Daniel Fried

University of California, San Francisco, San Francisco, California, United States

Are you Daniel Fried?

Claim your profile

Publications (200)191.07 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have demonstrated that the optical changes due to the loss of water from porous lesions can be exploited to assess lesion severity with QLF, thermal and near-IR imaging. Since arrested lesions are less permeable to water due to the highly mineralized surface layer, changes in the rate of water loss can be related to changes in lesion structure. The purpose of this study was to investigate whether the rate of water loss correlates with the degree of remineralization and whether that rate can be measured using thermal and near-IR reflectance imaging. Artificial bovine enamel lesions (n=30) were prepared by immersion in a demineralization solution for either 8 and 24hours and they were subsequently placed in an acidic remineralization solution for different periods. The samples were dehydrated using an air spray for 30seconds and surfaces were imaged using a thermal camera and an InGaAs camera at 1300-1700nm wavelengths. The area enclosed by the time-temperature curve, ΔQ, from thermal imaging showed significant differences (P<0.05) between the lesion window and other windows. Near-IR reflectance intensity differences, ΔI, before and after dehydration decreased with longer periods of remineralization. Only near-IR reflectance imaging was capable of detecting significant differences (P<0.05) between the different periods of remineralization. This study demonstrated that both thermal and near-IR reflectance imaging were suitable for the detection of remineralization in simulated caries lesions and near-IR wavelengths longer than 1400nm are well suited for the assessment of remineralization. Copyright © 2015. Published by Elsevier Ltd.
    Journal of dentistry 04/2015; DOI:10.1016/j.jdent.2015.03.005 · 2.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: IntroductionSince optical coherence tomography (OCT) is well suited for measuring small dimensional changes on tooth surfaces, OCT has great potential for monitoring tooth erosion. Previous studies have shown that enamel areas ablated by a carbon dioxide laser manifested lower rates of erosion compared to the non-ablated areas. The purpose of this study was to develop a model to monitor erosion in vitro that could potentially be used in vivo.Methods Thirteen bovine enamel blocks were used in this in vitro study. Each 10 mm × 2 mm block was partitioned into five regions, the central region was unprotected, the adjacent windows were irradiated by a CO2 laser operating at 9.3 µm with a fluence of 2.4 J/cm2, and the outermost windows were coated with acid resistant varnish. The samples were exposed to a pH cycling regimen that caused both erosion and subsurface demineralization for 2, 4 and 6 days. The surfaces were scanned using a time-domain polarization sensitive optical coherence tomography (PS-OCT) system and the degree of surface loss (erosion) and the integrated reflectivity with lesion depth was calculated for each window.ResultsThere was a large and significant reduction in the depth of surface loss (erosion) and the severity of demineralization in the areas irradiated by the laser.Conclusion Irradiation of the enamel surface with a pulsed carbon dioxide laser at sub-ablative intensities results in significant inhibition of erosion and demineralization under the acid challenge employed in this study. In addition, these results suggest that it may be feasible to modify regions of the enamel surface using the laser to serve as reference marks to monitor the rate of erosion in vivo. Lasers Surg. Med. © 2014 Wiley Periodicals, Inc.
    Lasers in Surgery and Medicine 11/2014; 46(9). DOI:10.1002/lsm.22285 · 2.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accurate measurement of the highly mineralized transparent surface layer that forms on caries lesions is important for diagnosis of the lesion activity because chemical intervention can slow or reverse the caries process via remineralization. Previous in-vitro and in-vivo studies have demonstrated that polarization-sensitive optical coherence tomography (PS-OCT) can nondestructively image the subsurface lesion structure and the highly mineralized transparent surface zone of caries lesions. The purpose of this study was to develop an approach to automatically process 3-dimensional PS-OCT images and to accurately assess the remineralization process in simulated enamel lesions. Artificial enamel lesions were prepared on twenty bovine enamel blocks using two models to produce varying degree of demineralization and remineralization. The thickness of the transparent surface layer and the integrated reflectivity of the subsurface lesion were measured using PS-OCT. The automated transparent surface layer detection algorithm was able to successfully detect the transparent surface layers with high sensitivity ( = 0.92) and high specificity ( = 0.97). The estimated thickness of the transparent surface layer showed a strong correlation with polarized light microscopy (PLM) measurements of all regions (R2 = 0.90). The integrated reflectivity, ΔR, and the integrated mineral loss, ΔZ, showed a moderate correlation (R2 = 0.32). This study demonstrates that PS-OCT can automatically measure the changes in artificial enamel lesion structure and severity upon exposure to remineralization solutions.
