Jiang Qian

Johns Hopkins University, Baltimore, Maryland, United States

Are you Jiang Qian?

Claim your profile

Publications (82)475.86 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vertebrate circadian rhythms are organized by the hypothalamic suprachiasmatic nucleus (SCN). Despite its physiological importance, SCN development is poorly understood. Here, we show that Lim homeodomain transcription factor 1 (Lhx1) is essential for terminal differentiation and function of the SCN. Deletion of Lhx1 in the developing SCN results in loss of SCN-enriched neuropeptides involved in synchronization and coupling to downstream oscillators, among other aspects of circadian function. Intact, albeit damped, clock gene expression rhythms persist in Lhx1-deficient SCN; however, circadian activity rhythms are highly disorganized and susceptible to surprising changes in period, phase, and consolidation following neuropeptide infusion. Our results identify a factor required for SCN terminal differentiation. In addition, our in vivo study of combinatorial SCN neuropeptide disruption uncovered synergies among SCN-enriched neuropeptides in regulating normal circadian function. These animals provide a platform for studying the central oscillator's role in physiology and cognition.
    Cell Reports 04/2014; · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lysine-specific demethylase 1 (LSD1) is an epigenetic enzyme that oxidatively cleaves methyl groups from monomethyl and dimethyl Lys4 of histone H3 (H3K4Me1, H3K4Me2) and can contribute to gene silencing. This study describes the design and synthesis of analogues of a monoamine oxidase antidepressant, phenelzine, and their LSD1 inhibitory properties. A novel phenelzine analogue (bizine) containing a phenyl-butyrylamide appendage was shown to be a potent LSD1 inhibitor in vitro and was selective versus monoamine oxidases A/B and the LSD1 homologue, LSD2. Bizine was found to be effective at modulating bulk histone methylation in cancer cells, and ChIP-seq experiments revealed a statistically significant overlap in the H3K4 methylation pattern of genes affected by bizine and those altered in LSD1-/- cells. Treatment of two cancer cell lines, LNCaP and H460, with bizine conferred a reduction in proliferation rate, and bizine showed additive to synergistic effects on cell growth when used in combination with two out of five HDAC inhibitors tested. Moreover, neurons exposed to oxidative stress were protected by the presence of bizine, suggesting potential applications in neurodegenerative disease.
    ACS Chemical Biology 04/2014; · 5.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The retinal pigment epithelium (RPE) performs specialized functions to support retinal photoreceptors, including regeneration of the visual chromophore. Enzymes and carrier proteins in the visual cycle function sequentially to regenerate and continuously supply 11-cis-retinal to retinal photoreceptor cells; however, it is unknown how the expression of the visual cycle genes is coordinated at the transcriptional level. Here, we show that the proximal upstream regions of six visual cycle genes contain chromatin accessible SOX binding sites; that SOX9 and LHX2 are coexpressed in the nuclei of mature RPE cells; and that SOX9 acts synergistically with OTX2 to activate the RPE65 and RLBP1 promoters, and acts synergistically with LHX2 to activate the RGR promoter. Chromatin immunoprecipitation (ChIP) reveals that SOX9 and OTX2 bind to the promoter regions of RPE65, RLBP1, and RGR, and LHX2 binds to those of RPE65 and RGR in bovine RPE. ChIP with human fetal RPE cells shows that SOX9 and OTX2 also bind to the human RPE65, RLBP1, and RGR promoters. Conditional inactivation of Sox9 in mouse RPE results in reduced expression of several visual cycle genes, most dramatically Rpe65 and Rgr. Furthermore, bioinformatic analysis predicts that multiple common microRNAs (miRNAs) regulate visual cycle genes, and cotransfection of miRNA mimics with luciferase reporter constructs validated some of the predicted miRNAs. These results implicate SOX9 as a key regulator of visual cycle genes, reveal for the first time the functional role of LHX2 in the RPE, and suggest the possible regulation of visual cycle genes by common miRNAs.
