Jeong-Ki Kim

Korea University, Sŏul, Seoul, South Korea

Are you Jeong-Ki Kim?

Claim your profile

Publications (18)60.98 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel avian-origin H3N2 canine influenza A virus (CIV) that showed high sequence similarities in hemagglutinin and neuraminidase genes with those of non-pathogenic avian influenza viruses was isolated in our routine surveillance program in South Korea. We previously reported that the pathogenicity of this strain could be reproduced in dogs and cats. In the present study, the host tropism of H3N2 CIV was examined by experimental inoculation into several host species, including chickens, pigs, mice, guinea pigs, and ferrets. The CIV infection resulted in no overt symptoms of disease in these host species. However, sero-conversion, virus shedding, and gross and histopathologic lung lesions were observed in guinea pig and ferrets but not in pigs, or mice. Based on the genetic similarity of our H3N2 CIV with currently circulating avian influenza viruses and the presence of α-2,3-linked rather than α-2,6-linked sialic acid receptors in the respiratory tract of dogs, we believed that this strain of CIV would have avian virus-like receptor specificity, but that seems to be contrary to our findings in the present study. Further studies are needed to determine the co-receptors of hemagglutinin or post-attachment factors related to virus internalization or pathogenesis in other animals.
    Virus research. 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sublingual (SL) administration of influenza vaccine would be non-invasive and effective way to give human populations protective immunity against the virus, especially when pandemic influenza outbreaks. In this study, the efficacy of pandemic influenza virus-based subunit vaccines was tested after sublingual (SL) adjuvant administration in pigs. Eight specific pathogen-free Yucatan pigs were divided into 4 groups: nonvaccinated but challenged (A) and vaccinated and challenged (B, C, and D). The vaccinated groups were subdivided by vaccine type and inoculation route: SL subunit vaccine (hemagglutinin antigen 1 [HA1] + wild-type cholera toxin [wtCT], B); IM subunit vaccine (HA1 + aluminum hydroxide, C); and IM inactivated vaccine (+ aluminum hydroxide, D). The vaccines were administered twice at a 2-week interval. All pigs were challenged with pandemic influenza virus (A/swine/GCVP-KS01/2009 [H1N1]) and monitored for clinical signs, serology, viral shedding, and histopathology. After vaccination, hemagglutination inhibition titre was higher in group D (320) than in the other vaccinated groups (40-80) at the time of challenge. The mobility and feed intake were reduced in group C. Both viral shedding and histopathological lesions were reduced in groups B and D. Although this study has limitation due to the limited number of pigs (2 pigs per a group), the preliminary data in this study provided the protective potential of SL administration of bacteria-expressed pandemic H1N1 influenza vaccine in pigs. There should be additional animal studies about effective adjuvant system and vaccine types for the use of SL influenza vaccination.
    Journal of microbiology (Seoul, Korea). 07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyzed the complete genome sequence containing the 3' and 5' noncoding regions (NCRs) of the Korean H3N8 equine influenza virus (EIV), which will provide a better understanding of the pathogenesis, transmission, and evolution of EIV.
