John M Louis

National Institutes of Health, Bethesda, MD, United States

Are you John M Louis?

Claim your profile

Publications (164)761.97 Total impact

  • Source
    Julien Roche, John M. Louis, Ad Bax
    [Show abstract] [Hide abstract]
    ABSTRACT: Flexibility of the glycine-rich flaps is known to be essential for catalytic activity of the HIV-1 protease, but their exact conformations at the different stages of the enzymatic pathway remain subject to much debate. Although hundreds of crystal structures of protease–inhibitor complexes have been solved, only about a dozen inhibitor-free protease structures have been reported. These latter structures reveal a large diversity of flap conformations, ranging from closed to semi-open to wide open. To evaluate the average structure in solution, we measured residual dipolar couplings (RDCs) and compared these to values calculated for crystal structures representative of the closed, semi-open, and wide-open states. The RDC data clearly indicate that the inhibitor-free protease, on average, adopts a closed conformation in solution that is very similar to the inhibitor-bound state. By contrast, a highly drug-resistant protease mutant, PR20, adopts the wide-open flap conformation.
    ChemBioChem 12/2014; · 3.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The molecular basis for high resistance to clinical inhibitors of HIV-1 protease (PR) was examined for the variant designated PRP51 that was selected for resistance to darunavir (DRV). High resolution crystal structures of PRP51 with the active site D25N mutation revealed a ligand free form and an inhibitor-bound form showing a unique binding site and orientation for DRV. This inactivating mutation is known to increase the dimer dissociation constant and DRV affinity of PR. The PRP51-D25N dimers were in the open conformation with widely separated flaps, as reported for other highly resistant variants. PRP51-D25N dimer bound two DRV molecules and showed larger separation of 8.7 Å between the closest atoms of the two flaps compared with 4.4 Å for the ligand-free structure of this mutant. The ligand-free structure, however, lacked van der Waals contacts between Ile50 and Pro81' from the other subunit in the dimer, unlike the majority of PR structures. DRV is bound inside the active site cavity, however, the inhibitor is oriented almost perpendicular to its typical position and exhibits only 2 direct hydrogen bond and two water-mediated interactions with atoms of PRP51-D25N compared with 11 hydrogen bond interactions seen for DRV bound in the typical position in wild-type enzyme. The atypical location of DRV may provide opportunities for design of novel inhibitors targeting the open conformation of PR drug resistant mutants.
    ACS Chemical Biology 04/2014; · 5.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The envelope glycoprotein gp41 mediates the process of membrane fusion that enables entry of the HIV-1 virus into the host cell. The actual fusion process involves a switch from a homotrimeric prehairpin intermediate conformation, consisting of parallel coiled-coil helices, to a postfusion state where the ectodomains are arranged as a trimer of helical hairpins, adopting a six-helix bundle (6HB) state. Here, we show by solution NMR spectroscopy that a water-soluble 6HB gp41 ectodomain binds to zwitterionic detergents that contain phosphocholine or phosphatidylcholine head groups and phospholipid vesicles that mimic T-cell membrane composition. Binding results in the dissociation of the 6HB and the formation of a monomeric state, where its two α-helices, N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR), become embedded in the lipid-water interface of the virus and host cell. The atomic structure of the gp41 ectodomain monomer, based on NOE distance restraints and residual dipolar couplings, shows that the NHR and CHR helices remain mostly intact, but they completely lose interhelical contacts. The high affinity of the ectodomain helices for phospholipid surfaces suggests that unzippering of the prehairpin intermediate leads to a state where the NHR and CHR helices become embedded in the host cell and viral membranes, respectively, thereby providing a physical force for bringing these membranes into close juxtaposition before actual fusion.
