Regina M Carelli

University of North Carolina at Chapel Hill, North Carolina, United States

Are you Regina M Carelli?

Claim your profile

Publications (87)524.91 Total impact

  • Courtney M Cameron, R Mark Wightman, Regina M Carelli
    [Show abstract] [Hide abstract]
    ABSTRACT: Electrophysiological studies show that distinct subsets of nucleus accumbens (NAc) neurons differentially encode information about goal-directed behaviors for intravenous cocaine versus natural (food/water) rewards. Further, NAc rapid dopamine signaling occurs on a timescale similar to phasic cell firing during cocaine and natural reward-seeking behaviors. However, it is not known whether dopamine signaling is reinforcer specific (i.e., is released during responding for only one type of reinforcer) within discrete NAc locations, similar to neural firing dynamics. Here, fast-scan cyclic voltammetry (FSCV) was used to measure rapid dopamine release during multiple schedules involving sucrose reward and cocaine self-administration (n=8 rats) and, in a separate group of rats (n = 6), during a sucrose/food multiple schedule. During the sucrose/cocaine multiple schedule, dopamine increased within seconds of operant responding for both reinforcers. Although dopamine release was not reinforcer specific, more subtle differences were observed in peak dopamine concentration [DA] across reinforcer conditions. Specifically, peak [DA] was higher during the first phase of the multiple schedule, regardless of reinforcer type. Further, the time to reach peak [DA] was delayed during cocaine-responding compared to sucrose. During the sucrose/food multiple schedule, increases in dopamine release were also observed relative to operant responding for both natural rewards. However, peak [DA] was higher relative to responding for sucrose than food, regardless of reinforcer order. Overall, the results reveal the dynamics of rapid dopamine signaling in discrete locations in the NAc across reward conditions, and provide novel insight into the functional role of this system in reward-seeking behaviors.
    Neuropharmacology 08/2014; · 4.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cocaine stimuli often trigger relapse of drug-taking, even following periods of prolonged abstinence. Here, electrophysiological recordings were made in rats (n = 29) to determine how neurons in the prelimbic (PrL) or infralimbic (IL) regions of the medial prefrontal cortex (mPFC) encode cocaine-associated stimuli and cocaine-seeking, and whether this processing is differentially altered after 1 month of cocaine abstinence. After self-administration training, neurons (n = 308) in the mPFC were recorded during a single test session conducted either the next day or 1 month later. Test sessions consisted of three phases during which (i) the tone-houselight stimulus previously paired with cocaine infusion during self-administration was randomly presented by the experimenter, (ii) rats responded on the lever previously associated with cocaine during extinction and (iii) the tone-houselight was presented randomly between cocaine-reinforced responding during resumption of cocaine self-administration. PrL neurons showed enhanced encoding of the cocaine stimulus and drug-seeking behavior (under extinction and self-administration) following 30 days of abstinence. In contrast, although IL neurons encoded cocaine cues and cocaine-seeking, there were no pronounced changes in IL responsiveness following 30 days of abstinence. Importantly, cue-related changes do not represent a generalised stimulus-evoked discharge as PrL and IL neurons in control animals (n = 4) exhibited negligible recruitment by the tone-houselight stimulus. The results support the view that, following abstinence, neural encoding in the PrL but not IL may play a key role in enhanced cocaine-seeking, particularly following re-exposure to cocaine-associated cues.
    European Journal of Neuroscience 04/2014; · 3.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To make appropriate decisions, organisms must evaluate the risks and benefits of action selection. The nucleus accumbens (NAc) has been shown to be critical for this processing and is necessary for appropriate risk-based decision-making behavior. However, it is not clear how NAc neurons encode this information to promote appropriate behavioral responding. Here, rats (n = 17) were trained to perform a risky decision-making task in which discrete visual cues predicted the availability to respond for a smaller certain (safer) or larger uncertain (riskier) reward. Electrophysiological recordings were made in the NAc core and shell to evaluate neural activity during task performance. At test, animals exhibited individual differences in risk-taking behavior; some displayed a preference for the risky option, some the safe option, and some did not have a preference. Electrophysiological analysis indicated that NAc neurons differentially encoded information related to risk versus safe outcomes. Further, during free choice trials, neural activity during reward-predictive cues reflected individual behavioral preferences. In addition, neural encoding of reward outcomes was correlated with risk-taking behavior, with safe-preferring and risk-preferring rats showing differential activity in the NAc core and shell during reward omissions. Consistent with previously demonstrated alterations in prospective reward value with effort and delay, NAc neurons encode information during reward-predictive cues and outcomes in a risk task that tracked the rats' preferred responses. This processing appears to contribute to subjective encoding of anticipated outcomes and thus may function to bias future risk-based decisions.
