Tessa Bergsbaken

Howard Hughes Medical Institute, Ashburn, Virginia, United States

Are you Tessa Bergsbaken?

Claim your profile

Publications (11)97.28 Total impact

  • Tessa Bergsbaken, Michael J Bevan
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory caspases, including caspase-11, are upregulated in CD8(+) T cells after Ag-specific activation, but little is known about their function in T cells. We report that caspase-11-deficient (Casp11(-/-)) T cells proliferated more readily in response to low-affinity and low-abundance ligands both in vitro and in vivo due to an increased ability to signal through the TCR. In addition to increased numbers, Casp11(-/-) T cells had enhanced effector function compared with wild-type cells, including increased production of IL-2 and reduced expression of CD62L. Casp11(-/-) T cells specific for endogenous Ags were more readily deleted than wild-type cells. These data indicate that caspase-11 negatively regulates TCR signaling, possibly through its ability to regulate actin polymerization, and inhibiting its activity could enhance the expansion and function of low-affinity T cells. Copyright © 2015 by The American Association of Immunologists, Inc.
    The Journal of Immunology 05/2015; DOI:10.4049/jimmunol.1500812
  • Tessa Bergsbaken, Michael J Bevan
    [Show abstract] [Hide abstract]
    ABSTRACT: We report that oral infection with Yersinia pseudotuberculosis results in the development of two distinct populations of pathogen-specific CD8(+) tissue-resident memory T cells (TRM cells) in the lamina propria. CD103(-) T cells did not require transforming growth factor-β (TGF-β) signaling but were true resident memory cells. Unlike CD103(+)CD8(+) T cells, which were TGF-β dependent and were scattered in the tissue, CD103(-)CD8(+) T cells clustered with CD4(+) T cells and CX3CR1(+) macrophages and/or dendritic cells around areas of bacterial infection. CXCR3-dependent recruitment of cells to inflamed areas was critical for development of the CD103(-) population and pathogen clearance. Our studies have identified the 'preferential' development of CD103(-) TRM cells in inflammatory microenvironments within the lamina propria and suggest that this subset has a critical role in controlling infection.
    Nature Immunology 02/2015; 16(4). DOI:10.1038/ni.3108
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study of T cell immunity at barrier surfaces has largely focused on T cells bearing the αβ TCR. However, T cells that express the γδ TCR are disproportionately represented in peripheral tissues of mice and humans, suggesting they too may play an important role responding to external stimuli. In this article, we report that, in a murine model of cutaneous infection with vaccinia virus, dermal γδ T cell numbers increased 10-fold in the infected ear and resulted in a novel γδ T cell population not found in naive skin. Circulating γδ T cells were specifically recruited to the site of inflammation and differentially contributed to dermal populations based on their CD27 expression. Recruited γδ T cells, the majority of which were CD27(+), were granzyme B(+) and made up about half of the dermal population at the peak of the response. In contrast, recruited and resident γδ T cell populations that made IL-17 were CD27(-). Using a double-chimera model that can discriminate between the resident dermal and recruited γδ T cell populations, we demonstrated their divergent functions and contributions to early stages of tissue inflammation. Specifically, the loss of the perinatal thymus-derived resident dermal population resulted in decreased cellularity and collateral damage in the tissue during viral infection. These findings have important implications for our understanding of immune coordination at barrier surfaces and the contribution of innate-like lymphocytes on the front lines of immune defense. Copyright © 2015 by The American Association of Immunologists, Inc.
    The Journal of Immunology 01/2015; 194(5). DOI:10.4049/jimmunol.1402438
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of caspase-1 leads to pyroptosis, a program of cell death characterized by cell lysis and inflammatory cytokine release. Caspase-1 activation triggered by multiple nucleotide-binding oligomerization domain-like receptors (NLRs; NLRC4, NLRP1b, or NLRP3) leads to loss of lysosomes via their fusion with the cell surface, or lysosome exocytosis. Active caspase-1 increased cellular membrane permeability and intracellular calcium levels, which facilitated lysosome exocytosis and release of host antimicrobial factors and microbial products. Lysosome exocytosis has been proposed to mediate secretion of IL-1β and IL-18; however, blocking lysosome exocytosis did not alter cytokine processing or release. These studies indicate two conserved secretion pathways are initiated by caspase-1, lysosome exocytosis, and a parallel pathway resulting in cytokine release, and both enhance the antimicrobial nature of pyroptosis.