    Genome announcements. 01/2014; 2(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the advantages of DNA vaccines, overcoming their lower efficacy relative to that of conventional vaccines remains a challenge. Here, we constructed a human endogenous retrovirus (HERV) envelope-coated, nonreplicable, baculovirus-based HA vaccine against swine influenza A/California/04/2009(H1N1) hemagglutin (HA) (AcHERV-sH1N1-HA) as an alternative to conventional vaccines and evaluated its efficacy in two strains of mice, BALB/c and C57BL/6. A commercially available, killed virus vaccine was used as a positive control. Mice were intramuscularly administered AcHERV-sH1N1-HA or the commercial vaccine and subsequently given two booster injections. Compared with the commercial vaccine, AcHERV-sH1N1-HA induced significantly higher levels of cellular immune responses in both BALB/c and C57BL/6 mice. Unlike cellular immune responses, humoral immune responses depended on the strain of mice. Following immunization with AcHERV-sH1N1-HA, C57BL/6 mice showed HA-specific IgG titers 10- to 100-fold lower than those of BALB/c mice. In line with the different levels of humoral immune responses, the survival of immunized mice after intranasal challenge with sH1N1 virus (A/California/04/2009) depended on the strain. After challenge with 10-times the median lethal dose (MLD50) of sH1N1 virus, 100% of BALB/c mice immunized with the commercial vaccine or AcHERV-sH1N1-HA survived. In contrast, C57BL/6 mice immunized with AcHERV-sH1N1-HA or the commercial vaccine showed 60% and 70% survival respectively, after challenge with sH1N1 virus. In all mice, virus titers and results of histological analyses of lung tissues were consistent with the survival data. Our results indicate the importance of humoral immune response as a major defense system against influenza viral infection. Moreover, the complete survival of BALB/c mice immunized with AcHERV-sH1N1-HA after challenge with sH1N1 virus suggests the potential of baculoviral vector-based vaccines to achieve an efficacy comparable to that of killed virus vaccines.
    PLoS ONE 01/2013; 8(11):e80762. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A canine-origin Korean H3N2 feline influenza virus (FIV), A/feline/Korea/01/2010 (H3N2), was isolated in 2010 from a dead cat with severe respiratory disease. Here, we report the first complete genome sequence of this virus, containing 3' and 5' noncoding regions, which will help elucidate the molecular basis of the pathogenesis, transmission, and evolution of FIV.
    Genome announcements. 01/2013; 1(2):e0025312.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The avian origin canine influenza virus H3N2 has been recently isolated and found to be currently in dog population in South Korea and China. The purpose of this study was to clarify the relationship between immunosuppressive glucocorticoids used in veterinary clinical practice and viral shedding pattern of influenza in dogs. Eight conventional beagle dogs were divided into control infection group and immunocompromised group. Dogs of both groups were infected with H3N2 canine influenza virus (2×10(6.0) EID50/0.1 mL). Dogs in immunocompromised group were given orally 3.0 mg/kg prednisolone for 7 days. Virus shedding was monitored using real-time polymerase chain reaction. After necropsy, histopathologic lesions were compared. We found that immunocompromised dogs exhibited more prolonged (8 days vs. 13 days) and higher magnitude viral shedding than control group (peak titer of viral shedding 4.6 vs. 5.5 EID50). Restricted use of immunosuppressive drugs in the clinical setting might help control the rapid spread of H3N2 through local dog populations.
    Clinical and experimental vaccine research. 01/2013; 2(1):66-8.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An avian-origin Korean H3N2 canine influenza virus (CIV) strain, designated A/canine/Korea/01/2007 (H3N2), was isolated from nasal swabs of pet dogs exhibiting severe respiratory syndrome in 2007. In the present study, we report the first complete genome sequence containing 3' and 5' noncoding regions (NCRs) of H3N2 CIV, which will provide important insights into the molecular basis of pathogenesis, transmission, and evolution of CIV.
    Journal of Virology 09/2012; 86(17):9548-9. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Please cite this paper as: Kim et al. (2012) Inter- and intraspecies transmission of canine influenza virus (H3N2) in dogs, cats, and ferrets. Influenza and Other Respiratory Viruses DOI: 10.1111/j.1750-2659.2012.00379.x. Background  The emergence of zoonotic viruses in domestic animals is a significant public health concern. Canine influenza virus (CIV) H3N2 is a virus that can infect companion animals and is, therefore, a potential public health concern. Objective  This study investigated the inter- and intraspecies transmission of CIV among dogs, cats, and ferrets, under laboratory conditions, to determine whether transmission of the virus was possible between as well as within these domestic animal species. Method  The transmission routes for inter- and intraspecies transmission were airborne and direct contact, respectively. Transmission was conducted through intranasal infection of dogs followed by exposure to either cats or ferrets and by comingling infected and naïve animals of the same species. Results  The interspecies transmission of CIV H3N2 via airborne was only observed from dogs to cats and not from dogs to ferrets. However, direct intranasal infection of either cats or ferrets with CIV could induce influenza-like clinical signs, viral shedding, and serological responses. Additionally, naïve cats and ferrets could be infected by CIV via direct contact with infected animals of the same species. Conclusion  Cats appear to be another susceptible host of CIV H3N2, whereas ferrets are not likely natural hosts. The molecular-based mechanism of interspecies and intraspecies transmission of CIV H3N2 should be further studied.