    Biological psychiatry 10/2013; · 8.93 Impact Factor
  • Michael P Saddoris, Regina M Carelli
    [Show abstract] [Hide abstract]
    ABSTRACT: Cocaine use is often associated with diminished cognitive function, persisting even after abstinence from the drug. Likely targets for these changes are the core and shell of the nucleus accumbens (NAc), which are critical for mediating the rewarding aspects of drugs of abuse as well as supporting associative learning. To understand this deficit, we recorded neural activity in the NAc of rats with a history of cocaine self-administration or control subjects while they learned Pavlovian first- and second-order associations. Rats were trained for 2 weeks to self-administer intravenous cocaine or water. Later, rats learned a first-order Pavlovian discrimination where a conditioned stimulus (CS)+ predicted food, and a control (CS-) did not. Rats then learned a second-order association where, absent any food reinforcement, a novel cued (SOC+) predicted the CS+ and another (SOC-) predicted the CS-. Electrophysiological recordings were taken during performance of these tasks in the NAc core and shell. Both control subjects and cocaine-experienced rats learned the first-order association, but only control subjects learned the second-order association. Neural recordings indicated that core and shell neurons encoded task-relevant information that correlated with behavioral performance, whereas this type of encoding was abolished in cocaine-experienced rats. The NAc core and shell perform complementary roles in supporting normal associative learning, functions that are impaired after cocaine experience. This impoverished encoding of motivational behavior, even after abstinence from the drug, might provide a key mechanism to understand why addiction remains a chronically relapsing disorder despite repeated attempts at sobriety.
    Biological psychiatry 09/2013; · 8.93 Impact Factor
  • Regina M Carelli, Elizabeth A West
    [Show abstract] [Hide abstract]
    ABSTRACT: An important feature of cocaine addiction in humans is the emergence of negative affect (e.g., dysphoria, irritability, anhedonia), postulated to play a key role in craving and relapse. Indeed, the DSM-IV recognizes that social, occupational and/or recreational activities become reduced as a consequence of repeated drug use where previously rewarding experiences (e.g., food, job, family) become devalued as the addict continues to seek and use drug despite serious negative consequences. Here, research in the Carelli laboratory is reviewed that examined neurobiological mechanisms that may underlie these processes using a novel animal model. Oromotor responses (taste reactivity) were examined as rats learned that intraoral infusion of a sweet (e.g., saccharin) predicts impending but delayed access to cocaine self-administration. We showed that rats exhibit aversive taste reactivity (i.e., gapes/rejection responses) during infusion of the sweet paired with impending cocaine, similar to aversive responses observed during infusion of quinine, a bitter tastant. Critically, the expression of this pronounced aversion to the sweet predicted the subsequent motivation to self-administer cocaine. Electrophysiology studies show that this shift in palatability corresponds to an alteration in nucleus accumbens (NAc) cell firing; neurons that previously responded with inhibition during infusion of the palatable sweet shifted to excitatory activity during infusion of the cocaine-devalued tastant. This excitatory response profile is typically observed during infusion of quinine, indicating that the once palatable sweet becomes aversive following its association with impending but delayed cocaine, and NAc neurons encode this aversive state. We also review electrochemical studies showing a shift (from increase to decrease) in rapid NAc dopamine release during infusion of the cocaine-paired tastant as the aversive state developed, again, resulting in responses similar to quinine infusion. Collectively, our findings suggest that cocaine-conditioned cues elicit a cocaine-need state that is aversive, is encoded by a distinct subset of NAc neurons and rapid dopamine signaling, and promotes cocaine-seeking behavior. Finally, we present data showing that experimentally induced abstinence (30 days) exacerbates this natural reward devaluation by cocaine, and this effect is correlated with a greater motivation to lever press during extinction. Dissecting the neural mechanisms underlying these detrimental consequences of addiction is critical since it may lead to novel treatments that ameliorate negative affective states associated with drug use and decrease the drive (craving) for the drug.