    Journal of Biological Chemistry 03/2014; · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: How cells degenerate from oxidative stress in aging-related disease is incompletely understood. The study's intent was to identify key cytoprotective pathways activated by oxidative stress, and determine the extent of their protection. Using an unbiased strategy with microarray analysis, retinal pigmented epithelial (RPE) cells treated with cigarette smoke extract (CSE) had over-represented genes involved in the antioxidant and unfolded protein response (UPR). Differentially expressed antioxidant genes were predominantly located in the cytoplasm, with no induction of genes that neutralize superoxide and H2O2 in the mitochondria, resulting in accumulation of superoxide and decreased ATP production. Simultaneously, CSE induced the UPR sensors IRE1α, p-PERK, and ATP6, including CHOP, which was cytoprotective because CHOP knockdown decreased cell viability. In mice given intravitreal CSE, the RPE had increased IRE1α and decreased ATP, and developed epithelial-mesenchymal transition, as suggested by decreased LRAT abundance, altered ZO1 immunolabeling, and dysmorphic cell shape. Mildly degenerated RPE from early AMD samples had prominent IRE1α, but minimal mitochondrial TOM20 immunolabeling. While oxidative stress is thought to induce an antioxidant response with cooperation between the mitochondria and ER, herein, we show that mitochondria become impaired sufficiently to induce epithelial-mesenchymal transition despite a protective UPR. With similar responses in early AMD samples, these results suggest that mitochondria are vulnerable to oxidative stress despite a protective UPR during early phases of aging-related disease.
    Free Radical Biology and Medicine 01/2014; · 5.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The PIK3CA gene is frequently mutated in human cancers. Here we carry out a SILAC-based quantitative phosphoproteomic analysis using isogenic knockin cell lines containing 'driver' oncogenic mutations of PIK3CA to dissect the signalling mechanisms responsible for oncogenic phenotypes induced by mutant PIK3CA. From 8,075 unique phosphopeptides identified, we observe that aberrant activation of PI3K pathway leads to increased phosphorylation of a surprisingly wide variety of kinases and downstream signalling networks. Here, by integrating phosphoproteomic data with human protein microarray-based AKT1 kinase assays, we discover and validate six novel AKT1 substrates, including cortactin. Through mutagenesis studies, we demonstrate that phosphorylation of cortactin by AKT1 is important for mutant PI3K-enhanced cell migration and invasion. Our study describes a quantitative and global approach for identifying mutation-specific signalling events and for discovering novel signalling molecules as readouts of pathway activation or potential therapeutic targets.
    Nature Communications 01/2014; 5:4961. · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Age-related macular degeneration (AMD) is a leading cause of visual impairment worldwide. Aberrant DNA methylation within the promoter of IL17RC in peripheral blood mononuclear cells has recently been reported in AMD. To validate this association, we examined DNA methylation of the IL17RC promoter in peripheral blood. First, we used Illumina Human Methylation450 Bead Arrays, a widely accepted platform for measuring global DNA methylation. Second, methylation status at multiple sites within the IL17RC promoter was determined by bisulfite pyrosequencing in two cohorts. Third, a methylation-sensitive quantitative PCR-based assay was performed on a subset of samples. In contrast to previous findings, we did not find evidence of differential methylation between AMD cases and age-matched controls. We conclude that hypomethylation within the IL17RC gene promoter in peripheral blood is not suitable for use as a clinical biomarker of AMD. This study highlights the need for considerable replication of epigenetic association studies prior to clinical application.
    Cell Reports 12/2013; 5(6):1527-35. · 7.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: MicroRNAs (miRNAs) are a class of endogenous noncoding RNA and posttranscriptionally modulate gene expression during development and disease. Our study investigated the differential miRNA expression in human Fuchs endothelial corneal dystrophy (FECD) compared to normal endothelium to identify miRNA sequences that are involved in the pathogenesis of FECD. Methods: Comparative miRNA expression profiles of endothelial samples obtained from FECD patients during lamellar corneal transplant surgery and from normal donor globes were generated using OpenArray® plate technology. Differential expression of individual miRNAs was validated in the original and in independent samples using stem-loop RT qPCR assays. Expression of miRNA target genes was assessed using qPCR and tissue microarray (TMA) immunolabeling. Results: Our results demonstrate downregulation of 87 microRNAs in FECD compared to normal endothelium (>3-fold change; p<0.01). Correspondingly, DICER1, (encoding an endoribonuclease critical to miRNA biogenesis) showed a moderate but significant decrease in FECD samples (p<0.05). Significant repression of three miR-29 family members (miR-29a-3p, miR-29b-2-5p, miR-29c-5p) was paralleled by upregulation of their extracellular matrix associated mRNA targets collagen I and collagen IV. TMA immunolabeling showed histologically verifiable subendothelial collagen I and collagen IV deposition and increased endothelial laminin protein expression in FECD samples. Conclusions: The present study provides the first microRNA profile in FECD and normal endothelial cells and demonstrates widespread miRNA down-regulation in FECD. Decreased endothelial expression of miR-29 family members may be associated with increased subendothelial extracellular matrix accumulation in FECD.
