Are you Nimesh Gupta?

Claim your profile

Publications (12)36.16 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Abrin toxin is a plant glycoprotein, which is similar in structure and properties to ricin and is obtained from the seeds of Abrus precatorius (jequirity bean). Abrin is highly toxic, with an estimated human fatal dose of 0.1-1 μg/kg, and has caused death after accidental and intentional poisoning. Abrin is a potent biological toxin warfare agent. There are no chemical antidotes available against the toxin. Neurological symptoms like delirium, hallucinations, reduced consciousness and generalized seizures were reported in human poisoning cases. Death of a patient with symptoms of acute demyelinating encephalopathy with gastrointestinal bleeding due to ingestion of abrin seeds was reported in India. The aim of this study was to examine both dose and time-dependent transcriptional responses induced by abrin in the adult mouse brain. Mice (n=6) were exposed to 1 and 2 LD50 (2.83 and 5.66 μg/kg respectively) dose of abrin by intraperitoneal route and observed over 3 days. A subset of animals (n=3) were sacrificed at 1 and 2 day intervals for microarray and histopathology analysis. None of the 2 LD50 exposed animals survived till 3 days. The histopathological analysis showed the severe damage in brain and the infiltration of inflammatory cells in a dose and time dependent manner. The abrin exposure resulted in the induction of rapid immune and inflammatory response in brain. Clinical biochemistry parameters like lactate dehydrogenase, aspartate aminotransferase, urea and creatinine showed significant increase at 2-day 2 LD50 exposure. The whole genome microarray data revealed the significant regulation of various pathways like MAPK pathway, cytokine-cytokine receptor interaction, calcium signaling pathway, Jak-STAT signaling pathway and natural killer cell mediated toxicity. The comparison of differential gene expression at both the doses showed dose dependent effects of abrin toxicity. The real-time qRT-PCR analysis of selected genes supported the microarray data. This is the first report on host-gene response using whole genome microarray in an animal model after abrin exposure. The data generated provides leads for developing suitable medical counter measures against abrin poisoning.
    Toxicology 05/2012; 299(1):33-43. · 3.75 Impact Factor
  • Source
    Nimesh Gupta, P V Lakshmana Rao
    [Show abstract] [Hide abstract]
    ABSTRACT: Japanese encephalitis (JE) is one of the leading causes of acute encephalopathy with the highest mortality rate of 30-50%. The purpose of this study was to understand complex biological processes of host response during the progression of the disease. Virus was subcutaneously administered in mice and brain was used for whole genome expression profiling by cDNA microarray. The comparison between viral replication efficiency and disease progression confirms the active role of host response in immunopathology and disease severity. The histopathological analysis confirms the severe damage in the brain in a time dependent manner. Interestingly, the transcription profile reveals significant and differential expression of various pattern recognition receptors, chemotactic genes and the activation of inflammasome. The increased leukocyte infiltration and aggravated CNS inflammation may be the cause of disease severity. This is the first report that provides a detailed picture of the host transcriptional response in a natural route of exposure and opens up new avenues for potential therapeutic and prophylactic strategies against Japanese encephalitis virus.
    Virology Journal 03/2011; 8:92. · 2.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: T-2 toxin is a cytotoxic fungal secondary metabolite produced by different species of Fusarium such as F. sporotichioides, F. poae, F. equiseti, F. acuminatum etc. This class of mycotoxins causes a number of pathologies including nervous disorders, cardiovascular alterations, immunodepression and hemostatic derangements. In the present study, mechanism of T-2 toxin induced alteration of blood-brain barrier (BBB) permeability was assessed in terms of oxidative stress, gene expression of MMP-9, MMP-2 and their inhibitors TIMP-1 and TIMP-2, activation of inflammatory cytokines in both brain and peripheral tissue spleen. Gel zymography was used to show the activity of MMP-9 and MMP-2. The percutaneous exposure of 1 LD50 T2 toxin caused a reversible alteration in BBB permeability as observed by extravasation of Evans blue dye. Maximum dye level was observed on day 3 and reduced by day 7. A significant GSH depletion was observed on days 1 and 3. Brain ROS and lipid peroxidation levels increased significantly on 1 and 3 days and decreased by day 7. The SOD levels in brain showed significantly higher activity on 3 days (4-fold) and 7 days (5-fold) of toxin exposure compared to control. A similar trend was observed with catalase enzyme levels. The gene expression analysis of cNOS and iNOS showed varying levels of expression on different time points of post exposure. MMP-9 expression was significantly high on days 3 and 7 in brain with corresponding alteration in TIMP-1. MMP-2 and TIMP-2 showed no effect. Gene expression analysis of the inflammatory cytokines, IL-1α, IL-1β, IL-6 and TNF-α showed elevated levels on day 7 in brain. As spleen plays an important role in inflammatory response we analyzed MMP-9, MMP-2 and inflammatory cytokines in spleen. The MMP-9 was activated on day 7. MMP-2 activity was found to be elevated on 3 and 7 days and TIMP-2 mRNA level increased on 1 and 3 days in spleen. Inflammatory cytokines, IL-1 α, IL-1β, IL-6 and TNF-α showed elevated levels on days 1 and 3 in spleen indicating an early effect in spleen than in brain. In summary, the results of the study showed that the T-2 induced alteration in BBB permeability is mediated through oxidative stress, activation of MMP-9, and proinflammatory cytokines in brain as well as contribution from peripheral tissue spleen.