    Influenza and Other Respiratory Viruses 05/2012; · 1.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obesity, a risk factor for increased severity of diverse diseases, is believed to have negative impact on vaccine efficacy. Recently, mortality has emerged as an outcome of pandemic influenza A virus subtype H1N1, necessitating development of effective vaccine strategies. Here we investigated effects of diet-induced obesity on vaccine-induced immune responses and protective efficacy against pandemic H1N1 influenza virus. Diet-induced obese and lean C57BL/6J mice were immunized with commercial monovalent 2009 H1N1 vaccine, and antigen-specific antibody responses and neutralizing activities were observed. Following vaccination, mice were challenged with homologous H1N1 virus, and pathogenesis and mortality were examined. Vaccine-induced H1N1-specific antibody responses and neutralizing activities were markedly reduced in obese mice. Consistent with antibody responses, lung virus titers were significantly higher in obese mice than in lean controls after challenge. In addition, obese group showed greatly increased expression of proinflammatory cytokines and chemokines in lung tissue, severe lung inflammation, and higher eventual mortality rate (100%) compared with that among lean control mice (14%). Our results show that prophylactic immune responses and protectiveness induced by 2009 H1N1 vaccine could be extremely compromised in diet-induced obesity. These results suggest that novel vaccination strategies for high-risk groups, including the obese population, are required.
    The Journal of Infectious Diseases 12/2011; 205(2):244-51. · 5.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The migratory waterfowl of the world are considered to be the natural reservoir of influenza A viruses. Of the 16 hemagglutinin subtypes of avian influenza viruses, the H6 subtype is commonly perpetuated in its natural hosts and is of concern due to its potential to be a precursor of highly pathogenic influenza viruses by reassortment. During routine influenza surveillance, we isolated an unconventional H6N5 subtype of avian influenza virus. Experimental infection of mice revealed that this isolate replicated efficiently in the lungs, subsequently spread systemically, and caused lethality. The isolate also productively infected ferrets, with direct evidence of contact transmission, but no disease or transmission was seen in pigs. Although the isolate possessed the conserved receptor-binding site sequences of avian influenza viruses, it exhibited relatively low replication efficiencies in ducks and chickens. Our genetic and molecular analyses of the isolate revealed that its PB1 sequence showed the highest evolutionary relationship to those of highly pathogenic H5N1 avian influenza viruses and that its PA protein had an isoleucine residue at position 97 (a representative virulence marker). Further studies will be required to examine why our isolate has the virologic characteristics of mammalian influenza viruses but the archetypal receptor binding profiles of avian influenza viruses, as well as to determine whether its potential virulence markers (PB1 analogous to those of H5N1 viruses or isoleucine residue at position 97 within PA) could render it highly pathogenic in mice.
    Journal of Virology 12/2011; 85(24):13271-7. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During recent canine influenza surveillance in South Korea, a novel H3N1 canine influenza virus (CIV) that is a putative reassortant between pandemic H1N1 2009 and H3N2 CIVs was isolated. Genetic analysis of eight genes of the influenza virus revealed that the novel H3N1 isolate presented high similarities (99.1-99.9 %) to pandemic influenza H1N1, except for in the haemagglutinin (HA) gene. The HA gene nucleotide sequence of the novel CIV H3N1 was similar (99.6 %) to that of CIV H3N2 isolated in Korea and China. Dogs infected with the novel H3N1 CIV did not show any notable symptoms, in contrast to dogs infected with H3N2 CIV. Despite no visible clinical signs of disease, nasal shedding of virus was detected and the infected dogs presented mild histopathological changes.