    Investigative ophthalmology & visual science 12/2013; · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphorylation plays a very important role in cellular signal transduction. Current phosphorylation-related databases often focus on the phosphorylation sites, which are mainly determined by mass spectrometry. Here, we present PhosphoNetworks, a phosphorylation database built upon a high-resolution map of phosphorylation networks. This high-resolution map of phosphorylation networks provides not only the kinase-substrate relationships (KSRs), but also the specific phosphorylation sites on which the kinases act on the substrates. The database contains the most comprehensive dataset for KSRs, including the relationships from a recent high throughput project for identification of KSRs using protein microarrays, as well as known KSRs curated from the literature. In addition, the database also includes several analytical tools for dissecting phosphorylation networks. PhosphoNetworks is expected to play a prominent role in proteomics and phosphorylation related disease research. http://www.phosphonetworks.org CONTACT: jiang.qian@jhmi.edu.
    Bioinformatics 11/2013; · 5.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitric oxide (NO) mediates a substantial part of its physiologic functions via S-nitrosylation, however the cellular substrates for NO-mediated S-nitrosylation are largely unknown. Here we describe the S-nitrosoproteome using a high-density protein microarray chip containing 16,368 unique human proteins. We identified 834 potentially S-nitrosylated human proteins. Using a unique and highly specific labeling and affinity capture of S-nitrosylated proteins, 138 cysteine residues on 131 peptides in 95 proteins were determined, defining critical sites of NO's actions. 113 of these cysteine residues are novel sites of S-nitrosylation. A consensus sequence motif from these 834 proteins for S-nitrosylation was identified, suggesting that the residues flanking the S-nitrosylated cysteine are likely to be the critical determinant of whether the cysteine is S-nitrosylated. We identify eight ubiquitin E3 ligases, RNF10, RNF11, RNF41, RNF141, RNF181, RNF208, WWP2, and UBE3A, whose activities are modulated by S-nitrosylation, providing a unique regulatory mechanism of the ubiquitin proteasome system. These results define a new and extensive set of proteins that are susceptible to NO regulation via S-nitrosylation. Similar approaches could be utilized to identify other post-translational modification proteomes.
    Molecular &amp Cellular Proteomics 10/2013; · 7.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The exact role of intragenic DNA methylation in regulating tissue-specific gene regulation is unclear. Recently, the DNA-binding protein CTCF has been shown to participate in the regulation of alternative splicing in a DNA methylation-dependent manner. To globally evaluate the relationship between DNA methylation and tissue-specific alternative splicing, we performed genome-wide DNA methylation profiling of mouse retina and brain. In protein-coding genes, tissue-specific differentially methylated regions (T-DMRs) were preferentially located in exons and introns. Gene ontology and evolutionary conservation analysis suggest that these T-DMRs are likely to be biologically relevant. More than 14% of alternatively spliced genes were associated with a T-DMR. T-DMR-associated genes were enriched for developmental genes, suggesting that a specific set of alternatively spliced genes may be regulated through DNA methylation. Novel DNA sequences motifs overrepresented in T-DMRs were identified as being associated with positive and/or negative regulation of alternative splicing in a position-dependent context. The majority of these evolutionarily conserved motifs contain a CpG dinucleotide. Some transcription factors, which recognize these motifs, are known to be involved in splicing. Our results suggest that DNA methylation-dependent alternative splicing is widespread and lay the foundation for further mechanistic studies of the role of DNA methylation in tissue-specific splicing regulation.
