Rainer G Ulrich

Friedrich Loeffler Institute, Griefswald, Mecklenburg-Vorpommern, Germany

Are you Rainer G Ulrich?

Claim your profile

Publications (198)633.01 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Brucellosis is a widespread zoonotic disease introduced from animal reservoirs to humans. In Germany, bovine and ovine/caprine brucellosis were eradicated more than a decade ago and mandatory measures in livestock have been implemented to keep the officially brucellosis-free status. In contrast, surveillance of wildlife is still challenging, and reliable data on the prevalence of brucellae in small mammal populations do not exist. To assess the epidemiology of Brucella spp. in rodents and shrews, a molecular survey was carried out. A total of 537 rodents and shrews were trapped in four federal states located throughout Germany and investigated for the presence of Brucella. Using a two-step molecular assay based on the detection of the Brucella-specific bcsp31 and IS711 sequences in tissue samples, 14.2% (n = 76) of the tested animals were positive. These originated mainly from western and south-western Germany, where preliminary analyses indicate population density-dependent Brucella prevalence in voles (Myodes glareolus) and mice (Apodemus spp.). recA typing revealed a close relationship to a potentially novel Brucella species recently isolated from red foxes (Vulpes vulpes) in Austria. The molecular detection of brucellae in various rodent taxa and for the first time in shrew species shows that these animals may be naturally infected or at least have a history of exposure to Brucella spp.
    Transboundary and Emerging Diseases 09/2015; DOI:10.1111/tbed.12425 · 2.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To identify native wildlife species possibly susceptible to infection with Schmallenberg virus (SBV), a midge-transmitted orthobunyavirus that predominantly infects domestic ruminants, samples from various free-living ruminants, but also carnivores, small mammals and wild boar were analyzed serologically. Before 2011, no SBV-specific antibodies were detectable in any of the tested species, thereafter, a large proportion of the ruminant population became seropositive, while every sample taken from carnivores or small mammals tested negative. Surprisingly, SBV-specific-antibodies were also present in a large number of blood samples from wild boar during the 2011/2012 and 2012/2013 hunting seasons. Hence, free-ranging artiodactyls may play a role as wildlife host.
    Veterinary Research 09/2015; 46(1):99. DOI:10.1186/s13567-015-0232-x · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We amplified and sequenced six complete genomes of a polyomavirus from feral Norway rats (Rattus norvegicus) and from a long-term breeding colony derived from Norway rats. This virus, which is closely related to hamster polyomavirus and murine polyomavirus, may contribute to understanding the evolutionary history of rodent polyomaviruses. Copyright © 2015 Ehlers et al.
    Genome Announcements 09/2015; 3(5). DOI:10.1128/genomeA.00997-15
  • [Show abstract] [Hide abstract]
    ABSTRACT: Importance: We report on the first detection and isolation of CPXV from a putative reservoir host, which enables comparative analyses to understand the infection cycle of these zoonotic orthopox viruses and the relevant genes involved. In vitro studies including whole-genome sequencing as well as in vivo experiments using the Wistar rat model and the vole reservoir host allowed us to establish links between genomic sequences and the in vivo properties (virulence) of the novel vole isolate in comparison to a recent zoonotic CPXV isolated from pet rats in 2009. Furthermore, the role of genes only present in a reservoir isolate can now be further analyzed. These studies allow, therefore, unique insights and conclusions about the role of the rodent reservoir in CPXV epidemiology and transmission, and the zoonotic threat that these viruses represent.
    Journal of Virology 08/2015; DOI:10.1128/JVI.01195-15 · 4.44 Impact Factor
  • Source
    Dataset: Morger 2015
  • D Reil · C Imholt · S Drewes · R G Ulrich · J A Eccard · J Jacob
    [Show abstract] [Hide abstract]
    ABSTRACT: Bank voles can harbour Puumala virus (PUUV) and vole populations usually peak in years after beech mast. A beech mast occurred in 2014 and a predictive model indicates high vole abundance in 2015. This pattern is similar to the years 2009/2011 when beech mast occurred, bank voles multiplied and human PUUV infections increased a year later. Given similar environmental conditions in 2014/2015, increased risk of human PUUV infections in 2015 is likely. Risk management measures are recommended. © 2015 Blackwell Verlag GmbH.
    Zoonoses and Public Health 07/2015; DOI:10.1111/zph.12217 · 2.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Between 2011 and 2013, three breeders of variegated squirrels (Sciurus variegatoides) had encephalitis with similar clinical signs and died 2 to 4 months after onset of the clinical symptoms. With the use of a metagenomic approach that incorporated next-generation sequencing and real-time reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR), the presence of a previously unknown bornavirus was detected in a contact squirrel and in brain samples from the three patients. Phylogenetic analyses showed that this virus, tentatively named variegated squirrel 1 bornavirus (VSBV-1), forms a lineage separate from that of the known bornavirus species. (Funded by the Federal Ministry of Food and Agriculture [Germany] and others.)