    Neuropharmacology 04/2013; · 4.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Simultaneous electrochemical and electrophysiological data were recorded to evaluate the effects of controlled local application of dopaminergic agonists and antagonists in awake rats. Measurements were made with a probe consisting of a carbon-fiber microelectrode fused to three iontophoretic barrels that were used to introduce the drugs of interest. The probe and the manipulator used to position it in the brain of behaving animals were optimized to improve their performance. The effect of the dopamine autoreceptor on electrically stimulated release was demonstrated. Dopamine inhibited the release of endogenous dopamine whereas raclopride, a D2 antagonist, enhanced it, with similar responses in anesthetized and awake animals. We also examined changes in the firing rate of nucleus accumbens (NAc) neurons in awake animals during and after brief (15 s) iontophoretic ejections of SCH 23390 (D1 receptor antagonist) or raclopride. Changes in response to these antagonists were seen both immediately and on a prolonged timescale. Application of raclopride increased the firing rate in 40% of medium spiny neurons (MSNs), of which half responded immediately. Decreases in firing rate were observed in 46% of MSNs after SCH 23390 application. Only 11% of MSNs responded to both antagonists and one MSN (3%) showed no response to either drug. The same prolonged response in firing rate was seen for electrically stimulated and locally applied dopamine in 75% of MSNs. These results confirm previously reported distributions for dopamine receptor subtypes on MSNs and probe the effects of dopamine on these cell populations.
    ACS Chemical Neuroscience 03/2013; · 3.87 Impact Factor
  • Jonathan A Sugam, Regina M Carelli
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 01/2013; 38(1):248. · 8.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The catecholamine dopamine (DA) has been implicated in a host of neural processes as diverse as schizophrenia, parkinsonism and reward encoding. Importantly, these distinct features of DA function are due in large part to separate neural circuits involving connections arising from different DA-releasing nuclei and projections to separate afferent targets. Emerging data has suggested that this same principle of separate neural circuits may be applicable within structural subregions, such as the core and shell of the nucleus accumbens (NAc). Further, DA may act selectively on smaller ensembles of cells (or, microcircuits) via differential DA receptor density and distinct inputs and outputs of the microcircuits, thus enabling new learning about Pavlovian cues, instrumental responses, subjective reward processing and decision-making. In this review, by taking advantage of studies using subsecond voltammetric techniques in behaving animals to study how rapid changes in DA levels affect behavior, we examine the spatial and temporal features of DA release and how it relates to both normal learning and similarities to pathological learning in the form of addiction.
    Frontiers in bioscience (Elite edition) 01/2013; E5:273-288.
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: While studies suggest that both dopamine and norepinephrine neurotransmission support reinforcement learning, the role of dopamine has been emphasized. As a result, little is known about norepinephrine signaling during reward learning and extinction. Both dopamine and norepinephrine projections innervate distinct regions of the bed nucleus of the stria terminalis (BNST), a structure that mediates behavioral and autonomic responses to stress and anxiety. We investigated whether norepinephrine release in the ventral BNST (vBNST) and dopamine release in the dorsolateral BNST (dlBNT) correlate with reward learning during intracranial self-stimulation (ICSS). METHODS: Using fast-scan cyclic voltammetry, norepinephrine concentration changes in the vBNST (n = 12 animals) during ICSS were compared with dopamine changes in the dlBNST (n = 7 animals) and nucleus accumbens (NAc) (n = 5 animals). Electrical stimulation was in the ventral tegmental area/substantia nigra region. RESULTS: Whereas dopamine release was evoked by presentation of a cue predicting reward availability in both dlBNST and NAc, cue-evoked norepinephrine release did not occur in the vBNST. Release of both catecholamines was evoked by the electrical stimulation. Extracellular changes in norepinephrine were also studied during extinction of ICSS and compared with results obtained for dopamine. During extinction of ICSS, norepinephrine release in the vBNST occurred at the time where the stimulation was anticipated, whereas dopamine release transiently decreased. CONCLUSIONS: The data demonstrate that norepinephrine release in the vBNST differs from dopamine release in the dlBNST and the NAc in that it signals the absence of reward rather than responding to reward predictive cues.