    The Journal of Immunology 09/2011; 187(5):2748-54. DOI:10.4049/jimmunol.1100477
  • Source
    Tessa Bergsbaken, Brad T Cookson
    [Show abstract] [Hide abstract]
    ABSTRACT: Yersinia pestis, the etiological agent of plague, is one of the most deadly pathogens on our planet. This organism shares important attributes with its ancestral progenitor, Yersinia pseudotuberculosis, including a 70-kb virulence plasmid, lymphotropism during growth in the mammalian host, and killing of host macrophages. Infections with both organisms are biphasic, where bacterial replication occurs initially with little inflammation, followed by phagocyte influx, inflammatory cytokine production, and tissue necrosis. During infection, plasmid-encoded attributes facilitate bacterial-induced macrophage death, which results from two distinct processes and corresponds to the inflammatory crescendo observed in vivo: Naïve cells die by apoptosis (noninflammatory), and later in infection, activated macrophages die by pyroptosis (inflammatory). The significance of this redirected cell death for the host is underscored by the importance of phagocyte activation for immunity to Yersinia and the protective role of pyroptosis during host responses to anthrax lethal toxin and infections with Francisella, Legionella, Pseudomonas, and Salmonella. The similarities of Y. pestis and Y. pseudotuberculosis, including conserved, plasmid-encoded functions inducing at least two distinct mechanisms of cell death, indicate that comparative studies are revealing about their critical pathogenic mechanism(s) and host innate immune responses during infection. Validation of this idea and evidence of similar interactions with the host immune system are provided by Y. pseudotuberculosis-priming, cross-protective immunity against Y. pestis. Despite these insights, additional studies indicate much remains to be understood concerning effective host responses against Yersinia, including chromosomally encoded attributes that also contribute to bacterial evasion and modulation of innate and adaptive immune responses.
    Journal of leukocyte biology 10/2009; 86(5):1153-8. DOI:10.1189/jlb.0309146
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Membrane vesicle (MV) release remains undefined, despite its conservation among replicating Gram-negative bacteria both in vitro and in vivo. Proteins identified in Salmonella MVs, derived from the envelope, control MV production via specific defined domains that promote outer membrane protein-peptidoglycan (OM-PG) and OM protein-inner membrane protein (OM-PG-IM) interactions within the envelope structure. Modulation of OM-PG and OM-PG-IM interactions along the cell body and at division septa, respectively, maintains membrane integrity while co-ordinating localized release of MVs with distinct size distribution and protein content. These data support a model of MV biogenesis, wherein bacterial growth and division invoke temporary, localized reductions in the density of OM-PG and OM-PG-IM associations within the envelope structure, thus releasing OM as MVs.
    Molecular Microbiology 06/2009; 72(6):1395-407. DOI:10.1111/j.1365-2958.2009.06731.x
  • Source
    Tessa Bergsbaken, Susan L Fink, Brad T Cookson
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic cells can initiate several distinct programmes of self-destruction, and the nature of the cell death process (non-inflammatory or proinflammatory) instructs responses of neighbouring cells, which in turn dictates important systemic physiological outcomes. Pyroptosis, or caspase 1-dependent cell death, is inherently inflammatory, is triggered by various pathological stimuli, such as stroke, heart attack or cancer, and is crucial for controlling microbial infections. Pathogens have evolved mechanisms to inhibit pyroptosis, enhancing their ability to persist and cause disease. Ultimately, there is a competition between host and pathogen to regulate pyroptosis, and the outcome dictates life or death of the host.
    Nature Reviews Microbiology 03/2009; 7(2):99-109. DOI:10.1038/nrmicro2070
  • Bergsbaken T, Fink SL, Cookson BT
    [Show abstract] [Hide abstract]
    ABSTRACT: 10.1038/nrmicro2070
  • Source
    Susan L Fink, Tessa Bergsbaken, Brad T Cookson
    [Show abstract] [Hide abstract]
