D B West

University Hospital Vall d'Hebron, Barcino, Catalonia, Spain

Are you D B West?

Claim your profile

Publications (51)225.69 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    ChemInform 07/2010; 31(29). DOI:10.1002/chin.200029282
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IkappaBalpha is an inhibitor of the nuclear transcription factor NF-kappaB. Binding of IkappaBalpha to NF-kappaB inactivates the transcriptional activity of NF-kappaB. Expression of IkappaBalpha itself is regulated by NF-kappaB, which provides auto-regulation of this signaling pathway. Here we present a mouse model for monitoring in vivo IkappaBalpha expression by imaging IkappaBalpha-luc transgenic mice for IkappaBalpha promoter driven luciferase activity. We demonstrated a rapid and systemic induction of IkappaBalpha expression in the transgenic mice following treatment with LPS. The induction was high in liver, spleen, lung and intestine and lower in the kidney, heart and brain. The luciferase induction in the liver correlated with increased IkappaBalpha mRNA level. Pre-treatment with proteasome inhibitor bortezomib dramatically suppressed LPS-induced luciferase activity. The p38 kinase inhibitor SB203580 also showed moderate inhibition of LPS-induced luciferase activity. Analysis of IkappaBalpha mRNA in the liver tissue showed a surprising increase of the IkappaBalpha mRNA after bortezomib and SB203580 treatments, which could be due to increased IkappaBalpha mRNA stability. Our data demonstrate that regulation of IkappaBalpha expression involves both the NF-kappaB and the p38 signaling pathways. The IkappaBalpha-luc transgenic mice are useful for analyzing IkappaBalpha expression and the NF-kappaB transcriptional activity in vivo.
    Journal of Inflammation 11/2005; 2:10. DOI:10.1186/1476-9255-2-10 · 2.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using a sensitive transgenic reporter mouse system and in vivo biophotonic imaging techniques, we present a dynamic analysis of eosinophil responses to schistosome infection. Use of this methodology provided previously unattainable detail on the spatial and temporal distribution of tissue eosinophilia and eosinopoietic responses to schistosome worms and eggs. Dramatic hepatic and intestinal eosinophilia in response to the deposition of schistosome eggs, with accompanying eosinopoiesis in the bone marrow, was observed between weeks 8 and 10 p.i., with subsequent downregulation evident by week 11. Contrary to expectations, we also demonstrate that schistosome parasites themselves induce significant intestinal eosinophilia and eosinopoiesis in the bone marrow at very early stages during prepatent infection.
    International Journal for Parasitology 08/2005; 35(8):851-9. DOI:10.1016/j.ijpara.2005.02.017 · 3.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The GADD45 (growth arrest and DNA damage-inducible) family of genes is involved in the regulation of cell cycle progression and apoptosis. To study signaling pathways affecting GADD45beta expression and to examine systematically in vivo the GADD45beta expression in tissues following various toxic stresses, we created a transgenic mouse by fusing the GADD45beta promoter to firefly luciferase (Gadd45beta-luc). In vivo GADD45beta expression was assessed by measuring the luciferase activity in the Gadd45beta-luc transgenic mouse using a non-invasive imaging system (IVIS Imaging System, Xenogen Corporation). We found that a number of agents that induce oxidative stress, such as sodium arsenite, CCl4, lipopolysaccharide (LPS), or tumor necrosis factor-alpha, are able to induce luciferase expression throughout the entire animal. In liver, spleen, lung, intestine, kidney, and heart, we observed an induction of luciferase activity after LPS treatment, which correlates with an increase of GADD45beta mRNA in these tissues. Processes that induce DNA damage activate the NF-kappaB signaling pathway. Several inhibitors of the NF-kappaB signaling pathway, including dexamethasone, thalidomide, and a proteasome inhibitor, bortezomib, showed inhibitory effects on LPS-induced GADD45beta expression as indicated by a decrease of the luciferase activity. Northern blot analysis confirmed a broad inhibitory effect of bortezomib on LPS-induced GADD45beta mRNA expression in spleen, lung, and intestine. In liver of bortezomib-treated mice, we observed a reverse correlation between the luciferase activity and the GADD45beta mRNA level. We speculate that such a discrepancy could be due to severe liver toxicity caused by bortezomib and LPS co-treatment. MAPK inhibitors had transient and inconsistent effects on LPS-induced luciferase expression. Our data are consistent with the notion that NF-kappaB, but not the MAPK signaling pathways, is involved in the in vivo regulation of GADD45beta expression. Thus, NF-kappaB signaling involves induction of GADD45beta expression, which supports the proposed role of GADD45beta in protecting cells against DNA damaged under various stress conditions.