    Toxicology 02/2011; 280(1-2):44-52. · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Japanese encephalitis virus (JEV), the most frequent and the single most important cause of encephalitis worldwide, has spread throughout most of Asia. For the development of appropriate and effective therapy, there is an immediate requirement to understand the role of host factors in JEV-induced neuropathogenesis. In the present study, we investigated the role of mitogen-activated protein kinases (MAPKs) in JEV infection of mouse neuroblastoma (N2A) cells. The MAPK pathway was studied at the transcriptional level to access the gene expression profile at different time points after JEV infection. The effector MAPK genes were also analyzed for protein expression and activation. Gene expression analysis showed a significant regulation of extracellular signal-regulated kinases (ERK)1, ERK2 and c-Jun N-terminal kinase (JNK)3 genes along with their downstream transcription factors such as Mef2c, c-Jun and Sfn. Experiments with the JNK inhibitor, SP600125, and the ERK inhibitor, PD98059, showed the involvement of JNK in JEV-induced caspase-3 activation and apoptosis, but ERK1/2 had no effect. Overall, our results show the transcriptional regulation of the MAPK pathway and the essential role of JNK in JEV-induced apoptosis in neuroblastoma cells. These findings provide a new insight into the role of the mitogen- and stress-activated kinases in JEV pathogenesis and opens up new avenues of therapeutics.
    FEMS Immunology & Medical Microbiology 02/2011; 62(1):110-21. · 2.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Okadaic acid (OA) is a specific and potent protein phosphatase inhibitor and tumor promoter. The present study establishes the role of reactive oxygen species (ROS) and mitogen activated protein kinases in cell death induced by okadaic acid. The study showed that okadaic acid is cytotoxic at 10 nM with an IC50 of 100 nM in U-937 cells. The CVDE assay and mitochondrial dehydrogenase assay showed a time dependent cytotoxicity. The phase contrast visualization of the OA treated cells showed the apoptotic morphology and was confirmed with esterase staining for plasma membrane integrity. OA activated caspases-7, 9 and 3, PARP cleavage and induced nuclear damage in a time and dose dependent manner. Compromised mitochondrial membrane potential, release of cytochrome-c and apoptosis inducing factor confirms the involvement of mitochondria. A time dependent decrease in glutathione levels and a dose dependent increase in ROS with maximum at 30 min were observed. ROS scavenger-N-acetyl cysteine, mitochondrial stabilizer-cyclosporin-A, and broad spectrum caspase inhibitor Z-VAD-FMK inhibited the OA induced caspase-3 activation, DNA damage and cell death but caspase-8 inhibitor had no effect. OA activated p38 MAPK and JNK in a time dependent manner, but not ERK½. MAP kinase inhibitors SB203580, SP600125 and PD98059 confirm the role of p38 MAPK and JNK in OA induced caspase-3 activation and cell death. Over all, our results indicate that OA induces cell death by generation of ROS, and activation of p38 MAPK and JNK, and executed through mitochondrial mediated caspase pathway.
    Apoptosis 11/2010; 16(2):145-61. · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Host immune response particularly through the induction of proinflammatory cytokines and chemokines in Japanese encephalitis virus infection has not been clearly understood in relation with pathogenicity and disease severity. The newly identified host mediators of pathogenesis could be the future target for diagnostic and therapeutics purpose. We investigated the mechanism of JE virus induced pathogenesis in terms of proinflammatory cytokine and chemokine secretion at molecular level in young one-week-old BALB/c mouse after subcutaneous administration of JEV. Histopathology of brain was done to observe the morphological changes after JEV infection and genes relevant to macrophage activation, chemokine secretion, inflammatory cell infiltration, and blood-brain barrier permeability were examined at their gene and protein expression level for various time points after infection. At 6-day post-infection 100% mortality was observed. At 5-day post-infection, there was a robust expression of proinflammatory cytokines and chemokines with increased number of infiltrating inflammatory cells into the brain. Histopathology data confirms the infiltration of leucocytes and there was a marked upregulation in expression of genes relevant to infiltration. The expression pattern of macrophage receptor CLEC5A/DAP-12 signaling has shown the involvement in this robust neuroinflammation. This is the first report that shows the involvement of monocyte and macrophage receptor CLEC5A in severe inflammatory response in JEV infection of brain. This study at gene expression level provides a hypothesis of neuroinflammation, a new lead in development of appropriate therapeutic, and prophylactics against Japanese encephalitis.
    Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology 09/2010; 49(1):4-10. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Japanese encephalitis (JE) is one of the leading causes of acute encephalopathy affecting children and adolescents in the tropics. JE virus (JEV) infection causes prominent neurological sequelae in approximately one-third of the survivors. In humans, the inflammatory response of CNS consequent to JEV induced viral encephalitis is mediated through chemokines released by various cells of CNS. In the present study, the chemokine profiles of mouse neuroblastoma cells (N2A) following JEV infection was analyzed by cDNA microarray followed by real-time RT-PCR. Eighty mRNA transcripts belonging to various functional classes exhibited significant alterations in gene expression. There was considerable induction of genes involved in apoptosis and anti-viral response. Modified levels of several transcripts involved in proinflammatory and anti-inflammatory processes exemplified the balance between opposing forces during JEV pathogenesis. Other genes displaying altered transcription included those associated with host translation, cellular metabolism, cell cycle, signal transduction, transcriptional regulation, protein trafficking, neurotransmitters, neuron maturation, protein modulators, ER stress and cytoskeletal proteins. The infection of neurons results in the synthesis of proinflammatory chemokines, which are early important mediators of leukocyte recruitment to sites of viral infection. Our results clearly suggest the implication of chemokines in neuropathogenesis of JEV infection leading to neurological sequelae. Pro- and anti-inflammatory agents targeted against chemokines such as CXCL10 may provide possible therapeutic modalities that can mitigate the morbidity associated with JEV infection of the CNS.
    Virus Research 11/2009; 147(1):107-12. · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Japanese encephalitis is a major cause of encephalitis in Asia. Cases occur largely in rural areas of the South and East Asian region resulting in significant morbidity and mortality. Multiple vaccines exist to control Japanese encephalitis, but all suffer from problems. Envelope protein domain III of Japanese encephalitis virus is involved in binding to host receptors and it contains specific epitopes that elicit virus-neutralizing antibodies. Earlier, the protective efficacy of domain III has been evaluated in mice by some researchers, but these studies are lacking in explanation of humoral and cellular immune responses. We have earlier reported cloning, expression, purification and in vitro refolding of Japanese encephalitis virus envelope protein domain III (rJEV-DIII). Ninety percent JEV is neutralized when the serum against refolded rJEV-DIII is used at a dilution of 1:80. In the present study, we have evaluated the immunomodulatory potential of refolded rJEV-DIII protein in BALB/c mice with Freunds complete/incomplete adjuvants. Mice were tested for humoral immune response by ELISA. Cell-mediated immune response was tested by lymphocyte proliferation assay and cytokine profiling. The rJEV-DIII generated high IgG antibody and its isotypes (IgG2a and IgG3) and induced significant expression of INF-gamma and IL-2 cytokines. The rJEV-DIII induced significant lymphoproliferation of splenocytes. In conclusion rJEV-DIII induced Th1 type of immune response which plays an important role in protection for intracellular pathogens.
    Vaccine 09/2009; 27(49):6905-9. · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Japanese encephalitis virus (JEV) is a mosquito-borne viral zoonosis of public health importance. Global efforts have been made towards development of vaccine for prevention of Japanese encephalitis. The envelope protein of JEV is associated with viral binding to cellular receptors, membrane fusion, and the induction of protective neutralizing antibody response in hosts. Here we report that the antibodies raised against refolded domain III of envelope protein of JEV neutralize the JE virus and inhibit the JEV infection to Porcine Stable Kidney (PS) cells. A reverse transcriptase-PCR amplified gene encoding domain III of JEV envelope protein was cloned into pET28a+ vector and over expressed in E. coli. The recombinant JEV-DIII protein was purified by affinity chromatography under denaturing conditions. The rJEV-DIII was refolded by oxido-redux shuffle and purified to homogeneity by ion-exchange chromatography. Refolded rJEV-DIII was characterized using biochemical and biophysical methods. The polyclonal antibodies were raised against in vitro refolded rJEV-DIII protein in BALB/c mice with Freunds adjuvant. Ninety percent JEV is neutralized when the serum against refolded rJEV-DIII is used at a dilution of 1:80 as against 60.5% neutralization capacity with the same dilution of serum raised against denatured rJEV-DIII. The method of expression and purification of biologically functional rJEV-DIII protein described in this study may help in better understanding the biology of JE virus and the development of better vaccine candidate. Since the expression system uses E. coli as the heterologous host, the process is easy and amenable to inexpensive scale-up.