    New England Journal of Medicine 07/2015; DOI:10.1056/NEJMoa1415627. · 55.87 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Between 2011 and 2013, three breeders of variegated squirrels (Sciurus variegatoides) had encephalitis with similar clinical signs and died 2 to 4 months after onset of the clinical symptoms. With the use of a metagenomic approach that incorporated next-generation sequencing and real-time reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR), the presence of a previously unknown bornavirus was detected in a contact squirrel and in brain samples from the three patients. Phylogenetic analyses showed that this virus, tentatively named variegated squirrel 1 bornavirus (VSBV-1), forms a lineage separate from that of the known bornavirus species.
    New England Journal of Medicine 07/2015; DOI:10.1056/NEJMoa1415627 · 55.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parasite-mediated selection may contribute to the maintenance of genetic variation at host immune genes over long time scales. To date, the best evidence for the long-term maintenance of immunogenetic variation in natural populations comes from studies on the major histocompatibility complex (MHC) genes, whereas evidence for such processes from other immune genes remains scarce. In the present study, we show that, despite pronounced population differentiation and the occurrence of numerous private alleles within populations, the innate immune gene Toll-like receptor 2 (TLR2) displays a distinct haplotype structure in 21 bank vole (Myodes glareolus) populations across Europe. Haplotypes from all populations grouped in four clearly differentiated clusters, with the three main clusters co-occurring in at least three previously described mitochondrial lineages. This pattern indicates that the distinct TLR2 haplotype structure may precede the split of the mitochondrial lineages 0.19–0.56 Mya and suggests that haplotype clusters at this innate immune receptor are maintained over prolonged time in wild bank vole populations.
    Biological Journal of the Linnean Society 06/2015; DOI:10.1111/bij.12593 · 2.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many viruses significantly impact human and animal health. Understanding the population dynamics of these viruses and their hosts can provide important insights for epidemiology and virus evolution. Puumala virus (PUUV) is a European hantavirus that may cause regional outbreaks of hemorrhagic fever with renal syndrome in humans. Here, we analyzed the spatiotemporal dynamics of PUUV circulating in local populations of its rodent reservoir host, the bank vole (Myodes glareolus) during eight years. Phylogenetic and population genetic analyses of all three genome segments of PUUV showed strong geographical structuring at a very local scale. There was a high temporal turnover of virus strains in the local bank vole populations but several virus strains persisted through multiple years. Phylodynamic analyses showed no significant changes in the local effective population sizes of PUUV, although vole numbers and virus prevalence fluctuated widely. Microsatellite data demonstrated also a temporally persisting subdivision between local vole populations, but these groups did not correspond to the subdivision in the virus strains. We conclude that restricted transmission between vole populations and genetic drift play important roles in shaping the genetic structure and temporal dynamics of PUUV in its natural host which has several implications for zoonotic risks of the human population.This article is protected by copyright. All rights reserved.
    Evolutionary Applications 04/2015; 8(6). DOI:10.1111/eva.12263 · 3.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Puumala virus (PUUV) is one of the predominant hantavirus species in Europe causing mild to moderate cases of haemorrhagic fever with renal syndrome. Parts of Lower Saxony in north-western Germany are endemic for PUUV infections. In this study, the complete PUUV genome sequence of a bank vole-derived tissue sample from the 2007 outbreak was determined by a combined primer-walking and RNA ligation strategy. The S, M and L genome segments were 1,828, 3,680 and 6,550 nucleotides in length, respectively. Sliding-window analyses of the nucleotide sequences of all available complete PUUV genomes indicated a non-homogenous distribution of variability with hypervariable regions located at the 3'-ends of the S and M segments. The overall similarity of the coding genome regions to the other PUUV strains ranged between 80.1 and 84.7 % at the level of the nucleotide sequence and between 89.5 and 98.1 % for the deduced amino acid sequences. In comparison to the phylogenetic trees of the complete coding sequences, trees based on partial segments revealed a general drop in phylogenetic support and a lower resolution. The Astrup strain S and M segment sequences showed the highest similarity to sequences of strains from geographically close sites in the Osnabrück Hills region. In conclusion, a primer-walking-mediated strategy resulted in the determination of the first complete nucleotide sequence of a PUUV strain from Central Europe. Different levels of variability along the genome provide the opportunity to choose regions for analyses according to the particular research question, e.g., large-scale phylogenetics or within-host evolution.