    Proceedings of the National Academy of Sciences 02/2014; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported a series of antibodies, in fragment antigen binding domain (Fab) formats, selected from a human non-immune phage library, directed against the internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41. Broadly neutralizing antibodies from that series bind to both the fully exposed N-HR trimer, representing the pre-hairpin intermediate state of gp41, and to partially-exposed N-HR helices within the context of the gp41 six-helix bundle. While the affinities of the Fabs for pre-hairpin intermediate mimetics vary by only 2 to 20-fold between neutralizing and non-neutralizing antibodies, differences in inhibition of viral entry exceed three orders of magnitude. Here we compare the binding of neutralizing (8066) and non-neutralizing (8062) antibodies, differing in only four positions within the CDR-H2 binding loop, in Fab and single chain variable fragment (ScFv) formats, to several pre-hairpin intermediate and six-helix bundle constructs of gp41. Residues 56 and 58 of the mini-antibodies are shown to be crucial for neutralization activity. There is a large differential ($150-fold) in binding affinity between neutralizing and non-neutralizing antibodies to the six-helix bundle of gp41 and binding to the six-helix bundle does not involve displacement of the outer C-terminal helices of the bundle. The binding stoichiometry is one six-helix bundle to one Fab or three ScFvs. We postulate that neutralization by the 8066 antibody is achieved by binding to a continuum of states along the fusion pathway from the pre-hairpin intermediate all the way to the formation of the six-helix bundle, but prior to irreversible fusion between viral and cellular membranes. Citation: Louis JM, Aniana A, Lohith K, Sayer JM, Roche J, et al. (2014) Binding of HIV-1 gp41-Directed Neutralizing and Non-Neutralizing Fragment Antibody Binding Domain (Fab) and Single Chain Variable Fragment (ScFv) Antibodies to the Ectodomain of gp41 in the Pre-Hairpin and Six-Helix Bundle Conformations. PLoS ONE 9(8): e104683. doi:10.1371/journal.pone.0104683 This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files. Funding:, NIH (to G.M.C.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist.
    PLoS ONE 01/2014; 9(8):e104683. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During treatment, mutations in HIV-1 protease (PR) are selected rapidly that confer resistance by decreasing affinity to clinical protease inhibitors (PIs). As these unique drug resistance mutations can compromise the fitness of the virus to replicate, mutations that restore conformational stability and activity while retaining drug resistance are selected on further evolution. Here we identify several compensating mechanisms by which an extreme drug-resistant mutant bearing 20 mutations (PR20) with >5-fold increased Kd and >4000-fold decreased affinity to the PI darunavir functions. 1) PR20 cleaves, albeit poorly, Gag polyprotein substrates essential for viral maturation. 2) PR20 dimer, which exhibits distinctly enhanced thermal stability, has highly attenuated autoproteolysis, thus likely prolonging its lifetime in vivo. 3) The enhanced stability of PR20 results from stabilization of the monomer fold. Both monomeric PR20T26A and dimeric PR20 exhibit Tm values 6-7.5 °C higher than their PR counterparts. Two specific mutations in PR20, L33F and L63P at sites of autoproteolysis, increase the Tm of monomeric PRT26A by ~8 °C, similar to PR20T26A. However, without other compensatory mutations as seen in PR20, L33F and L63P substitutions, together, neither restrict autoproteolysis nor significantly reduce binding affinity to darunavir. To determine whether dimer stability contributes to binding affinity for inhibitors, we examined single-chain dimers of PR and PRD25N in which the corresponding identical monomer units were covalently linked by GGSSG sequence. Linking of the subunits did not appreciably change the ΔTm on inhibitor binding; thus stabilization by tethering appears to have little direct effect on enhancing inhibitor affinity.
    Biochemistry 09/2013; · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Folding and unfolding rates for the ultrafast folding villin subdomain were determined from a photon-by-photon analysis of fluorescence trajectories in single molecule FRET experiments. One of the obstacles to measuring fast kinetics in single molecule fluorescence experiments is blinking of the fluorophores on a timescale that is not well separated from the process of interest. By incorporating acceptor blinking into a two-state kinetics model, we show that it is possible to extract accurate rate coefficients on the microsecond time scale for folding and unfolding using the maximum likelihood method of I.V. Gopich and A. Szabo. This method yields the most likely parameters of a given model that can reproduce the observed photon trajectories. The extracted parameters agree with both the decay rate of the donor-acceptor cross correlation function and the results of ensemble equilibrium and kinetic experiments using nanosecond laser temperature jump.