    Protein and Peptide Letters 01/2009; 16(11):1334-41. · 1.74 Impact Factor
  • R Jayaraj, Nimesh Gupta, P V Lakshmana Rao
    [Show abstract] [Hide abstract]
    ABSTRACT: Okadaic acid (OA) is the major component of diarrhetic shell fish poisoning toxins and a potent inhibitor of protein phosphatase 1 and 2A. We investigated the signal transduction pathways involved in OA induced cell death in HeLa cells. OA induced cytotoxicity and apoptosis at IC50 of 100nM. OA treatment resulted in time dependent increase in reactive oxygen species and depleted intracellular glutathione levels. Loss of mitochondrial membrane permeability led to translocation of bax, cytochrome-c and AIF from mitochondria to cytosol. The cells under fluorescence microscope showed typical apoptotic morphology with condensed chromatin, and nuclear fragmentation. We investigated the mitochondrial-mediated caspase cascade. The time dependent activation and cleavage of of bax, caspases-8, 10, 9, 3 and 7 was observed in Western blot analysis. In addition to caspase-dependent pathway AIF mediated caspase-independent pathway was involved in OA mediated cell death. OA also caused time dependent inhibition of protein phosphatase 2A activity and phosphorylation of p38 and p42/44 MAP kinases. Inhibitor studies with Ac-DEVO-CHO and Z-VAD-FMK could not prevent the phosphorylation of p38 and p42/44 MAP kinases. Our experiments with caspase inhibitors Ac-DEVD-CHO, Z-IETD-FMK and Z-VAD-FMK inhibited capsase-3, 8 cleavages but did not prevent OA-induced apoptosis and DNA fragmentation. Similarly, pretreatment with cyclosporin-A and N-acetylcysteine could not prevent the DNA fragmentation. In summary, the results of our study show that OA induces multiple signal transduction pathways acting either independently or simultaneously leading to apoptosis.
    Toxicology 12/2008; 256(1-2):118-27. · 3.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dengue fever, a mosquito borne viral disease, has become a major public health problem with dramatic expansion in recent decades. Several dengue vaccines are at developing stage, none are yet available for humans. There is no vaccine or antiviral therapy available for dengue fever till date. Domain III of envelope protein is involved in binding to host receptors and it contains type and subtype-specific epitopes that elicit virus neutralizing antibodies. Hence domain III is an attractive vaccine candidate. In the present study we report the immunomodulatory potential of refolded D4EIII protein in combination with various adjuvants (Freunds Complete adjuvant, Montanide ISA720, Alum). Mice were tested for humoral immune responses by ELISA, immunofluorescence assay and plaque reduction neutralization test. Cell mediated immune response was tested by lymphocyte proliferation assay and cytokine profiling. All the formulations resulted in high antibody titers that neutralized the virus entry in vitro. D4EIII in combination with montanide ISA720 and Feuds complete adjuvant gave highest antibody endpoint titers followed by alum. The level of antigen-stimulated splenocyte proliferation and cytokine production was comparable to that obtained from Con A stimulation and cytokine profiling of stimulated splenocyte culture supernatants indicated that all the adjuvant formulations have induced cell mediated immune response as well. These findings suggest that D4EIII in combination with compatible adjuvants is highly immunogenic and can elicit high titer neutralizing antibodies and cell mediated immune response which plays an important role in intracellular infections, which proves that refolded D4EIII can be a potential vaccine candidate.
    Vaccine 08/2008; 26(36):4655-63. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue virus infections have recently undergone dramatic expansion in range, affecting several tropical and subtropical regions of the world. Early detection of dengue infection based on the identification of antibodies has emerged as a practical and reliable means of diagnosis of dengue fever. The recombinant dengue multiepitope (rDME-M) protein specific to IgM in E. coli was produced in a 5-L fermentor for use in diagnostic purpose. After fermentation, dry cell weight was approximately 11.8 g/L of the culture. The rDME-M protein was purified under denaturing conditions using single-step nickel nitrilotriacetate (Ni-NTA) affinity chromatography. The final yield of purified rDME-M protein from this method was approximately 68.5 mg/L of the culture. The purity of rDME-M protein was checked by SDS-PAGE analysis, and the reactivity of this protein was further checked by Western blotting and enzyme-linked immunosorbent assay (ELISA). The purified protein was used as an antigen in the development of an in-house dipstick ELISA and evaluated with a panel of 80 patient sera, characterized using commercially available tests for detection of dengue antibody. The results were in excellent agreement with those of IgM capture ELISA (Pan-Bio) and rapid immunochromatography (IC) test (Pan-Bio). These results show that the in-house dipstick ELISA using rDME-M protein can be used as a promising kit because of its comparable sensitivity, specificity, field applicability, and low cost.
    Biotechnology Progress 04/2007; 23(2):488-93. · 1.88 Impact Factor