    Biological psychiatry 12/2012; · 8.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mesolimbic dopamine projections to the nucleus accumbens (NAc) have been implicated in goal-directed behaviors for natural rewards and in learning processes involving cue-reward associations. The NAc has been traditionally subdivided into two anatomically distinct sub-regions with different functional properties: the shell and the core. The aim of the present study was to characterize rapid dopamine transmission across the two NAc sub-regions during cue-signaled operant behavior for a natural (sucrose) reward in rats. Using fast-scan cyclic voltammetry (FSCV) we observed differences in the magnitude and dynamics of dopamine release events between the shell and core. Specifically, although cue-evoked dopamine release was observed in both sub-regions, it was larger and longer lasting in the shell compared with the core. Further, secondary dopamine release events were observed following the lever press response for sucrose in the NAc shell, but not the core. These findings demonstrate that the NAc displays regional specificity in dopamine transmission patterns during cued operant behavior for natural reward.
    Neuropharmacology 04/2012; 62(5-6):2050-6. · 4.11 Impact Factor
  • Source
    Courtney M Cameron, Regina M Carelli
    [Show abstract] [Hide abstract]
    ABSTRACT: Distinct subsets of nucleus accumbens (NAc) neurons differentially encode goal-directed behaviors for natural vs. drug rewards [R. M. Carelli et al. (2000)The Journal of Neuroscience, 20, 4255-4266], and the encoding of cocaine-seeking is altered following cocaine abstinence [J. A. Hollander & R. M. Carelli (2007) The Journal of Neuroscience, 27, 3535-3539]. Here, electrophysiological recording procedures were used to determine if the selective encoding of natural vs. cocaine reward by NAc neurons is: (i) maintained when the natural reinforcer is a highly palatable sweet tastant and (ii) altered by cocaine abstinence. Rats (n = 14) were trained on a multiple schedule of sucrose reinforcement and cocaine self-administration (2-3 weeks) and NAc activity was recorded during the task before and after 30 days of cocaine abstinence. Of 130 cells recorded before abstinence, 82 (63%) displayed patterned discharges (increases or decreases in firing rate, termed phasic activity) relative to operant responding for sucrose or cocaine. As in previous reports, the majority of those cells displayed nonoverlapping patterns of activity during responding for sucrose vs. cocaine. Specifically, only 17 (21%) showed similar patterns of activity (i.e. overlapping activity) across the two reinforcer conditions. After abstinence, this pattern was largely maintained, 23 of 70 phasic cells (33%) were overlapping. However, cocaine abstinence altered the overall percentage of selectively active neurons across reinforcer conditions. Specifically, significantly more neurons became selectively activated during cocaine-directed behaviors than during sucrose-directed behaviors. The results indicate that, although the selective encoding of cocaine and natural rewards is maintained even with a highly palatable substance, 30 days of cocaine abstinence dynamically alters the overall population encoding of natural and drug rewards by NAc neurons.