    Biomedical Optics Express 09/2014; 5(9). DOI:10.1364/BOE.5.002950 · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objectives The aim of this study was to test the hypothesis that cross-polarization optical coherence tomography (CP-OCT) can be used to longitudinally monitor demineralization peripheral to orthodontic brackets in an extended clinical study. Methods A high-speed CP-OCT system was used to acquire 3D volumetric images of the area at the base of orthodontic brackets over a period of 12-months after placement. The reflectivity was measured at 3-month intervals for 12-months to determine if there was increased demineralization. Two teeth were monitored on twenty test subjects and the brackets were bonded using two types of adhesives This was a randomized controlled clinical study with a split mouth design such that each subject served as his or her own control. On one side, the control premolar was bonded with a bonding agent (Adper Scotchbond from 3 M ESPE, St. Paul, MN) and composite (Transbond XT from 3 M Unitek, Monrovia, CA) that lacked fluoride. On the other side, the experimental premolar was bonded with a fluoride releasing glass ionomer cement (GC Fuji Ortho LC from GC America, Alsip, IL). Results There was a small but significant increase in the calculated lesion depth and integrated reflectivity over that depth (ΔR) for both adhesive types (p < 0.0001) indicating increasing demineralization with time. There was no significant difference in the lesion depth (p = 0.22) and ΔR (p = 0.91) between the groups with the fluoride releasing glass ionomer cement and the conventional composite. Conclusions CP-OCT was able to measure a significant increase in demineralization (P < 0.0001) at the base of orthodontic brackets over a period of 12-months.
    Journal of dentistry 05/2014; DOI:10.1016/j.jdent.2014.02.011 · 2.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Early demineralization appears with high contrast at near-IR wavelengths due to a 10- to 20-fold difference in the magnitude of light scattering between sound and demineralized enamel. Water absorption in the near-IR has a significant effect on the lesion contrast and the highest contrast has been measured in spectral regions with higher water absorption. The purpose of this study was to determine how the lesion contrast changes with lesion severity and depth for different spectral regions in the near-IR and compare that range of contrast with visible reflectance and fluorescence. Forty-four human molars were used in this in vitro study. Teeth were painted with an acid-resistant varnish, leaving a 4 mm × 4 mm window on the occlusal surface of each tooth exposed for demineralization. Artificial lesions were produced in the unprotected windows after 12-48 hours exposure to a demineralizing solution at pH 4.5. Near-IR reflectance images were acquired over several near-IR spectral distributions, visible light reflectance, and fluorescence with 405-nm excitation and detection at wavelengths >500-nm. Crossed polarizers were used for reflectance measurements to reduce interference from specular reflectance. Cross polarization optical coherence tomography (CP-OCT) was used to non-destructively assess the depth and severity of demineralization in each sample window. Matching two-dimensional CP-OCT images of the lesion depth and integrated reflectivity were compared with the reflectance and fluorescence images to determine how accurately the variation in the lesion contrast represents the variation in the lesion severity. Artificial lesions appear more uniform on tooth surfaces exposed to an acid challenge at visible wavelengths than they do in the near-IR. Measurements of the lesion depth and severity using CP-OCT show that the lesion severity varies markedly across the sample windows and that the lesion contrast in the visible does not accurately reflect the large variation in the lesion severity. Reflectance measurements at certain near-IR wavelengths more accurately reflect variation in the depth and severity of the lesions. The results of the study suggest that near-IR reflectance measurements at longer wavelengths coincident with higher water absorption are better suited for imaging early caries lesions. Lasers Surg. Med. © 2013 Wiley Periodicals, Inc.
    Lasers in Surgery and Medicine 03/2014; 46(3). DOI:10.1002/lsm.22216 · 2.61 Impact Factor
  • Kenneth H Chan, Henry Tom, Daniel Fried
    [Show abstract] [Hide abstract]
    ABSTRACT: Since optical coherence tomography (OCT) is well suited for measuring small dimensional changes on tooth surfaces, OCT has great potential for monitoring tooth erosion. Previous studies have shown that enamel areas ablated by a carbon dioxide laser manifested lower rates of erosion compared to the non-ablated areas. The purpose of this study was to develop a model to monitor erosion in vitro that could potentially be used in vivo. Teeth surfaces were irradiated with a carbon dioxide laser at low sub-ablative fluence to create an acid-resistant reference layer without damaging the enamel. The laser treated areas were compared with the unprotected areas using OCT during exposure to a pH cycling model for up to 6 days. The laser treated areas markedly reduced the rate of erosion.
