Are you Ellen N Friel?

Claim your profile

Publications (8)19.43 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Comparisons were made between the aroma volatiles of the yellow-fleshed kiwifruit, "Hort16A", at two different stages of eating ripeness: firm and soft. The firm fruit contained a small number of aroma compounds that the soft fruit did not contain. In general, however, the largest difference between the two firmness categories was in the levels of esters, with the soft fruit containing higher concentrations and a larger number of esters than the firm fruit. In vitro analysis directly after maceration using atmospheric pressure chemical ionization mass spectrometry (APCI-MS) showed the relative importance of the most intense aromas between fruit at the two different firmness stages and was used to compare the release rates of aromas. A comparison of the aroma concentrations from gas chromatography mass spectrometry (GC-MS) and APCI-MS headspace analyses showed that the APCI-MS headspace showed less bias toward enzymatically generated lipid degradation compounds. A GC-sniffing study showed that many of the most intense compounds, acetaldehyde, hexanal, ethyl butanoate, and (E)-2-hexenal but not ethanol, showed odor activity in macerated fruit. In addition, dimethyl sulfide (DMS), a volatile present at very low levels in the fruit, also appeared to be an important contributor to the odor. In vivo analyses also showed much higher levels of aroma compounds in the soft fruit compared to the firm fruit, with evidence of persistence of some compounds, including DMS. There were a number of similarities between the breath profiles of the two panelists, which confirmed the importance of DMS in "Hort16A" aroma.
    Journal of Agricultural and Food Chemistry 09/2007; 55(16):6664-73. · 2.91 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Ethylene is the major effector of ripening in many fleshy fruits. In apples (Malus x domestica) the addition of ethylene causes a climacteric burst of respiration, an increase in aroma, and softening of the flesh. We have generated a transgenic line of 'Royal Gala' apple that produces no detectable levels of ethylene using antisense ACC OXIDASE, resulting in apples with no ethylene-induced ripening attributes. In response to external ethylene these antisense fruits undergo a normal climacteric burst and produced increasing concentrations of ester, polypropanoid, and terpene volatile compounds over an 8-d period. A total of 186 candidate genes that might be involved in the production of these compounds were mined from expressed sequence tags databases and full sequence obtained. Expression patterns of 179 of these were assessed using a 15,720 oligonucleotide apple microarray. Based on sequence similarity and gene expression patterns we identified 17 candidate genes that are likely to be ethylene control points for aroma production in apple. While many of the biosynthetic steps in these pathways were represented by gene families containing two or more genes, expression patterns revealed that only a single member is typically regulated by ethylene. Only certain points within the aroma biosynthesis pathways were regulated by ethylene. Often the first step, and in all pathways the last steps, contained enzymes that were ethylene regulated. This analysis suggests that the initial and final enzymatic steps with the biosynthetic pathways are important transcriptional regulation points for aroma production in apple.
    Plant physiology 09/2007; 144(4):1899-912. · 6.56 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A recombinant alpha-farnesene synthase from apple (Malus x domestica), expressed in Escherichia coli, showed features not previously reported. Activity was enhanced 5-fold by K(+) and all four isomers of alpha-farnesene, as well as beta-farnesene, were produced from an isomeric mixture of farnesyl diphosphate (FDP). Monoterpenes, linalool, (Z)- and (E)-beta-ocimene and beta-myrcene, were synthesised from geranyl diphosphate (GDP), but at 18% of the optimised rate for alpha-farnesene synthesis from FDP. Addition of K(+) reduced monoterpene synthase activity. The enzyme also produced alpha-farnesene by a reaction involving coupling of GDP and isoprenyl diphosphate but at <1% of the rate with FDP. Mutagenesis of active site aspartate residues removed sesquiterpene, monoterpene and prenyltransferase activities suggesting catalysis through the same active site. Phylogenetic analysis clusters this enzyme with isoprene synthases rather than with other sesquiterpene synthases, suggesting that it has evolved differently from other plant sesquiterpene synthases. This is the first demonstration of a sesquiterpene synthase possessing prenyltransferase activity.