    European Journal of Neuroscience 02/2012; 35(6):940-51. · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mesolimbic dopamine neurons fire in both tonic and phasic modes resulting in detectable extracellular levels of dopamine in the nucleus accumbens (NAc). In the past, different techniques have targeted dopamine levels in the NAc to establish a basal concentration. In this study, we used in vivo fast scan cyclic voltammetry (FSCV) in the NAc of awake, freely moving rats. The experiments were primarily designed to capture changes in dopamine caused by phasic firing - that is, the measurement of dopamine 'transients'. These FSCV measurements revealed for the first time that spontaneous dopamine transients constitute a major component of extracellular dopamine levels in the NAc. A series of experiments were designed to probe regulation of extracellular dopamine. Lidocaine was infused into the ventral tegmental area, the site of dopamine cell bodies, to arrest neuronal firing. While there was virtually no instantaneous change in dopamine concentration, longer sampling revealed a decrease in dopamine transients and a time-averaged decrease in the extracellular level. Dopamine transporter inhibition using intravenous GBR12909 injections increased extracellular dopamine levels changing both frequency and size of dopamine transients in the NAc. To further unmask the mechanics governing extracellular dopamine levels we used intravenous injection of the vesicular monoamine transporter (VMAT2) inhibitor, tetrabenazine, to deplete dopamine storage and increase cytoplasmic dopamine in the nerve terminals. Tetrabenazine almost abolished phasic dopamine release but increased extracellular dopamine to ∼500 nM, presumably by inducing reverse transport by dopamine transporter (DAT). Taken together, data presented here show that average extracellular dopamine in the NAc is low (20-30 nM) and largely arises from phasic dopamine transients.
    Journal of Neurochemistry 02/2012; 121(2):252-62. · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Norepinephrine (NE) is an easily oxidized neurotransmitter that is found throughout the brain. Considerable evidence suggests that it plays an important role in neurocircuitry related to fear and anxiety responses. In certain subregions of the bed nucleus of the stria terminalis (BNST), NE is found in large amounts. In this work we probed differences in electrically evoked release of NE and its regulation by the norepinephrine transporter (NET) and the α(2)-adrenergic autoreceptor (α(2)-AR) in two regions of the BNST of anesthetized rats. NE was monitored in the dorsomedial BNST (dmBNST) and ventral BNST (vBNST) by fast-scan cyclic voltammetry at carbon fiber microelectrodes. Pharmacological agents were introduced either by systemic application (intraperitoneal injection) or by local application (iontophoresis). The iontophoresis barrels were attached to a carbon fiber microelectrode to allow simultaneous detection of evoked NE release and quantitation of iontophoretic delivery. Desipramine (DMI), an inhibitor of NET, increased evoked release and slowed clearance of released NE in both regions independent of the mode of delivery. However, the effects of DMI were more robust in the vBNST than in the dmBNST. Similarly, the α(2)-AR autoreceptor inhibitor idazoxan (IDA) enhanced NE release in both regions but to a greater extent in the vBNST by both modes of delivery. Since both local application by iontophoresis and systemic application of IDA had similar effects on NE release, our results indicate that terminal autoreceptors play a predominant role in the inhibition of subsequent release.
    Journal of Neurophysiology 12/2011; 107(6):1731-7. · 3.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traditionally, norepinephrine has been associated with stress responses, whereas dopamine has been associated with reward. Both of these catecholamines are found within the bed nucleus of the stria terminalis (BNST), a brain relay nucleus in the extended amygdala between cortical/limbic centers, and the hypothalamic-pituitary-adrenal axis. Despite this colocalization, little is known about subsecond catecholamine signaling in subregions of the BNST in response to salient stimuli. Changes in extracellular catecholamine concentration in subregions of the BNST in response to salient stimuli were measured within the rat BNST with fast-scan cyclic voltammetry at carbon-fiber microelectrodes. A discrete subregional distribution of release events was observed for different catecholamines in this nucleus. In addition, rewarding and aversive tastants evoked inverse patterns of norepinephrine and dopamine release in the BNST. An aversive stimulus, quinine, activated noradrenergic signaling but inhibited dopaminergic signaling, whereas a palatable stimulus, sucrose, inhibited norepinephrine while causing dopamine release. This reciprocal relationship, coupled with their different time courses, can provide integration of opposing hedonic states to influence response outputs appropriate for survival.