    Virus Genes 12/2014; 50(2). DOI:10.1007/s11262-014-1157-6 · 1.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis E virus (HEV) is the causative agent of acute hepatitis E in humans in developing countries, but sporadic and autochthonous cases do also occur in industrialised countries. In Europe, food-borne zoonotic transmission of genotype 3 (gt3) has been associated with domestic pig and wild boar. However, little is known about the course of HEV infection in European wild boar and their role in HEV transmission to domestic pigs. To investigate the transmissibility and pathogenesis of wild boar-derived HEVgt3, we inoculated four wild boar and four miniature pigs intravenously. Using quantitative real-time RT-PCR viral RNA was detected in serum, faeces and in liver, spleen and lymph nodes. The antibody response evolved after fourteen days post inoculation. Histopathological findings included mild to moderate lymphoplasmacytic hepatitis which was more prominent in wild boar than in miniature pigs. By immunohistochemical methods, viral antigens were detected mainly in Kupffer cells and liver sinusoidal endothelial cells, partially associated with hepatic lesions, but also in spleen and lymph nodes. While clinical symptoms were subtle and gross pathology was inconspicuous, increased liver enzyme levels in serum indicated hepatocellular injury. As the faecal-oral route is supposed to be the most likely transmission route, we included four contact animals to prove horizontal transmission. Interestingly, HEVgt3-infection was also detected in wild boar and miniature pigs kept in contact to intravenously inoculated wild boar. Given the high virus loads and long duration of viral shedding, wild boar has to be considered as an important HEV reservoir and transmission host in Europe. Electronic supplementary material The online version of this article (doi:10.1186/s13567-014-0121-8) contains supplementary material, which is available to authorized users.
    Veterinary Research 12/2014; 45(1):121. DOI:10.1186/s13567-014-0121-8 · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rats are known as reservoirs and vectors for several zoonotic pathogens. However, information on the viruses shed by urban wild rats that could pose zoonotic risk to human health is scare. Here, intestinal contents from 20 wild Norway rats (Rattus norvegicus) collected in the city of Berlin, Germany, were subjected to metagenomic analysis of viral nucleic acids. The determined faecal viromes of rats consisted of a variety of known and unknown viruses and were highly variable among the individuals. Members of the families Parvoviridae and Picobirnaviridae represented the most abundant species. Novel picorna-, boca-, sapo- and stool-associated circular ssDNA viruses (SCV) were identified, which showed only low sequence identities to known representatives of the corresponding taxa. In addition, noro- and rotaviruses were detected as potential zoonotic gastroenteritis viruses. However, partial genome sequence analyses indicated that the norovirus was closely related to the recently identified rat norovirus and the rotavirus B was closely related to the rat rotavirus strain IDIR; both viruses clustered separately from respective human virus strains in phylogenetic trees. In contrast, the rotavirus A sequences showed high identities to human and animal strains. Analysis of the nearly complete genome of this virus revealed the known genotypes G3, P[3] and N2 for three of the genome segments, whereas the remaining eight genome segments represented the novel genotypes I20-R11-C11-M10-A22-T14-E18-H13. In conclusion, the results indicate a high heterogeneity of enteric viruses present in urban wild rats; their ability to be transmitted to humans remains to be assessed in future.
    Journal of General Virology 08/2014; 95(Pt_12). DOI:10.1099/vir.0.070029-0 · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leptospirosis is an acute, febrile disease occurring in humans and animals worldwide. Leptospira spp. are usually transmitted through direct or indirect contact with the urine of infected reservoir animals. Among wildlife species, rodents act as the most important reservoir for both human and animal infection. To gain a better understanding of the occurrence and distribution of pathogenic leptospires in rodent and shrew populations in Germany, kidney specimens of 2973 animals from 11 of the 16 federal states were examined by PCR. Rodent species captured included five murine species (family Muridae), six vole species (family Cricetidae) and six shrew species (family Soricidae). The most abundantly trapped animals were representatives of the rodent species Apodemus flavicollis, Clethrionomys glareolus and Microtus agrestis. Leptospiral DNA was amplified in 10% of all animals originating from eight of the 11 federal states. The highest carrier rate was found in Microtus spp. (13%), followed by Apodemus spp. (11%) and Clethrionomys spp. (6%). The most common Leptospira genomospecies determined by duplex PCR was L. kirschneri, followed by L. interrogans and L. borgpetersenii; all identified by single locus sequence typing (SLST). Representatives of the shrew species were also carriers of Leptospira spp. In 20% of Crocidura spp. and 6% of the Sorex spp. leptospiral DNA was detected. Here, only the pathogenic genomospecies L. kirschneri was identified.