    Journal of General Virology 11/2011; 93(Pt 3):551-4. · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The continued spread of a highly pathogenic avian influenza (HPAI) H5N1 virus among wild birds and poultry has posed a potential threat to human public health. In the present study, we report the isolation of HPAI H5N1 viruses (A/Md/Korea/W401/11 and A/Md/Korea/W404/11) from fecal samples of migratory birds. Genetic and phlyogenetic analyses demonstrated that these viruses are genetically identical possessing gene segments from avian virus origin and showing highest sequence similarities (as high as 99.8%) to A/Ws/Hokkaido/4/11 and 2009-2010 Mongolian-like clade 2.3.2 isolates rather than previous Korean H5N1 viruses. Both viruses possess the polybasic motif (QRERRRK/R) in HA but other genes did not bear additional virulence markers. Pathogenicity of A/Md/Korea/W401/11 was assessed and compared with a 2006 clade 2.2 HPAI H5N1 migratory bird isolate (A/EM/Korea/W149/06) in chickens, ducks, mice and ferrets. Experimental infection in these hosts showed that both viruses have high pathogenic potential in chickens (2.3-3.0 LD(50)s) and mice (3.3-3.9 LD(50)s), but A/Md/Korea/W401/11 was less pathogenic in duck and ferret models. Despite recovery of both infection viruses in the upper respiratory tract, efficient ferret-to-ferret transmission was not observed. These data suggest that the 2011 Korean HPAI wild bird H5N1 virus could replicate in mammalian hosts without pre-adaptation but could not sustain subsequent infection. This study highlights the role of migratory birds in the perpetuation and spread of HPAI H5N1 viruses in Far-East Asia. With the changing pathobiology caused by H5N1 viruses among wild and poultry birds, continued surveillance of influenza viruses among migratory bird species remains crucial for effective monitoring of high-pathogenicity or pandemic influenza viruses.
    Virus Research 07/2011; 160(1-2):305-15. · 2.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Given that local cell-mediated immunity (CMI) against the human papillomavirus type 16 E6 (HPV16 E6) protein is important for eradication of HPV16 E6-expressing cancer cells in the cervical mucosa, the HPV16 E6 protein may be a target for the mucosal immunotherapy of cervical cancer. Here, we expressed the HPV16 E6 antigen on Lactobacillus casei (L. casei) and investigated E6-specific CMI following oral administration of the L. casei-PgsA-E6 to mice. Surface expression of HPV16 E6 antigens was confirmed and mice were orally inoculated with the L. casei-PgsA or the L. casei-PgsA-E6. Compared to the L. casei-PgsA-treated mice, significantly higher levels of serum IgG and mucosal IgA were observed in L. casei-PgsA-E6-immunized mice; these differences were significantly enhanced after boost. Consistent with this, systemic and local CMI were significantly increased after the boost, as shown by increased counts of IFN-gamma-secreting cells in splenocytes, mesenteric lymph nodes (MLN), and vaginal samples. Furthermore, in the TC-1 tumor model, animals receiving the orally administered L. casei-PgsA-E6 showed reduced tumor size and increased survival rate versus mice receiving control (L. casei-PgsA) immunization. We also found that L. casei-PgsA-E6-induced antitumor effect was decreased by in vivo depletion of CD4(+) or CD8(+) T cells. Collectively, these results indicate that the oral administration of lactobacilli bearing the surface-displayed E6 protein induces T cell-mediated cellular immunity and antitumor effects in mice.
    Cancer Immunology and Immunotherapy 11/2010; 59(11):1727-37. · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Egypt, efforts to control highly pathogenic H5N1 avian influenza virus in poultry and in humans have failed despite increased biosecurity, quarantine, and vaccination at poultry farms. The ongoing circulation of HP H5N1 avian influenza in Egypt has caused >100 human infections and remains an unresolved threat to veterinary and public health. Here, we describe that the failure of commercially available H5 poultry vaccines in Egypt may be caused in part by the passive transfer of maternal H5N1 antibodies to chicks, inhibiting their immune response to vaccination. We propose that the induction of a protective immune response to H5N1 is suppressed for an extended period in young chickens. This issue, among others, must be resolved and additional steps must be taken before the outbreaks in Egypt can be controlled.