    Biological psychiatry 11/2011; 71(4):327-34. · 8.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To optimize behavior, organisms evaluate the risks and benefits of available choices. The mesolimbic dopamine (DA) system encodes information about response costs and reward delays that bias choices. However, it remains unclear whether subjective value associated with risk-taking behavior is encoded by DA release. Rats (n = 11) were trained on a risk-based decision-making task in which visual cues predicted the opportunity to respond for smaller certain (safer) or larger uncertain (riskier) rewards. Following training, DA release within the nucleus accumbens (NAc) was monitored on a rapid time scale using fast-scan cyclic voltammetry during the risk-based decision-making task. Individual differences in risk-taking behavior were observed as animals displayed a preference for either safe or risky rewards. When only one response option was available, reward predictive cues evoked increases in DA concentration in the NAc core that scaled with each animal's preferred reward contingency. However, when both options were presented simultaneously, cue-evoked DA release signaled the animals preferred reward contingency, regardless of the future choice. Furthermore, DA signaling in the NAc core also tracked unexpected presentations or omissions of rewards following prediction error theory. These results suggest that the dopaminergic projections to the NAc core encode the subjective value of future rewards that may function to influence future decisions to take risks.
    Biological psychiatry 11/2011; 71(3):199-205. · 8.93 Impact Factor
  • Source
    Fabio Cacciapaglia, R Mark Wightman, Regina M Carelli
    [Show abstract] [Hide abstract]
    ABSTRACT: The mesolimbic dopamine projection from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) is critical in mediating reward-related behaviors, but the precise role of dopamine in this process remains unknown. We completed a series of studies to examine whether coincident changes occur in NAc cell firing and rapid dopamine release during goal-directed behaviors for sucrose and if so, to determine whether the two are causally linked. We show that distinct populations of NAc neurons differentially encode sucrose-directed behaviors, and using a combined electrophysiology/electrochemistry technique, further show that it is at those locations that rapid dopamine signaling is observed. To determine causality, NAc cell firing was recorded during selective pharmacological inactivation of dopamine burst firing using the NMDA receptor antagonist, AP-5. We show that phasic dopamine selectively modulates excitatory but not inhibitory responses of NAc neurons during sucrose-seeking behavior. Thus, rapid dopamine signaling does not exert global actions in the NAc but selectively modulates discrete NAc microcircuits that ultimately influence goal-directed actions.
    Journal of Neuroscience 09/2011; 31(39):13860-9. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fast-scan cyclic voltammetry is a unique technique for sampling dopamine concentration in the brain of rodents in vivo in real time. The combination of in vivo voltammetry with single-unit electrophysiological recording from the same microelectrode has proved to be useful in studying the relationship between animal behavior, dopamine release and unit activity. The instrumentation for these experiments described here has two unique features. First, a 2-electrode arrangement implemented for voltammetric measurements with the grounded reference electrode allows compatibility with electrophysiological measurements, iontophoresis, and multielectrode measurements. Second, we use miniaturized electronic components in the design of a small headstage that can be fixed on the rat's head and used in freely moving animals.
    The Review of scientific instruments 07/2011; 82(7):074302. · 1.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During Pavlovian-to-instrumental transfer (PIT), learned Pavlovian cues significantly modulate ongoing instrumental actions. This phenomenon is suggested as a mechanism under which conditioned stimuli may lead to relapse in addicted populations. Following discriminative Pavlovian learning and instrumental conditioning with sucrose, one group of rats (naive) underwent electrophysiological recordings in the nucleus accumbens core and shell during a single PIT session. Other groups, following Pavlovian and instrumental conditioning, were subsequently trained to self-administer cocaine with nosepoke responses, or received yoked saline infusions and nosepoked for water rewards, and then performed PIT while electrophysiological recordings were taken in the nucleus accumbens. Behaviorally, although both naive and saline-treated groups showed increases in lever pressing during the conditioned stimulus cue, this effect was significantly enhanced in the cocaine-treated group. Neurons in the core and shell tracked these behavioral changes. In control animals, core neurons were significantly more likely to encode general information about cues, rewards and responses than those in the shell, and positively correlated with behavioral PIT performance, whereas PIT-specific encoding in the shell, but not core, tracked PIT performance. In contrast, following cocaine exposure, there was a significant increase in neural encoding of all task-relevant events that was selective to the shell. Given that cocaine exposure enhanced both behavior and shell-specific task encoding, these findings suggest that, whereas the core is important for acquiring the information about cues and response contingencies, the shell is important for using this information to guide and modulate behavior and is specifically affected following a history of cocaine self-administration.