    International Journal of Environmental Research and Public Health 08/2014; 11(8):7562-74. DOI:10.3390/ijerph110807562 · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hepatitis E virus (HEV) was first identified in 1990, although hepatitis E-like diseases in humans have been recorded for a long time dating back to the 18th century. The HEV genotypes 1 to 4 have been subsequently detected in human hepatitis E cases with different geographical distribution and different modes of transmission. Genotypes 3 and 4 have been identified in parallel in pigs, wild boars and other animal species and their zoonotic potential has been confirmed. Until 2010, these genotypes along with avian HEV strains infecting chicken were the only known representatives of the familiy Hepeviridae. Thereafter, additional HEV-related viruses have been detected in wild boars, distinct HEV-like viruses were identified in rats, rabbit, ferret, mink, fox, bats and moose, and a distantly related agent was described from closely related salmonid fish. This review summarizes the characteristics of the so far known HEV-like viruses, their phylogenetic relationship, host association and proposed involvement in diseases. Based on the reviewed knowledge, a suggestion for a new taxonomic grouping scheme of the viruses within the family Hepeviridae is presented.
    Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 07/2014; 27. DOI:10.1016/j.meegid.2014.06.024 · 3.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host-pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans.
    Vector borne and zoonotic diseases (Larchmont, N.Y.) 06/2014; 14(7). DOI:10.1089/vbz.2013.1504 · 2.30 Impact Factor
  • Source
    J Jacob · R G Ulrich · J Freise · E Schmolz
    [Show abstract] [Hide abstract]
    ABSTRACT: Rodents can harbor and transmit pathogens that can cause severe disease in humans, companion animals and livestock. Such zoonotic pathogens comprise more than two thirds of the currently known human pathogens. The epidemiology of some zoonotic pathogens, such as hantaviruses, can be linked to the population dynamics of the rodent host. In this case, during an outbreak of the rodent host population many human infections may occur. In other rodent-borne zoonotic diseases such phenomena are not known and in many cases the rodent host specificity of a given pathogen is unclear. The monitoring of relevant rodent populations and of the rodent-borne zoonotic pathogens is essential to (1) understand the distribution and epidemiology of pathogens and (2) develop forecasting tools to predict outbreaks of zoonoses. Presently, there are no systematic long-term monitoring programs in place for zoonoses in Germany. Rodent monitoring activities are largely restricted to the plant protection sector, such as for the common vole (Microtus arvalis) and forest-damaging rodents. However, during the last 10-15 years a number of specific research projects have been initiated and run for a few years and Norway rat (Rattus norvegicus) monitoring has been implemented in Hamburg and Lower Saxony. Based on close cooperation of federal and state authorities and research institutions these efforts could be utilized to gain information about the distribution and importance of rodent-borne zoonoses. Nevertheless, for the integration of rodent population dynamics and zoonotic disease patterns and especially for developing predictive models, long-term monitoring is urgently required. To establish a systematic long-term monitoring program, existing networks and cooperation need to be used, additional collaborators (e.g., pest control operators) should be included and synergetic effects of different scientific fields should be utilized.
    Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 05/2014; 57(5):511-518. DOI:10.1007/s00103-013-1924-x · 1.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Germany, rabies in bats is a notifiable zoonotic disease, which is caused by European bat lyssaviruses type 1 and 2 (EBLV-1 and 2), and the recently discovered new lyssavirus species Bokeloh bat lyssavirus (BBLV). As the understanding of bat rabies in insectivorous bat species is limited, in addition to routine bat rabies diagnosis, an enhanced passive surveillance study, i.e. the retrospective investigation of dead bats that had not been tested for rabies, was initiated in 1998 to study the distribution, abundance and epidemiology of lyssavirus infections in bats from Germany. A total number of 5478 individuals representing 21 bat species within two families were included in this study. The Noctule bat (Nyctalus noctula) and the Common pipistrelle (Pipistrellus pipistrellus) represented the most specimens submitted. Of all investigated bats, 1.17% tested positive for lyssaviruses using the fluorescent antibody test (FAT). The vast majority of positive cases was identified as EBLV-1, predominately associated with the Serotine bat (Eptesicus serotinus). However, rabies cases in other species, i.e. Nathusius' pipistrelle bat (Pipistrellus nathusii), P. pipistrellus and Brown long-eared bat (Plecotus auritus) were also characterized as EBLV-1. In contrast, EBLV-2 was isolated from three Daubenton's bats (Myotis daubentonii). These three cases contribute significantly to the understanding of EBLV-2 infections in Germany as only one case had been reported prior to this study. This enhanced passive surveillance indicated that besides known reservoir species, further bat species are affected by lyssavirus infections. Given the increasing diversity of lyssaviruses and bats as reservoir host species worldwide, lyssavirus positive specimens, i.e. both bat and virus need to be confirmed by molecular techniques.