    Journal of Biological Chemistry 07/2005; 280(22):21400-8. DOI:10.1074/jbc.M411952200 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute phase serum amyloid A proteins (A-SAAs) are multifunctional apolipoproteins produced in large amounts during the acute phase of an inflammation and also during the development of chronic inflammatory diseases. In this study we present a Saa1-luc transgenic mouse model in which SAA1 gene expression can be monitored by measuring luciferase activity using a noninvasive imaging system. When challenged with LPS, TNF-alpha, or IL-1beta, in vivo imaging of Saa1-luc mice showed a 1000- to 3000-fold induction of luciferase activity in the hepatic region that peaked 4-7 h after treatment. The induction of liver luciferase expression was consistent with an increase in SAA1 mRNA in the liver and a dramatic elevation of the serum SAA1 concentration. Ex vivo analyses revealed luciferase induction in many tissues, ranging from several-fold (brain) to >5000-fold (liver) after LPS or TNF-alpha treatment. Pretreatment of mice with the proteasome inhibitor bortezomib significantly suppressed LPS-induced SAA1 expression. These results suggested that proteasome inhibition, perhaps through the NF-kappaB signaling pathway, may regulate SAA1 expression. During the development of acute arthritis triggered by intra-articular administration of zymosan, SAA1 expression was induced both locally at the knee joint and systemically in the liver, and the induction was significantly suppressed by bortezomib. Induction of SAA1 expression was also demonstrated during contact hypersensitivity induced by topical application of oxazolone. These results suggest that both local and systemic induction of A-SAA occur during inflammation and may contribute to the pathogenesis of chronic inflammatory diseases associated with amyloid deposition.
    The Journal of Immunology 07/2005; 174(12):8125-34. DOI:10.4049/jimmunol.174.12.8125 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The GADD45 (growth arrest and DNA damage-inducible) family of genes is involved in the regulation of cell cycle progression and apoptosis. To study signaling pathways affecting GADD45β expression and to examine systematically in vivo the GADD45β expression in tissues following various toxic stresses, we created a transgenic mouse by fusing the GADD45β promoter to firefly luciferase (Gadd45β-luc). In vivo GADD45β expression was assessed by measuring the luciferase activity in the Gadd45β-luc transgenic mouse using a non-invasive imaging system (IVIS® Imaging System, Xenogen Corporation). We found that a number of agents that induce oxidative stress, such as sodium arsenite, CCl4, lipopolysaccharide (LPS), or tumor necrosis factor-α, are able to induce luciferase expression throughout the entire animal. In liver, spleen, lung, intestine, kidney, and heart, we observed an induction of luciferase activity after LPS treatment, which correlates with an increase of GADD45β mRNA in these tissues. Processes that induce DNA damage activate the NF-κB signaling pathway. Several inhibitors of the NF-κB signaling pathway, including dexamethasone, thalidomide, and a proteasome inhibitor, bortezomib, showed inhibitory effects on LPS-induced GADD45β expression as indicated by a decrease of the luciferase activity. Northern blot analysis confirmed a broad inhibitory effect of bortezomib on LPS-induced GADD45β mRNA expression in spleen, lung, and intestine. In liver of bortezomib-treated mice, we observed a reverse correlation between the luciferase activity and the GADD45β mRNA level. We speculate that such a discrepancy could be due to severe liver toxicity caused by bortezomib and LPS co-treatment. MAPK inhibitors had transient and inconsistent effects on LPS-induced luciferase expression. Our data are consistent with the notion that NF-κB, but not the MAPK signaling pathways, is involved in the in vivo regulation of GADD45β expression. Thus, NF-κB signaling involves induction of GADD45β expression, which supports the proposed role of GADD45β in protecting cells against DNA damaged under various stress conditions.