    European Journal of Neuroscience 06/2011; 33(12):2274-87. · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prominent neurobiological theories of addiction posit a central role for aberrant mesolimbic dopamine release but disagree as to whether repeated drug experience blunts or enhances this system. Although drug withdrawal diminishes dopamine release, drug sensitization augments mesolimbic function, and both processes have been linked to drug seeking. One possibility is that the dopamine system can rapidly switch from dampened to enhanced release depending on the specific drug-predictive environment. To test this, we examined dopamine release when cues signaled delayed cocaine delivery versus imminent cocaine self-administration. Fast-scan cyclic voltammetry was used to examine real-time dopamine release while simultaneously monitoring behavioral indexes of aversion as rats experienced a sweet taste cue that predicted delayed cocaine availability and during self-administration. Furthermore, the impact of cues signaling delayed drug availability on intracranial self-stimulation, a broad measure of reward function, was assessed. We observed decreased mesolimbic dopamine concentrations, decreased reward sensitivity, and negative affect in response to the cocaine-predictive taste cue that signaled delayed cocaine availability. Importantly, dopamine concentration rapidly switched to elevated levels to cues signaling imminent cocaine delivery in the subsequent self-administration session. These findings show rapid, bivalent contextual control over brain reward processing, affect, and motivated behavior and have implications for mechanisms mediating substance abuse.
    Biological psychiatry 06/2011; 69(11):1067-74. · 8.93 Impact Factor
  • Source
    Jeremy J Day, Joshua L Jones, Regina M Carelli
    [Show abstract] [Hide abstract]
    ABSTRACT: Efficient decision-making requires that animals consider both the benefits and the costs of potential actions, such as the amount of effort or temporal delay involved in reward seeking. The nucleus accumbens (NAc) has been implicated in the ability to choose between options with different costs and overcome high costs when necessary, but it is not clear how NAc processing contributes to this role. Here, neuronal activity in the rat NAc was monitored using multi-neuron electrophysiology during two cost-based decision tasks in which either reward effort or reward delay was manipulated. In each task, distinct visual cues predicted high-value (low effort/immediate) and low-value (high effort/delayed) rewards. After training, animals exhibited a behavioral preference for high-value rewards, yet overcame high costs when necessary to obtain rewards. Electrophysiological analysis indicated that a subgroup of NAc neurons exhibited phasic increases in firing rate during cue presentations. In the effort-based decision task (but not the delay-based task), this population reflected the cost-discounted value of the future response. In contrast, other subgroups of cells were activated during response initiation or reward delivery, but activity did not differ on the basis of reward cost. Finally, another population of cells exhibited sustained changes in firing rate while animals completed high-effort requirements or waited for delayed rewards. These findings are consistent with previous reports that implicate NAc function in reward prediction and behavioral allocation during reward-seeking behavior, and suggest a mechanism by which NAc activity contributes to both cost-based decisions and actual cost expenditure.
    European Journal of Neuroscience 01/2011; 33(2):308-21. · 3.75 Impact Factor

Publication Stats

4k Citations
524.91 Total Impact Points


  • 1999–2014
    • University of North Carolina at Chapel Hill
      • • Department of Psychology
      • • Department of Chemistry
      North Carolina, United States
  • 2009–2010
    • University of Illinois at Chicago
      • Department of Psychology
      Chicago, IL, United States
  • 2007
    • University of Colorado
      • Department of Psychology
      Denver, CO, United States
  • 2000
    • Penn State Hershey Medical Center and Penn State College of Medicine
      • Neural and Behavioral Sciences
      Hershey, PA, United States
  • 1993–1997
    • Wake Forest University
      • Department of Physiology and Pharmacology
      Winston-Salem, NC, United States
  • 1991–1997
    • Rutgers, The State University of New Jersey
      • Department of Psychology
      Newark, NJ, United States