    Proceedings - Society of Photo-Optical Instrumentation Engineers 02/2014; 8929:89290F. DOI:10.1117/12.2045679
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have demonstrated the utility of near infrared (NIR) imaging for caries detection employing transillumination and reflectance imaging geometries. Three intra-oral NIR imaging probes were fabricated for the acquisition of in vivo, real time videos using a high definition InGaAs SWIR camera and near-IR broadband light sources. Two transillumination probes provide occlusal and interproximal images using 1300-nm light where water absorption is low and enamel manifests the highest transparency. A third reflectance probe utilizes cross polarization and operates at >1500-nm, where water absorption is higher which reduces the reflectivity of sound tissues, significantly increasing lesion contrast. These probes are being used in an ongoing clinical study to assess the diagnostic performance of NIR imaging for the detection of caries lesions in teeth scheduled for extraction for orthodontic reasons.
    Proceedings - Society of Photo-Optical Instrumentation Engineers 02/2014; 8929:89290D. DOI:10.1117/12.2045630
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dental enamel is highly transparent at near-IR wavelengths and several studies have shown that these wavelengths are well suited for optical transillumination for the detection and imaging of tooth decay. We hypothesize that these wavelengths are also well suited for imaging cracks in teeth. Extracted teeth with suspected cracks were imaged at several wavelengths in the near-IR from 1300-1700-nm. Extracted teeth were also examined with optical coherence tomography to confirm the existence of suspected cracks. Several teeth of volunteers were also imaged in vivo at 1300-nm to demonstrate clinical potential. In addition we induced cracks in teeth using a carbon dioxide laser and imaged crack formation and propagation in real time using near-IR transillumination. Cracks were clearly visible using near-IR imaging at 1300-nm in both in vitro and in vivo images. Cracks and fractures also interfered with light propagation in the tooth aiding in crack identification and assessment of depth and severity.
    Proceedings - Society of Photo-Optical Instrumentation Engineers 02/2014; 8929:89290Q. DOI:10.1117/12.2045686
  • [Show abstract] [Hide abstract]
    ABSTRACT: Laser based methods are well suited for automation and can be used to selectively remove dental caries to minimize the loss of healthy tissues and render the underlying enamel more resistant to acid dissolution. The purpose of this study was to determine which imaging methods are best suited for image-guided ablation of natural non-cavitated carious lesions on occlusal surfaces. Multiple caries imaging methods were compared including near-IR and visible reflectance and quantitative light fluorescence (QLF). In order for image-guided laser ablation to be feasible, chemical and physical modification of tooth surfaces due to laser irradiation cannot greatly reduce the contrast between sound and demineralized dental hard tissues. Sound and demineralized surfaces of 48 extracted human molar teeth with non-cavitated lesions were examined. Images were acquired before and after laser irradiation using visible and near-IR reflectance and QLF at several wavelengths. Polarization sensitive-optical coherence tomography was used to confirm that lesions were present. The highest contrast was attained at 1460-nm and 1500-1700-nm, wavelengths coincident with higher water absorption. The reflectance did not decrease significantly after laser irradiation for those wavelengths.
    Proceedings - Society of Photo-Optical Instrumentation Engineers 02/2014; 8929. DOI:10.1117/12.2045683
  • [Show abstract] [Hide abstract]
    ABSTRACT: Light scattering in dental enamel decreases markedly from the UV to the near-IR and recent studies employing near-IR transillumination and reflectance imaging including optical coherence tomography indicate that this wavelength region is ideally suited for imaging dental caries due to the high transparency of enamel. The opacity of dentin is an important factor in optimizing the contrast of demineralization in reflectance measurements. It also influences the contrast of occlusal lesions in transillumination. Light scattering in dentin is an order of magnitude larger than in enamel, it is highly anisotropic and has a different spectral light scattering dependence than enamel. The objective of this study was to measure the optical attenuation of near-IR light through dentin at near-IR wavelengths from 1300-1650-nm. In this study the collimated transmission of near-IR light through polished thin sections of dentin of 0.05 to 0.6 mm thickness was measured. Beer-Lambert plots show that the attenuation coefficients range in magnitude from 20 to 40 cm(-1). Attenuation increased significantly with increasing wavelength and the increases were not entirely consistent with increased water absorption.