    Chemical Physics 08/2013; 422:229-237. · 1.96 Impact Factor
  • Source
  • Source
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extreme drug resistant mutant of HIV-1 protease (PR) bearing 20 mutations (PR20) has been studied with the clinical inhibitor amprenavir (1) and two potent antiviral investigational inhibitors GRL-02031 (2) and GRL-0519 (3). Clinical inhibitors are >1000-fold less active on PR20 than on wild type enzyme, which is consistent with dissociation constants (KL) values from isothermal titration calorimetry of 40 nM for 3, 178 nM for amprenavir, and 960 nM for 2. High resolution crystal structures of PR20-inhibitor complexes revealed altered interactions compared with the corresponding wild-type PR complexes in agreement with relative inhibition. Amprenavir lacks interactions due to PR20 mutations in the S2/S2 subsites relative to PR. Inhibitors 2 and 3 lose interactions with Arg8 in PR20 relative to the wild type enzyme since Arg8 shifts to interact with mutated L10F side chain. Overall, inhibitor 3 compares favorably with darunavir in affinity for PR20 and shows promise for further development.
    Journal of Medicinal Chemistry 04/2013; · 5.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrate that alignment of a structured peptide or small protein solubilized in mixed phospholipid:detergent micelles or bicelles, when embedded in a compressed gel or liquid crystalline medium, can be altered by either changing the phospholipid aggregate shape, charge, or both together. For the hemagglutinin fusion peptide solubilized in bicelles, we show that bicelle shape and charge do not change its helical hairpin structure but impact its alignment relative to the alignment medium, both in charged compressed acrylamide gel and in liquid crystalline d(GpG). The method can be used to generate sets of residual dipolar couplings that correspond to orthogonal alignment tensors, and holds promise for high-resolution structural refinement and dynamic mapping of membrane proteins.
    Journal of Biomolecular NMR 03/2013; · 2.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Always on the move: Solution NMR spectroscopy revealed a high degree of intrinsic mobility for the homotrimeric viral coat protein gp41: a prehairpin intermediate (left) may sample a range of relative orientations of the C-terminal and N-terminal heptad repeats, possibly in exchange with a low population of the late-fusion six-helical bundle (right; FP: fusion peptide, TM: transmembrane helix).
    Angewandte Chemie International Edition 02/2013; · 11.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of mini-antibodies (monovalent and bivalent Fabs) targeting the conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41 has been previously constructed and reported. Crystal structures of two closely related monovalent Fabs, one (Fab 8066) broadly neutralizing across a wide panel of HIV-1 subtype B and C viruses, and the other (Fab 8062) non-neutralizing, representing the extremes of this series, were previously solved as complexes with 5-Helix, a gp41 pre-hairpin intermediate mimetic. Binding of these Fabs to covalently stabilized chimeric trimers of N-peptides of HIV-1 gp41 (named (CCIZN36)3 or 3-H) has now been investigated using X-ray crystallography, cryo-electron microscopy, and a variety of biophysical methods. Crystal structures of the complexes between 3-H and Fab 8066 and Fab 8062 were determined at 2.8 and 3.0 Å resolution, respectively. Although the structures of the complexes with the neutralizing Fab 8066 and its non-neutralizing counterpart Fab 8062 were generally similar, small differences between them could be correlated with the biological properties of these antibodies. The conformations of the corresponding CDRs of each antibody in the complexes with 3-H and 5-Helix are very similar. The adaptation to a different target upon complex formation is predominantly achieved by changes in the structure of the trimer of N-HR helices, as well as by adjustment of the orientation of the Fab molecule relative to the N-HR in the complex, via rigid-body movement. The structural data presented here indicate that binding of three Fabs 8062 with high affinity requires more significant changes in the structure of the N-HR trimer compared to binding of Fab 8066. A comparative analysis of the structures of Fabs complexed to different gp41 intermediate mimetics allows further evaluation of biological relevance for generation of neutralizing antibodies, as well as provides novel structural insights into immunogen design.
    PLoS ONE 01/2013; 8(11):e78187. · 3.53 Impact Factor
  • Biophysical Journal 01/2013; 104(2):188-. · 3.67 Impact Factor
  • Biophysical Journal 01/2013; 104(2):384-. · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The highly conserved first 23 residues of the influenza hemagglutinin HA2 subunit constitute the fusion domain, which plays a pivotal role in fusing viral and host-cell membranes. At neutral pH, this peptide adopts a tight helical hairpin wedge structure, stabilized by aliphatic hydrogen bonding and charge-dipole interactions. We demonstrate that at low pH, where the fusion process is triggered, the native peptide transiently visits activated states that are very similar to those sampled by a G8A mutant. This mutant retains a small fraction of helical hairpin conformation, in rapid equilibrium with at least two open structures. The exchange rate between the closed and open conformations of the wild-type fusion peptide is ∼40 kHz, with a total open-state population of ∼20%. Transitions to these activated states are likely to play a crucial role in formation of the fusion pore, an essential structure required in the final stage of membrane fusion.