    ABSTRACT: Caspase-1 cleaves the inactive IL-1beta and IL-18 precursors into active inflammatory cytokines. In Salmonella-infected macrophages, caspase-1 also mediates a pathway of proinflammatory programmed cell death termed "pyroptosis." We demonstrate active caspase-1 diffusely distributed in the cytoplasm and localized in discrete foci within macrophages responding to either Salmonella infection or intoxication by Bacillus anthracis lethal toxin (LT). Both stimuli triggered caspase-1-dependent lysis in macrophages and dendritic cells. Activation of caspase-1 by LT required binding, uptake, and endosome acidification to mediate translocation of lethal factor (LF) into the host cell cytosol. Catalytically active LF cleaved cytosolic substrates and activated caspase-1 by a mechanism involving proteasome activity and potassium efflux. LT activation of caspase-1 is known to require the inflammasome adapter Nalp1. In contrast, Salmonella infection activated caspase-1 through an independent pathway requiring the inflammasome adapter Ipaf. These distinct mechanisms of caspase-1 activation converged on a common pathway of caspase-1-dependent cell death featuring DNA cleavage, cytokine activation, and, ultimately, cell lysis resulting from the formation of membrane pores between 1.1 and 2.4 nm in diameter and pathological ion fluxes that can be blocked by glycine. These findings demonstrate that distinct activation pathways elicit the conserved cell death effector mechanism of caspase-1-mediated pyroptosis and support the notion that this pathway of proinflammatory programmed cell death is broadly relevant to cell death and inflammation invoked by diverse stimuli.
    Proceedings of the National Academy of Sciences 04/2008; 105(11):4312-7. DOI:10.1073/pnas.0707370105
  • Source
    Tessa Bergsbaken, Brad T Cookson
    [Show abstract] [Hide abstract]
    ABSTRACT: Infection of macrophages by Yersinia species results in YopJ-dependent apoptosis, and naïve macrophages are highly susceptible to this form of cell death. Previous studies have demonstrated that macrophages activated with lipopolysaccharide (LPS) prior to infection are resistant to YopJ-dependent cell death; we found this simultaneously renders macrophages susceptible to killing by YopJ(-) Yersinia pseudotuberculosis (Yptb). YopJ(-) Yptb-induced macrophage death was dependent on caspase-1 activation, resulting in rapid permeability to small molecules, followed by membrane breakdown and DNA damage, and accompanied by cleavage and release of proinflammatory interleukin-18. Induction of caspase-1-dependent death, or pyroptosis, required the bacterial type III translocon but none of its known translocated proteins. Wild-type Yptb infection also triggered pyroptosis: YopJ-dependent activation of proapoptotic caspase-3 was significantly delayed in activated macrophages and resulted in caspase-1-dependent pyroptosis. The transition to susceptibility was not limited to LPS activation; it was also seen in macrophages activated with other Toll-like receptor (TLR) ligands and intact nonviable bacteria. Yptb infection triggered macrophage activation and activation of caspase-1 in vivo. Y. pestis infection of activated macrophages also stimulated caspase-1 activation. These results indicate that host signaling triggered by TLR and other activating ligands during the course of Yersinia infection redirects both the mechanism of host cell death and the downstream consequences of death by shifting from noninflammatory apoptosis to inflammatory pyroptosis.
    PLoS Pathogens 12/2007; 3(11):e161. DOI:10.1371/journal.ppat.0030161
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: FliC is a natural antigen recognized by the innate and adaptive immune systems during Salmonella infection in mice and humans; however, the regulatory mechanisms governing its expression in vivo are incompletely understood. Here, we use flow cytometry to quantify fliC gene expression in single bacteria. In vitro, fliC transcription was not uniformly positive; a viable fliC-negative subpopulation was also identified. Intracellular Salmonella repressed transcription of fliC and its positive regulator fliA, but constitutively transcribed the master regulator flhD; fliC repression required ClpXP protease, known to degrade FlhD. In orally infected mice, fliC transcription was anatomically restricted: Salmonella transcribed fliC in the Peyer's Patches (PP) but not in the mesenteric lymph nodes and spleen. The intracellularly transcribed pagC promoter was upregulated by Salmonella in all tissues, defining the infected PP as a unique environment that initiates expression of intracellularly induced genes and yet permits transcription of fliC. Because a single bacterium can escape the GI tract to colonize deeper tissues, heterogeneous gene expression may have important implications for Salmonella pathogenesis: FliC-positive bacteria in the PP could stimulate inflammation and facilitate the priming of FliC-specific immune responses, while FliC-negative bacteria escape host detection in the gut and spread to systemic sites of replication.
    Molecular Microbiology 09/2006; 61(3):795-809. DOI:10.1111/j.1365-2958.2006.05271.x