    Nucleic Acids Research 07/2013; · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein microarray technology is an emerging field that provides a versatile platform for the characterization of hundreds of thousands of proteins in a highly parallel and high-throughput manner. Protein microarrays are composed of two major classes: analytical and functional. In addition, tissue or cell lysates can also be fractionated and spotted on a slide to form a reverse-phase protein microarray. Applications of protein microarrays, especially functional protein microarrays, have flourished over the past decade as the fabrication technology has matured. In this unit, advances in protein microarray technologies are reviewed, and then a series of examples are presented to illustrate the applications of analytical and functional protein microarrays in both basic and clinical research. Relevant areas of research include the detection of various binding properties of proteins, the study of protein post-translational modifications, the analysis of host-microbe interactions, profiling antibody specificity, and the identification of biomarkers in autoimmune diseases.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The landscape of human phosphorylation networks has not been systematically explored, representing vast, unchartered territories within cellular signaling networks. Although a large number of in vivo phosphorylated residues have been identified by mass spectrometry (MS)-based approaches, assigning the upstream kinases to these residues requires biochemical analysis of kinase-substrate relationships (KSRs). Here, we developed a new strategy, called CEASAR, based on functional protein microarrays and bioinformatics to experimentally identify substrates for 289 unique kinases, resulting in 3656 high-quality KSRs. We then generated consensus phosphorylation motifs for each of the kinases and integrated this information, along with information about in vivo phosphorylation sites determined by MS, to construct a high-resolution map of phosphorylation networks that connects 230 kinases to 2591 in vivo phosphorylation sites in 652 substrates. The value of this data set is demonstrated through the discovery of a new role for PKA downstream of Btk (Bruton's tyrosine kinase) during B-cell receptor signaling. Overall, these studies provide global insights into kinase-mediated signaling pathways and promise to advance our understanding of cellular signaling processes in humans.
    Molecular Systems Biology 04/2013; 9:655. · 11.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein microarray technology is an emerging field that provides a versatile platform for the characterization of hundreds of thousands of proteins in a highly parallel and high-throughput manner. Protein microarrays are composed of two major classes: analytical and functional. In addition, tissue or cell lysates can also be fractionated and spotted on a slide to form a reverse-phase protein microarray. Applications of protein microarrays, especially functional protein microarrays, have flourished over the past decade as the fabrication technology has matured. In this unit, advances in protein microarray technologies are reviewed, and then a series of examples are presented to illustrate the applications of analytical and functional protein microarrays in both basic and clinical research. Relevant areas of research include the detection of various binding properties of proteins, the study of protein post-translational modifications, the analysis of host-microbe interactions, profiling antibody specificity, and the identification of biomarkers in autoimmune diseases. Curr. Protoc. Protein Sci. 72:27.1.1-27.1.16. © 2013 by John Wiley & Sons, Inc.
    Current protocols in protein science / editorial board, John E. Coligan ... [et al.] 04/2013; Chapter 27:Unit27.1.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphorylation-mediated signaling plays a crucial role in nearly every aspect of cellular physiology. A recent study based on protein microarray experiments identified a large number of kinase-substrate relationships (KSRs), and built a comprehensive and reliable phosphorylation network in humans. Analysis of this network, in conjunction with additional resources, revealed several key features. First, comparison of the human and yeast phosphorylation networks uncovered an evolutionarily conserved signaling backbone dominated by kinase-to-kinase relationships. Second, although most of the KSRs themselves are not conserved, the functions enriched in the substrates for a given kinase are often conserved. Third, the prevalence of kinase-transcription factor regulatory modules suggests that phosphorylation and transcriptional regulatory networks are inherently wired together to form integrated regulatory circuits. Overall, the phosphorylation networks described in this work promise to offer new insights into the properties of kinase signaling pathways, at both the global and the protein levels. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology & Clinical Implications.