    Phytochemistry 01/2007; 68(2):176-88. · 3.05 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We hypothesised that adding sugars or acids to pulps derived from fruit of different genetic background, or of lower or higher carbohydrate status should give similar results until a threshold for sweetness or acidity perception in the pulp background was reached. Pulps made from fruit of Actinidia deliciosa ‘Hayward’—a fresh sweet-acid kiwifruit—and A. chinensis ‘Hort16A’—a sweet tropical flavoured kiwifruit, were compared. Flavour volatiles and background sugar and acid composition differed between the two fruit. Using high (14.1–14.5%) or low (11.5–11.9%) soluble solids (SS) pulps, trained tasters perceived added sugar as sweeter, confirming earlier research with consumers. Added acids (7 mmoles H+ 100 g−1) reduced perceptions of sweetness and tasters perceived quinic acid to have a strong impact on the pulps tasted, resulting in a greater perception of acidity than addition of citric, ascorbic or malic acids. However perceptions of acidity also depended on background pulp composition. Addition of sugar or acid to pulps affected measured headspace volatiles. Volatile compounds affected included mid-chain length aldehydes, alcohols and esters, but only a few showed significant alteration. For example, hexanal, (E)-3-hexen-1-ol and (Z)-3-hexenol increased significantly when malic acid was added to ‘Hayward’ pulps. We suggest that the release of alcohols was associated with change in acidity and pulp metabolism rather than a ‘salting out’ effect. Perceived changes to banana and lemon flavours with both sugar and acid addition appear to be due to interactions in taster mouths or associated memories rather than release of specific volatiles.
    Food Quality and Preference. 01/2006;
  • [show abstract] [hide abstract]
    ABSTRACT: Linalool is an important chiral compound in the fragrance industry and is present in many products. Although, linalool has also been found in the fruit of kiwifruit and apple it is more abundant in the flowers, where it plays a key role as an intermediate to a number of interesting fragrance compounds. Three genes found to catalyse the production of linalool from geranyl diphosphate, have been mined from the HortResearch Plant EST database. The function of these genes has been proven using heterologous over-expression technologies. The similarities and differences between our genes and those already published are highlighted. Finally, we show the diversity in the fate of linalool in species of kiwifruit and apple, with discussion of the genes involved.
    Developments in Food Science 01/2006; 43:93-96.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Apple flavor is characterized by combinations of ester compounds, which increase markedly during fruit ripening. The final step in ester biosynthesis is catalyzed by alcohol acyl transferases (AATs) that use coenzyme A (CoA) donors together with alcohol acceptors as substrates. The gene MpAAT1, which produces a predicted protein containing features of other plant acyl transferases, was isolated from Malus pumila (cv. Royal Gala). The MpAAT1 gene is expressed in leaves, flowers and fruit of apple. The recombinant enzyme can utilize a range of alcohol substrates from short to medium straight chain (C3-C10), branched chain, aromatic and terpene alcohols. The enzyme can also utilize a range of short to medium chain CoAs. The binding of the alcohol substrate is rate limiting compared with the binding of the CoA substrate. Among different alcohol substrates there is more variation in turnover compared with K(m) values. MpAAT1 is capable of producing many esters found in Royal Gala fruit, including hexyl esters, butyl acetate and 2-methylbutyl acetate. Of these, MpAAT1 prefers to produce the hexyl esters of C3, C6 and C8 CoAs. For the acetate esters, however, MpAAT1 preference depends upon substrate concentration. At low concentrations of alcohol substrate the enzyme prefers utilizing the 2-methylbutanol over hexanol and butanol, while at high concentrations of substrate hexanol can be used at a greater rate than 2-methylbutanol and butanol. Such kinetic characteristics of AATs may therefore be another important factor in understanding how the distinct flavor profiles of different fruit are produced during ripening.
    FEBS Journal 07/2005; 272(12):3132-44. · 4.25 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We describe novel plasmid vectors for transient gene expression using Agrobacterium, infiltrated into Nicotiana benthamiana leaves. We have generated a series of pGreenII cloning vectors that are ideally suited to transient gene expression, by removing elements of conventional binary vectors necessary for stable transformation such as transformation selection genes. We give an example of expression of heme-thiolate P450 to demonstrate effectiveness of this system. We have also designed vectors that take advantage of a dual luciferase assay system to analyse promoter sequences or post-transcriptional regulation of gene expression. We have demonstrated their utility by co-expression of putative transcription factors and the promoter sequence of potential target genes and show how orthologous promoter sequences respond to these genes. Finally, we have constructed a vector that has allowed us to investigate design features of hairpin constructs related to their ability to initiate RNA silencing, and have used these tools to study cis-regulatory effect of intron-containing gene constructs. In developing a series of vectors ideally suited to transient expression analysis we have provided a resource that further advances the application of this technology. These minimal vectors are ideally suited to conventional cloning methods and we have used them to demonstrate their flexibility to investigate enzyme activity, transcription regulation and post-transcriptional regulatory processes in transient assays.
    Plant Methods 02/2005; 1:13. · 2.67 Impact Factor
  • ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY; 01/2004

Publication Stats

244 Citations
67 Downloads
518 Views
19.43 Total Impact Points

Institutions