    Proceedings of the National Academy of Sciences 11/2012; · 9.81 Impact Factor
  • Source
    Justin L Lorieau, John M Louis, Ad Bax
    [Show abstract] [Hide abstract]
    ABSTRACT: A peptide comprising no fewer than the first 20 residues of the influenza hemagglutinin HA2 subunit suffices to induce lipid mixing between the membranes of different unilamellar vesicles. This 20-residue peptide was previously reported to adopt an open "boomerang" structure that differs significantly from the closed helical-hairpin structure of a fusion peptide consisting of the first 23 residues of the HA2 sequence. This study investigates the structural and dynamic features of fusion peptides of different length and subtype. Lacking key interactions that stabilize the closed, helical-hairpin structure, the 20-residue peptide is in a dynamic equilibrium between closed and open states, adopting a ca. 11% population of the former when solubilized by DPC micelles. Peptides shorter than 20 residues would have even fewer interactions to stabilize a helical hairpin fold, resulting in a vanishing hairpin population. Considering the conserved nature of hairpin-stabilizing interactions across all serotypes, and the minimum of 20 residues needed for fusion, we postulate that the closed state plays an essential role in the fusion process. However, opening of this hairpin structure may be essential to the formation of a membrane pore at the final stage of the fusion process. Published 2012 Wiley Periodicals, Inc. Biopolymers, 2012.
    Biopolymers 06/2012; · 2.88 Impact Factor
  • Jane M Sayer, Annie Aniana, John M Louis
    [Show abstract] [Hide abstract]
    ABSTRACT: Dimerization is indispensible for release of the human immunodeficiency virus protease (PR) from its precursor (Gag-Pol) and ensuing mature-like catalytic activity that is crucial for virus maturation. We show that a single-chain Fv fragment (scFv) of a previously reported monoclonal antibody (mAb1696), which recognizes the N-terminus of PR, dissociates a dimeric mature D25N PR mutant with an enhanced dimer dissociation constant (K(d)) in the sub-micromolar range to form predominantly a monomer-scFv complex at a 1:1 ratio, along with small (5-10%) amounts of a dimer-scFv complex. Enzyme kinetics indicate a mixed mechanism of inhibition of the wild-type PR, which exhibits a K(d)<10nM, with effects both on K(m) and k(cat) at an scFv-to-PR ratio of 10:1. ScFv binds to the N-terminal peptide P(1)QITLW(6) of PR and to PR monomers with dissociation constants of ≤30 nM and ~100 nM, respectively. Consistent with an ~400-fold increase in the dissociation of the antibody (K(Ab)) on even addition of an acetyl group to P(1) of the peptide, the antibody fails to inhibit N-terminal autoprocessing of the PR from a model precursor (at ~5 μM). However, subsequent to this cleavage, it sequesters the PR, thus blocking autoprocessing at its C-terminus. A second monoclonal antibody [PRM1 (human monoclonal antibody to PR)], which recognizes part of the flap region (residues 41-47) of the mature PR and its precursor, does not inhibit autoprocessing and ensuing catalytic activity. However, its failure to recognize drug-resistant clinical mutants of PR may be beneficial to monitor the selection of mutations in this region under drug pressure.
    Journal of Molecular Biology 05/2012; 422(2):230-44. · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The escape mutant of HIV-1 protease (PR) containing 20 mutations (PR20) undergoes efficient polyprotein processing even in the presence of clinical protease inhibitors (PIs). PR20 shows >3 orders of magnitude decreased affinity for PIs darunavir (DRV) and saquinavir (SQV) relative to PR. Crystal structures of PR20 crystallized with yttrium, substrate analogue p2-NC, DRV, and SQV reveal three distinct conformations of the flexible flaps and diminished interactions with inhibitors through the combination of multiple mutations. PR20 with yttrium at the active site exhibits widely separated flaps lacking the usual intersubunit contacts seen in other inhibitor-free dimers. Mutations of residues 35-37 in the hinge loop eliminate interactions and perturb the flap conformation. Crystals of PR20/p2-NC contain one uninhibited dimer with one very open flap and one closed flap and a second inhibitor-bound dimer in the closed form showing six fewer hydrogen bonds with the substrate analogue relative to wild-type PR. PR20 complexes with PIs exhibit expanded S2/S2' pockets and fewer PI interactions arising from coordinated effects of mutations throughout the structure, in agreement with the strikingly reduced affinity. In particular, insertion of the large aromatic side chains of L10F and L33F alters intersubunit interactions and widens the PI binding site through a network of hydrophobic contacts. The two very open conformations of PR20 as well as the expanded binding site of the inhibitor-bound closed form suggest possible approaches for modifying inhibitors to target extreme drug-resistant HIV.