    Biochimica et Biophysica Acta 03/2013; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: To investigate the endothelial gene expression profile in a Col8a2 Q455K mutant knock-in mouse model of early-onset Fuchs endothelial corneal dystrophy (FECD) and identify potential targets which can be correlated to human late-onset FECD. METHODS: Diseased or normal endothelial phenotypes were verified in 12 month-old homozygous Col8a2Q455K/Q455K mutant and wild-type mice by clinical confocal microscopy. An endothelial whole genome expression profile was generated by microarray-based analysis. Result validation was performed by real-time polymerase chain reaction (real-time PCR). Endothelial COX2 and JUN expression was further studied in human late-onset FECD compared to normal samples. RESULTS: Microarray analysis demonstrated endothelial expression of 24,538 genes (162 upregulated and 172 downregulated targets) and identified affected gene ontology terms including Response to Stress, Protein Metabolic Process, Protein Folding, Regulation of Apoptosis and Transporter Activity. Real-time PCR assessment confirmed increased Cox2 (p=0.001) and Jun mRNA (p=0.03) levels in Col8a2Q455K/Q455K mutant compared to wild-type mice. In human FECD samples, real-time PCR demonstrated a statistically significant increase in COX2 mRNA (p<0.0001) and JUN mRNA (p=0.002) and tissue microarray analysis showed increased endothelial COX2 (p=0.02) and JUN protein (p=0.04). CONCLUSIONS: The present study provides the first endothelial whole genome expression analysis in an animal model of FECD and represents a useful resource for future studies of the disease. In particular endothelial COX2 upregulation warrants further investigation of its role in FECD.
    Investigative ophthalmology & visual science 02/2013; · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Growing evidence suggests that DNA methylation plays a role in tissue-specific differentiation. Current approaches to methylome analysis using enrichment with the methyl-binding domain protein (MBD) are restricted to large (≥1 μg) DNA samples, limiting the analysis of small tissue samples. Here we present a technique that enables characterization of genome-wide tissue-specific methylation patterns from nanogram quantities of DNA. We have developed a methodology utilizing MBD2b/MBD3L1 enrichment for methylated DNA, kinase pre-treated ligation-mediated PCR amplification (MeKL) and hybridization to the comprehensive high-throughput array for relative methylation (CHARM) customized tiling arrays, which we termed MeKL-chip. Kinase modification in combination with the addition of PEG has increased ligation-mediated PCR amplification over 20-fold, enabling >400-fold amplification of starting DNA. We have shown that MeKL-chip can be applied to as little as 20 ng of DNA, enabling comprehensive analysis of small DNA samples. Applying MeKL-chip to the mouse retina (a limited tissue source) and brain, 2,498 tissue-specific differentially methylated regions (T-DMRs) were characterized. The top five T-DMRs (Rgs20, Hes2, Nfic, Cckbr and Six3os1) were validated by pyrosequencing. MeKL-chip enables genome-wide methylation analysis of nanogram quantities of DNA with a wide range of observed-to-expected CpG ratios due to the binding properties of the MBD2b/MBD3L1 protein complex. This methodology enabled the first analysis of genome-wide methylation in the mouse retina, characterizing novel T-DMRs.
    Epigenetics & Chromatin 01/2013; 6(1):17. · 4.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation, especially CpG methylation at promoter regions, has been generally considered as a potent epigenetic modification that prohibits transcription factor (TF) recruitment, resulting in transcription suppression. Here, we used a protein microarray-based approach to systematically survey the entire human TF family and found numerous purified TFs with methylated CpG (mCpG)-dependent DNA-binding activities. Interestingly, some TFs exhibit specific binding activity to methylated and unmethylated DNA motifs of distinct sequences. To elucidate the underlying mechanism, we focused on Kruppel-like factor 4 (KLF4), and decoupled its mCpG- and CpG-binding activities via site-directed mutagenesis. Furthermore, KLF4 binds specific methylated or unmethylated motifs in human embryonic stem cells in vivo. Our study suggests that mCpG-dependent TF binding activity is a widespread phenomenon and provides a new framework to understand the role and mechanism of TFs in epigenetic regulation of gene transcription. DOI:http://dx.doi.org/10.7554/eLife.00726.001.