    Proceedings of the National Academy of Sciences 06/2010; 107(24):11044-9. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To elucidate the role of sparrows as intermediate hosts of highly pathogenic avian influenza H5N1 viruses, we assessed shedding and interspecies waterborne transmission of A/duck/Laos/25/06 in sparrows and chickens. Inoculated birds shed virus at high titers from the oropharynx and cloaca, and infection was fatal. Waterborne transmission from inoculated sparrows to contact chickens was absent, while 25% of sparrows were infected via waterborne transmission from chickens. The viral shedding and susceptibility to infection we observed in sparrows, coupled with their presence in poultry houses, could facilitate virus spread among poultry and wild birds in the face of an H5N1 influenza virus outbreak.
    Journal of Virology 04/2010; 84(7):3718-20. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While the molecular mechanism of membrane fusion by the influenza virus hemagglutinin (HA) protein has been studied extensively in vitro, the role of acid-dependent HA protein activation in virus replication, pathogenesis, and transmission in vivo has not been characterized. To investigate the biological significance of the pH of activation of the HA protein, we compared the properties of four recombinant viruses with altered HA protein acid stability to those of wild-type influenza virus A/chicken/Vietnam/C58/04 (H5N1) in vitro and in mallards. Membrane fusion by wild-type virus was activated at pH 5.9. Wild-type virus had a calculated environmental persistence of 62 days and caused extensive morbidity, mortality, shedding, and transmission in mallards. An N114K mutation that increased the pH of HA activation by 0.5 unit resulted in decreased replication, genetic stability, and environmental stability. Changes of +0.4 and -0.5 unit in the pH of activation by Y23H and K58I mutations, respectively, reduced weight loss, mortality, shedding, and transmission in mallards. An H24Q mutation that decreased the pH of activation by 0.3 unit resulted in weight loss, mortality, clinical symptoms, and shedding similar to those of the wild type. However, the HA-H24(1)Q virus was shed more extensively into drinking water and persisted longer in the environment. The pH of activation of the H5 HA protein plays a key role in the propagation of H5N1 influenza viruses in ducks and may be a novel molecular factor in the ecology of influenza viruses. The data also demonstrate that H5N1 neuraminidase activity increases the pH of activation of the HA protein in vitro.
    Journal of Virology 11/2009; 84(3):1527-35. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wild ducks are the main reservoir of influenza A viruses that can be transmitted to domestic poultry and mammals, including humans. Of the 16 hemagglutinin (HA) subtypes of influenza A viruses, only the H5 and H7 subtypes cause highly pathogenic (HP) influenza in the natural hosts. Several duck species are naturally resistant to HP Asian H5N1 influenza viruses. These duck species can shed and spread virus from both the respiratory and intestinal tracts while showing few or no disease signs. While the HP Asian H5N1 viruses are 100% lethal for chickens and other gallinaceous poultry, the absence of disease signs in some duck species has led to the concept that ducks are the "Trojan horses" of H5N1 in their surreptitious spread of virus. An important unresolved issue is whether the HP H5N1 viruses are maintained in the wild duck population of the world. Here, we review the ecology and pathobiology of ducks infected with influenza A viruses and ducks' role in the maintenance and spread of HP H5N1 viruses. We also identify the key questions about the role of ducks that must be resolved in order to understand the emergence and control of pandemic influenza. It is generally accepted that wild duck species can spread HP H5N1 viruses, but there is insufficient evidence to show that ducks maintain these viruses and transfer them from one generation to the next.