    Biochemistry 03/2012; 51(13):2819-28. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clinical inhibitor amprenavir (APV) is less effective on HIV-2 protease (PR₂) than on HIV-1 protease (PR₁). We solved the crystal structure of PR₂ with APV at 1.5 Å resolution to identify structural changes associated with the lowered inhibition. Furthermore, we analyzed the PR₁ mutant (PR(1M) ) with substitutions V32I, I47V, and V82I that mimic the inhibitor binding site of PR₂. PR(1M) more closely resembled PR₂ than PR₁ in catalytic efficiency on four substrate peptides and inhibition by APV, whereas few differences were seen for two other substrates and inhibition by saquinavir (SQV) and darunavir (DRV). High resolution crystal structures of PR(1M) with APV, DRV, and SQV were compared with available PR₁ and PR₂ complexes. Val/Ile32 and Ile/Val47 showed compensating interactions with SQV in PR(1M) and PR₁, however, Ile82 interacted with a second SQV bound in an extension of the active site cavity of PR(1M). Residues 32 and 82 maintained similar interactions with DRV and APV in all the enzymes, whereas Val47 and Ile47 had opposing effects in the two subunits. Significantly diminished interactions were seen for the aniline of APV bound in PR₁ (M) and PR₂ relative to the strong hydrogen bonds observed in PR₁, consistent with 15- and 19-fold weaker inhibition, respectively. Overall, PR(1M) partially replicates the specificity of PR₂ and gives insight into drug resistant mutations at residues 32, 47, and 82. Moreover, this analysis provides a structural explanation for the weaker antiviral effects of APV on HIV-2.
    Protein Science 03/2012; 21(3):339-50. · 2.74 Impact Factor

Publication Stats

4k Citations
761.97 Total Impact Points


  • 1988–2013
    • National Institutes of Health
      • • Laboratory of Chemical Physics (LCP)
      • • National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
      • • Laboratory of Cell and Developmental Biology
      • • Section of Developmental Mechanisms
      • • Laboratory of Bioorganic Chemistry (LBC)
      Bethesda, MD, United States
  • 2002–2012
    • Georgia State University
      • Department of Biology
      Atlanta, GA, United States
  • 2007–2011
    • University of Pittsburgh
      • • Department of Structural Biology
      • • School of Medicine
      Pittsburgh, PA, United States
  • 2000–2010
    • The National Institute of Diabetes and Digestive and Kidney Diseases
      Maryland, United States
  • 2009
    • Colorado State University
      • Biochemistry and Molecular Biology
      Fort Collins, CO, United States
  • 2006
    • CSU Mentor
      • Department of Biology
      Long Beach, California, United States
  • 1988–2004
    • National Cancer Institute (USA)
      Maryland, United States
  • 2003
    • National Eye Institute
      Maryland, United States
    • University of California, San Diego
      • Department of Chemistry and Biochemistry
      San Diego, CA, United States
  • 2002–2003
    • Forschungszentrum Jülich
      Jülich, North Rhine-Westphalia, Germany
  • 2001
    • The Rockefeller University
      • Pels Family Center for Biochemistry and Structural Biology
      New York City, New York, United States
  • 1998
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
  • 1997–1998
    • Thomas Jefferson University
      • Department of Microbiology & Immunology
      Philadelphia, PA, United States
    • University of Debrecen
      • Department of Biochemistry
      Debrecen, Hajdu-Bihar, Hungary
  • 1996
    • Centre for Cellular and Molecular Biology
      Bhaganagar, Andhra Pradesh, India
  • 1992
    • Leidos Biomedical Research
      Maryland, United States