature Immunology 11/2011; 12(11):1029-30. · 26.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural selection is expected to act strongly on immune system genes as hosts adapt to novel, diverse, and coevolving pathogens. Population genetic studies of host defense genes with parallel functions in model organisms have revealed distinct evolutionary histories among the different components-receptors, adaptors, and effectors-of the innate immune system. In humans, however, detailed evolutionary studies have been mainly confined to the receptors and in particular to Toll-like receptors (TLRs). By virtue of a toll/interleukin-1 receptor (TIR) domain, TLRs activate distinct signaling pathways, which are mediated by the five TIR-containing adaptors: myeloid differentiation factor-88 (MyD88), myeloid differentiation factor-88 adaptor-like protein (MAL), toll/interleukin-1 receptor domain-containing adaptor protein inducing interferon (IFN)β (TRIF), toll/interleukin-1 receptor domain-containing adaptor protein inducing IFNβ-related adaptor molecule (TRAM), and sterile α- and armadillo motif-containing protein (SARM). Here, we have examined the extent to which natural selection has affected immune adaptors in humans, using as a paradigm the TIR-containing adaptors. To do so, we characterized their levels of naturally occurring genetic variation in various human populations. We found that MyD88 and TRIF have mainly evolved under purifying selection, suggesting that their role in the early stages of signal transduction is essential and nonredundant for host survival. In addition, the adaptors have been targeted by multiple episodes of positive selection, differing in timing and spatial location. MyD88 and SARM display signatures of a selective sweep that has occurred in all humans, whereas for the other three adaptors, we detected signatures of adaptive evolution that are restricted to specific populations. Our study provides evidence that the contemporary diversity of the five TIR-containing adaptors results from the intermingling of different selective events, swinging between constraint and adaptation.
    Molecular Biology and Evolution 06/2011; 28(11):3087-97. · 10.35 Impact Factor

Publication Stats

2k Citations
429.71 Total Impact Points

Institutions

  • 2014
    • CHU Sainte-Justine
      Montréal, Quebec, Canada
  • 2011–2014
    • Université de Montréal
      • Department of Pediatrics
      Montréal, Quebec, Canada
  • 2009–2012
    • University of Chicago
      • Department of Human Genetics
      Chicago, IL, United States
  • 2010–2011
    • Institut Pasteur
      • Department of Genomes and Genetics
      Paris, Ile-de-France, France
  • 2005–2009
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France
  • 2007
    • Institut de Génétique Humaine
      Montpelhièr, Languedoc-Roussillon, France
    • Imperial College London
      • Centre for Molecular Microbiology and Infection
      London, ENG, United Kingdom