    Influenza and Other Respiratory Viruses 08/2009; 3(4):121-8. · 1.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The rapid evolution, genetic diversity, broad host range, and increasing human infection with avian influenza A (H5N1) viruses highlight the need for an efficacious cross-clade vaccine. Using the ferret model, we compared induction of cross-reactive immunity and protective efficacy of three single-clade H5N1 vaccines and a novel multiple-clade H5N1 vaccine, with and without MF59 adjuvant. Reverse genetics (rg) was used to generate vaccine viruses containing the hemagglutinin (HA) and neuraminidase genes of wild-type H5N1 viruses. Ferrets received two doses of inactivated whole-virus vaccine separated by 3 weeks. Single-clade vaccines (7.5 microg HA per dose) included rg-A/Vietnam/1203/04 (clade 1), rg-A/Hong Kong/213/03 (clade 1), and rg-A/Japanese White Eye/Hong Kong/1038/06 (clade 2.3). The multiple-clade vaccine contained 3.75 microg HA per dose of each single-clade vaccine and of rg-A/Whooper Swan/Mongolia/244/05 (clade 2.2). Two doses of vaccine were required to substantially increase anti-HA and virus neutralizing antibody titers to H5N1 viruses. MF59 adjuvant enhanced induction of clade-specific and cross-clade serum antibody responses, reduced frequency of infection (as determined by upper respiratory tract virus shedding and seroconversion data), and eliminated disease signs. The rg-A/Hong Kong/213/03 vaccine induced the highest antibody titers to homologous and heterologous H5N1 viruses, while rg-A/Japanese White Eye/Hong Kong/1038/06 vaccine induced the lowest. The multiple-clade vaccine was broadly immunogenic against clade 1 and 2 viruses. The rg-A/Vietnam/1203/04 vaccine (the currently stockpiled H5N1 vaccine) most effectively reduced upper respiratory tract virus shedding after challenge with clade 1 and 2 viruses. Importantly, all vaccines protected against lethal challenge with A/Vietnam/1203/04 virus and provided cross-clade protection.
    Vaccine 06/2009; 27(31):4187-95. · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Waterfowl represent the natural reservoir of all subtypes of influenza A viruses, including H5N1. Ducks are especially considered major contributors to the spread of H5N1 influenza A viruses because they exhibit diversity in morbidity and mortality. Therefore, as a preventive strategy against endemic as well as pandemic influenza, it is important to reduce the spread of H5N1 influenza A viruses in duck populations. Here, we describe the pathogenicity of dominant clades (clades 1 and 2) of H5N1 influenza A viruses circulating in birds in Asia. Four representatives of dominant clades of the viruses cause symptomatic infection but lead to different profiles of lethality in domestic ducks. We also demonstrate the efficacy, cross-protectiveness, and immunogenicity of three different inactivated oil emulsion whole-virus H5 influenza vaccines (derived by implementing reverse genetics) to the viruses in domestic ducks. A single dose of the vaccines containing 1 mug of hemagglutinin protein provides complete protection against a lethal A/Duck/Laos/25/06 (H5N1) influenza virus challenge, with no evidence of morbidity, mortality, or shedding of the challenge virus. Moreover, two of the three vaccines achieved complete cross-clade or cross-subclade protection against the heterologous avian influenza virus challenge. Interestingly, the vaccines induce low or undetectable titers of hemagglutination inhibition (HI), cross-HI, and/or virus neutralization antibodies. The mechanism of complete protection in the absence of detectable antibody responses remains an open question.
    Journal of Virology 10/2008; 82(22):11374-82. · 5.08 Impact Factor

Publication Stats

250 Citations
60.98 Total Impact Points

Institutions

  • 2012
    • Korea University
      • College of Pharmacy
      Sŏul, Seoul, South Korea
  • 2010–2011
    • Korea Research Institute of Bioscience and Biotechnology KRIBB
      Anzan, Gyeonggi Province, South Korea
  • 2008–2010
    • St. Jude Children's Research Hospital
      • Department of Infectious Diseases
      Memphis, TN, United States
  • 2009
    • University of Tennessee
      Knoxville, Tennessee, United States