    Proceedings - Society of Photo-Optical Instrumentation Engineers 02/2014; 8929:89290M. DOI:10.1117/12.2045629
  • Hobin Kang, Cynthia L Darling, Daniel Fried
    [Show abstract] [Hide abstract]
    ABSTRACT: In a previous study, we investigated the influence of several high refractive index fluids on the performance of polarization sensitive optical coherence tomography (PS-OCT). That study showed that these liquids can increase the effective imaging depth and lesion contrast. Other in vitro and in vivo studies have shown that OCT can be used to show whether occlusal lesions have penetrated to the dentinal-enamel junction (DEJ) and spread laterally under the enamel. The purpose of this study was to determine if high index fluids can enhance the ability of OCT to detect hidden occlusal lesions and show if these lesions have penetrated through the enamel into the underlying dentin. Ten extracted teeth with occlusal lesions were imaged using OCT after the application of water, glycerol, BABB (33% Benzyl Alcohol + 67% Benzyl Benzoate) and a Cargille Liquid (Cedar Grove, NJ) (hydrogenated terphenyl 1-bromo-naphthalene) with a refractive index of 1.61. The intensity of the reflectance from the underlying lesion area for each sample was compared with the reflectance of the sound tooth surface for each fluid. The use of high index fluids significantly (P< 0.0001) increased the reflectivity of subsurface occlusal lesions under the surrounding sound enamel.
    Proceedings - Society of Photo-Optical Instrumentation Engineers 02/2014; 8929:89290O. DOI:10.1117/12.2045681
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have shown that near-IR reflectance and transillumination imaging can be used to acquire high contrast images of early caries lesions and composite restorative materials. The aim of the study was to determine the optimum near-IR wavelengths for imaging demineralized areas under dental sealants. Fifteen natural human premolars and molars with occlusal lesions were used in this in vitro study. Images before and after application of sealants were acquired using near-IR reflectance and near-IR transillumination at wavelengths of 1300 nm, 1460 nm, and 1500 - 1700 nm. Images were also acquired using polarization sensitive optical coherence tomography for comparison. The highest contrast for near-IR reflectance was at 1460 nm and 1500 - 1700 nm. These near-IR wavelengths are coincident with higher water absorption. The clear Delton sealant investigated was not visible in either co-polarization or cross-polarization OCT images. The wavelength region between 1500-1700-nm yielded the highest contrast of lesions under sealants for near-IR reflectance measurements.
    Proceedings - Society of Photo-Optical Instrumentation Engineers 02/2014; 8929(7):89290S. DOI:10.1117/12.2050930
  • [Show abstract] [Hide abstract]
    ABSTRACT: Resin-based composites are used for many applications in dentistry. They are difficult to remove without damage to the underlying enamel since they adhere strongly and are color matched to the tooth. The objective of this study was to determine if an automated laser scanning system with spectral feedback could be used for selective removal of residual orthodontic composite from tooth surfaces with minimal damage to the underlying enamel. A CO2 laser operating at a wavelength of 9.3 μm with a pulse duration of 10-15 μs and a pulse repetition rate of ~200 Hz was used to selectively remove composite from the buccal surfaces of extracted teeth. A spectral feedback system utilizing a miniature spectrometer was used to control the laser scanning system. Pulpal temperature measurements were performed during composite removal to determine if there was excessive heat accumulation. Conventional and digital microscopes were used to assess the amount of enamel lost during removal. The amount of enamel lost averaged between 20 and 25 μm for irradiation intensities from 3.8 to 4.2 J/cm(2), respectively. An average maximum temperature rise of 1.9±1.5°C was recorded, with no teeth approaching the critical value of 5.5°C. The average time for composite removal from an area of 5 mm(2) was 19.3±4.1 s, fast enough for clinical feasibility. Residual composite can be rapidly removed from tooth surfaces using a CO2 laser with spectral feedback, with minimal temperature rise within the pulp and with minimal loss of sound enamel.