    eLife Sciences 01/2013; 2:e00726.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein phosphorylation is a dynamic and reversible event that greatly influences cellular function. Identifying the key regulatory elements that determine cellular phenotypes during development and oncogenesis requires the ability to dynamically monitor proteome-wide events. Here, we report the development of a new strategy to monitor dynamic changes of protein phosphorylation in cells and tissues using functional protein microarrays as the readout. To demonstrate this technology's ability to identify condition-dependent phosphorylation events, human protein microarrays were incubated with lysates from cells or tissues under activation or inhibition of c-Met, a receptor tyrosine kinase involved in tissue morphogenesis and malignancy. By comparing the differences between the protein phosphorylation profiles obtained using the protein microarrays, we were able to recover many of the proteins that are known to be specifically activated (i.e., phosphorylated) upon c-Met activation by the hepatocyte growth factor (HGF). Most importantly, we discovered many proteins that were differentially phosphorylated by lysates from cells or tissues when the c-Met pathway was active. Using phosphorylation-specific antibodies, we were able to validate several candidate proteins as new downstream components of the c-Met signaling pathway in cells. We envision that this new approach, like its DNA microarray counterpart, can be further extended toward profiling dynamics of global protein phosphorylation under many different physiological conditions both in cellulo and in vivo in a high-throughput and cost-effective fashion.
    PLoS ONE 01/2013; 8(9):e72671. · 3.53 Impact Factor
  • Heng Zhu, Eric Cox, Jiang Qian
    [Show abstract] [Hide abstract]
    ABSTRACT: Functional protein microarrays were developed as a high-throughput tool to overcome the limitations of DNA microarrays and to provide a versatile platform for protein functional analyses. Recent years have witnessed tremendous growth in the use of protein microarrays, particularly functional protein microarrays, to address important questions in the field of clinical proteomics. In this review, we will summarize some of the most innovative and exciting recent applications of protein microarrays in clinical proteomics, including biomarker identification, pathogen-host interactions, and cancer biology.
    PROTEOMICS - CLINICAL APPLICATIONS 10/2012; · 1.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although significant effort is expended on identifying transcripts/proteins that are up-regulated in cancer, there are few reports on systematic elucidation of transcriptional mechanisms underlying such druggable cancer-specific targets. The mesothelin (MSLN) gene offers a promising subject, being expressed in a restricted pattern normally, yet highly overexpressed in almost one-third of human malignancies and a target of cancer immunotherapeutic trials. CanScript, a cis promoter element, appears to control MSLN cancer-specific expression; its related genomic sequences may up-regulate other cancer markers. CanScript is a 20-nt bipartite element consisting of an SP1-like motif and a consensus MCAT sequence. The latter recruits TEAD (TEA domain) family members, which are universally expressed. Exploration of the active CanScript element, especially the proteins binding to the SP1-like motif, thus could reveal cancer-specific features having diagnostic or therapeutic interest. The efficient identification of sequence-specific DNA-binding proteins at a given locus, however, has lagged in biomarker explorations. We used two orthogonal proteomics approaches-unbiased SILAC (stable isotope labeling by amino acids in cell culture)/DNA affinity-capture/mass spectrometry survey (SD-MS) and a large transcription factor protein microarray (TFM)-and functional validation to explore systematically the CanScript interactome. SD-MS produced nine candidates, and TFM, 18. The screens agreed in confirming binding by TEAD proteins and by newly identified NAB1 and NFATc. Among other identified candidates, we found functional roles for ZNF24, NAB1 and RFX1 in MSLN expression by cancer cells. Combined interactome screens yield an efficient, reproducible, sensitive, and unbiased approach to identify sequence-specific DNA-binding proteins and other participants in disease-specific DNA elements.
    Journal of Proteome Research 10/2012; · 5.06 Impact Factor

Publication Stats

2k Citations
475.86 Total Impact Points

Institutions

  • 2003–2014
    • Johns Hopkins University
      • • Department of Pharmacology and Molecular Sciences
      • • Wilmer Eye Institute
      Baltimore, Maryland, United States
  • 2013
    • North Carolina Agricultural and Technical State University
      Greensboro, North Carolina, United States
  • 2003–2011
    • Johns Hopkins Medicine
      • Department of Pharmacology and Molecular Sciences
      Baltimore, MD, United States
  • 2001–2011
    • Yale University
      • • Department of Molecular Biophysics and Biochemistry
      • • Department of Molecular, Cellular and Developmental Biology
      New Haven, CT, United States
  • 2010
    • RIKEN
      Вако, Saitama, Japan
  • 2009
    • University of Lincoln
      Lincoln, England, United Kingdom