    PLoS Neglected Tropical Diseases 05/2014; 8(5):e2835. DOI:10.1371/journal.pntd.0002835 · 4.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An increase in acute autochthonous hepatitis E virus (HEV) infections has been recorded in Germany. These are suspected to be zoonotically transmitted from wild boar, deer and domestic pig. The latter may represent a major reservoir for HEV. In this study, 537 sera from humans living in Westphalia and Lower Saxony, representing areas of high pig density in Germany, were tested for the presence of HEV-specific antibodies. Among them were 302 individuals with occupational, direct contact to pigs and 235 individuals without direct contact to pigs. Two commercial tests and one in-house assay were applied for the detection of HEV-specific immunoglobulin G (IgG) antibodies. Sera were also tested in an assay that detects all classes of HEV-specific antibodies. Depending on the test used, the seroprevalence ranged from 4.1 to 27.9 %. Exposition to pigs was found to be associated with a significantly higher seroprevalence in subjects with contact to pigs (13.2-32.8 %) compared with that in non-exposed humans (7.7-21.7 %). In particular, individuals younger than 40 years with occupational exposure exhibited a markedly higher HEV seroprevalence compared with non-exposed individuals of that age group. In general, HEV seroprevalence increased with age resulting in a similar prevalence level in the age group of ≥50 years for exposed and non-exposed individuals. Analysis of all sera by a commercial anti-HEV IgM ELISA revealed 35 positive and 25 borderline samples. However, only one positive serum could be confirmed by an IgM line assay. Selected samples from IgM and/or IgG as well as total HEV antibody-positive individuals were also tested for the presence of HEV RNA. In one of the 78 samples, the only IgM ELISA positive and IgM line assay confirmed sample, RNA of HEV genotype 3 was detected. This sequence has high similarity to HEV sequences obtained from wild boars and domestic pigs from Germany and The Netherlands. This study demonstrates that in addition to the consumption of raw or undercooked meat, direct contact to pigs has to be considered as an additional risk factor for HEV infection.
    Medical Microbiology and Immunology 04/2014; 203(4). DOI:10.1007/s00430-014-0336-3 · 3.04 Impact Factor

Publication Stats

4k Citations
633.01 Total Impact Points


  • 2006–2015
    • Friedrich Loeffler Institute
      • • Institute for Novel and Emerging Infectious Diseases
      • • Institute of Epidemiology
      Griefswald, Mecklenburg-Vorpommern, Germany
  • 2011–2014
    • MSD Animal Health, Germany
      Schleisheim, Bavaria, Germany
  • 2013
    • Justus-Liebig-Universität Gießen
      • Institut für Hygiene und Infektionskrankheiten der Tiere
      Gießen, Hesse, Germany
    • Institut für Interdisziplinäre Medizin Hamburg
      Hamburg, Hamburg, Germany
  • 1992–2011
    • Charité Universitätsmedizin Berlin
      • • Institute of Medical Sociology
      • • Institute of Virology
      Berlin, Land Berlin, Germany
  • 2009
    • Bernhard Nocht Institute for Tropical Medicine
      Hamburg, Hamburg, Germany
  • 2007
    • University of Rostock
      Rostock, Mecklenburg-Vorpommern, Germany
    • Robert Koch Institut
      Berlín, Berlin, Germany
    • Bundeswehr Institute of Microbiology
      München, Bavaria, Germany
    • Institute of Biotechnology Vilnius University
      Vil'nyus, Vilniaus Apskritis, Lithuania
  • 2004–2005
    • Hochschule für Gesundheit und Medizin
      Berlín, Berlin, Germany
  • 2003
    • Max Planck Institute for Molecular Genetics
      Berlín, Berlin, Germany
    • University of Latvia
      • Biomedical Research and Study Centre
      Rija, Rīga, Latvia
  • 1991–2003
    • Humboldt-Universität zu Berlin
      • Department of Biology
      Berlín, Berlin, Germany
  • 2002
    • Karolinska Institutet
      Сольна, Stockholm, Sweden
  • 1999–2002
    • Humboldt State University
      ACV, California, United States
  • 2001
    • Universität zu Lübeck
      • Department of Internal Medicine I
      Lübeck Hansestadt, Schleswig-Holstein, Germany
  • 1990
    • Institute of Molecular Biology
      Mayence, Rheinland-Pfalz, Germany