    02/2014; 3(1):37-45. DOI:10.1515/plm-2013-0052
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous in vitro and in vivo studies have demonstrated that polarization-sensitive optical coherence tomography (PS-OCT) can be used to nondestructively image the subsurface structure and measure the thickness of the highly mineralized transparent surface zone of caries lesions. There are structural differences between active lesions and arrested lesions, and the surface layer thickness may correlate with activity of the lesion. The purpose of this study was to develop a method that can be used to automatically detect and measure the thickness of the transparent surface layer in PS-OCT images. Automated methods of analysis were used to measure the thickness of the transparent layer and the depth of the bovine enamel lesions produced using simulated caries models that emulate demineralization in the mouth. The transparent layer thickness measured with PS-OCT correlated well with polarization light microscopy (PLM) measurements of all regions (r2=0.9213). This study demonstrates that PS-OCT can automatically detect and measure thickness of the transparent layer formed due to remineralization in simulated caries lesions.
    Proceedings of SPIE - The International Society for Optical Engineering 01/2014; 8929. DOI:10.1117/12.2045676 · 0.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One major advantage of composite restoration materials is that they can be color matched to the tooth. However, this presents a challenge when composites fail and they need to be replaced. Dentists typically spend more time repairing and replacing composites than placing new restorations. Previous studies have shown that near-infrared imaging can be used to distinguish between sound enamel and decay due to the differences in light scattering. The purpose of this study was to use a similar approach and exploit differences in light scattering to attain high contrast between composite and tooth structure. Extracted human teeth with composites (n=16) were imaged in occlusal transmission mode at wavelengths of 1300-nm, 1460-nm and 1550-nm using an InGaAs image sensor with a tungsten halogen light source with spectral filters. All samples were also imaged in the visible range using a high definition 3D digital microscope. Our results indicate that NIR wavelengths at 1460-nm and 1550-nm, coincident with higher water absorption yield the highest contrast between dental composites and tooth structure.
    Proceedings of SPIE - The International Society for Optical Engineering 01/2014; 8929. DOI:10.1117/12.2045687 · 0.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several studies have demonstrated the potential of cross-polarization optical coherence tomography (CP-OCT) to quantify the severity of early caries lesions (tooth decay) on tooth surfaces. The purpose of this study is to show that 2D images of the lesion depth and the integrated reflectivity can be used to accurately represent the severity of early lesions. Simulated early lesions of varying severity were produced on tooth samples using simulated lesion models. Methods were developed to convert the 3D CP-OCT images of the samples to 2D images of the lesion depth and lesion integrated reflectivity. Calculated lesion depths from OCT were compared with lesion depths measured from histological sections examined using polarized light microscopy. The 2D images of the lesion depth and integrated reflectivity are well suited for visualization of early demineralization. (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
    Journal of Biophotonics 12/2013; 8(1-2). DOI:10.1002/jbio.201300137 · 3.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vivo and in vitro studies have shown that high contrast images of tooth demineralization can be acquired in the near-infrared (near-IR) without the interference of stain. The purpose of this study is to compare the lesion contrast in reflectance at near-IR wavelengths coincident with high water absorption with those in the visible, the near-IR at 1,300 nm and with fluorescence measurements for early lesions in occlusal surfaces. Twenty-four human molars were used in this in vitro study. Teeth were painted with an acid-resistant varnish, leaving a 4 × 4 mm window in the occlusal surface of each tooth exposed for demineralization. Artificial lesions were produced in the exposed windows after 1- and 2-day exposure to a demineralizing solution at pH 4.5. Lesions were imaged using near-IR reflectance at three wavelengths, 1,300, 1,460, and 1,600 nm using a high definition InGaAs camera. Visible light reflectance, and fluorescence with 405 nm excitation and detection at wavelengths greater than 500 nm were also used to acquire images for comparison. Crossed polarizers were used for reflectance measurements to reduce interference from specular reflectance. The contrast of both the 1- and 2-day lesions were significantly higher (P < 0.05) for near-IR reflectance imaging at 1,460 and 1,600 nm than it was for near-IR reflectance imaging at 1,300 nm, visible reflectance imaging, and fluorescence. The markedly higher contrast at 1,460 and 1,600 nm wavelengths, coincident with higher water absorption, suggest that these wavelengths are better suited than 1,300 nm for imaging early/shallow demineralization on tooth surfaces. Lasers Surg. Med. © 2013 Wiley Periodicals, Inc.
    Lasers in Surgery and Medicine 07/2013; DOI:10.1002/lsm.22159 · 2.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vivo and in vitro studies have shown that high contrast images of tooth demineralization can be acquired in the near-IR due to the high transparency of dental enamel. The purpose of this study is to compare the lesion contrast in reflectance at near-IR wavelengths coincident with high water absorption with those in the visible, the near-IR at 1300-nm and with fluorescence measurements for early lesions in occlusal surfaces. Twenty-four human molars were used in this in vitro study. Teeth were painted with an acid-resistant varnish, leaving a 4×4 mm window in the occlusal surface of each tooth exposed for demineralization. Artificial lesions were produced in the exposed windows after 1 & 2-day exposure to a demineralizing solution at pH 4.5. Lesions were imaged using NIR reflectance at 3 wavelengths, 1310, 1460 and 1600-nm using a high definition InGaAs camera. Visible light reflectance, and fluorescence with 405-nm excitation and detection at wavelengths greater than 500-nm were also used to acquire images for comparison. Crossed polarizers were used for reflectance measurements to reduce interference from specular reflectance. The contrast of both the 24 hr and 48 hr lesions were significantly higher (P<0.05) for NIR reflectance imaging at 1460-nm and 1600-nm than it was for NIR reflectance imaging at 1300-nm, visible reflectance imaging, and fluorescence. The results of this study suggest that NIR reflectance measurements at longer near-IR wavelengths coincident with higher water absorption are better suited for imaging early caries lesions.
    Proceedings - Society of Photo-Optical Instrumentation Engineers 03/2013; 8566. DOI:10.1117/12.2011015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since optical coherence tomography is well suited for measuring small dimensional changes on tooth surfaces it has great potential for monitoring tooth erosion. The purpose of this study was to explore different approaches for monitoring the erosion of enamel. Application of an acid resistant varnish to protect the tooth surface from erosion has proven effective for providing a reference surface for in vitro studies but has limited potential for in vivo studies. Two approaches which can potentially be used in vivo were investigated. The first approach is to measure the remaining enamel thickness, namely the distance from the tooth surface to the dentinal-enamel junction (DEJ). The second more novel approach is to irradiate the surface with a carbon dioxide laser to create a reference layer which resists erosion. Measuring the remaining enamel thickness proved challenging since the surface roughening and subsurface demineralization that commonly occurs during the erosion process can prevent resolution of the underlying DEJ. The areas irradiated by the laser manifested lower rates of erosion compared to the non-irradiated areas and this method appears promising but it is highly dependent on the severity of the acid challenge.
    Proceedings - Society of Photo-Optical Instrumentation Engineers 03/2013; 8566:856606. DOI:10.1117/12.2011013
  • [Show abstract] [Hide abstract]
    ABSTRACT: If caries lesions are detected early enough they can be arrested by chemical intervention and dietary changes without the need for chemical intervention. Optical coherence tomography is ideally suited to monitor the changes that occur in caries lesions as a result of nonsurgical intervention, since OCT can nondestructively image the internal structure of the lesion. One of the most important changes that occurs in a lesion is preferential deposition of mineral in the outer surface zone. The deposition creates a highly mineralized and weakly scattering surface zone that is clearly visible in OCT images. Since this zone is near the highly reflective surface it is necessary to use cross-polarization OCT imaging to resolve this zone. Several CP-OCT studies have been conducted employing different remineralization models that produce lesions with varying mineral gradients. Previous studies have also demonstrated that automated algorithms can be used to assess the lesion depth and severity even with the presence of the weakly reflective surface zone. In this study we investigated the remineralization of lesions of varying severity using a pH cycling remineralization model and the change of the lesion was monitored using CP-OCT. Although the lesion depth and severity decreased after remineralization, there was still incomplete remineralization of the body of the lesion.
    Proceedings - Society of Photo-Optical Instrumentation Engineers 03/2013; 8566. DOI:10.1117/12.2011016

Publication Stats

2k Citations
191.07 Total Impact Points

Institutions

  • 1996–2014
    • University of California, San Francisco
      • • Department of Preventative and Resorative Dental Sciences
      • • School of Dentistry
      San Francisco, California, United States
    • University of Rochester
      Rochester, New York, United States
  • 2005
    • University of San Francisco
      San Francisco, California, United States
  • 2004
    • Johns Hopkins Medicine
      Baltimore, Maryland, United States
  • 2000
    • Johns Hopkins University
      • Department of Biomedical Engineering
      Baltimore, Maryland, United States
  • 1998
    • University of Manitoba
      Winnipeg, Manitoba, Canada
    • University of California, Los Angeles
      Los Ángeles, California, United States