    Journal of Biological Chemistry 06/2005; 280(22):21400-21408. · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transgenic mice expressing the luciferase (luc) gene under the control of the heme oxygenase-1 promoter (Ho1) were used to measure the induction of heme oxygenase in response to known toxicants. Transgenic Ho1-luc expression was visualized in vivo using a low-light imaging system (IVIS). Ho1-luc activation was compared to Ho1-luc expression, HO1 protein levels, standard markers of toxicity, and histology. Male and female Ho1-luc transgenic mice were exposed to acute doses of cadmium chloride (CdCl2, 3.7 mg/kg), doxorubicin (15 mg/kg), and thioacetamide (300 mg/kg). These agents induced the expression of Ho1-luc in the liver and other tissues to varying degrees. The greatest increase in Ho1-luc activity was observed in the liver in response to CdCl2; intermediate responses were observed for doxorubicin and thioacetamide. Induction of the Ho1-luc transgene by these agents was similar to endogenous protein levels of heme oxygenase as assessed by Western blotting, and generally correlated with plasma levels of circulating enzymes reflecting hepatic or general tissue damage. Histopathology confirmed the toxic effects of CdCl2 on liver and kidney; doxorubicin on kidney, liver, and intestine; and thioacetamide on the liver. Tissue damage was much more pronounced than the luciferase expression following thioacetamide treatment when compared with tissue damage and bioluminescence of the other toxicants. Nevertheless, the induction of Ho1-luc expression following exposure to these agents suggests that the Ho1-luc transgenic mouse may prove useful as a model for in vivo screening of compounds that induce luciferase expression as a marker of toxicity.
    Toxicology and Applied Pharmacology 12/2004; 200(3):219-28. DOI:10.1016/j.taap.2004.04.021 · 3.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here we describe a transgenic mouse model [Crl:CD-1(ICR)BR-Tg(Cyp1a2-luc)Xen] using luciferase as a reporter for Cyp1a2 gene regulation. An 8.4-kilobase mouse Cyp1a2 promoter driving the firefly luciferase gene was microinjected into single-cell-stage CD-1 mouse embryos. A transgenic mouse line was selected based on basal and induced levels of the transgene in mouse liver by an in vivo bioluminescent imaging method. The basal levels of the luciferase reporter in liver were expressed much higher than other tissues, which correlated well with the endogenous Cyp1a2 mRNA tissue distribution. Male signals were about 23-fold higher than females in liver. However, the Cyp1a2 mRNA showed no gender difference. When mice were challenged with xenobiotics, the liver luciferase signal was induced to various degrees. At the doses we used, the relative effects were phenobarbital > 2,3,7,8-tetrachlorodibenzo-p-dioxin > 3-methylcholanthrene > benzo[a]pyrene and beta-naphthoflavone. Induction of the Cyp1a2-luc reporter was generally consistent with the endogenous Cyp1a2 mRNA. However, phenobarbital induction was unexpectedly higher, while beta-naphthoflavone induction of the reporter was much lower than that of the endogenous Cyp1a2 gene. Induction of the Cyp1a2-luc transgene by aryl hydrocarbons (Ah) in the CD-1 background was much less than that found in the Ah responsive C57BL/6 mice, while being similar to the nonresponsive DBA/2 strain. Sequence analysis of the CD-1 Ah receptor (AhR) cDNA clones demonstrated that consensus sequence was identical to some of the Ah-responsive strains such as BALB/C and CBA/J mice. The 104-kD AhR protein was not detectable in CD-1 mice, while the 97-kD AhR was detected in the C57BL/6 mice by Western blot using an AhR antibody. Low expression of the AhR in CD-1 mice could be in part responsible for low responsiveness to Ah compounds. The findings demonstrated the outbred CD-1 mouse is a low-responsive strain, and the Cyp1a2-luc transgenic CD-1 mice can be used for studying the regulation of the mouse Cyp1a2 gene in an Ah low-responsive strain in real time using the bioluminescent imaging approach.
    Toxicological Sciences 11/2004; 82(1):297-307. DOI:10.1093/toxsci/kfh260 · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The androgen-dependent regulation for the gene encoding the kidney androgen regulated protein (Kap) was examined in transgenic mice expressing luciferase (luc) under the control of the murine Kap promoter. Biophotonic imaging was used to visualize luciferase expression from the kidneys and various organs that was confirmed using luminometer assays. Kap-luc expression was observed at high levels in kidneys, epididymides, testes, and seminal vesicles in male mice, and in kidneys, ovaries, and uterus in female mice. Kap-luc expression was modulated by androgen and anti-androgen treatment in both male and female mice. Male mice were treated daily with the anti-androgenic compounds, cyproterone acetate (50 and 100 mg/kg/day) and flutamide (50 and 100 mg/kg/day), or vehicle for 16 days. Endpoints evaluated included in vivo biophotonic imaging, body weights, organ weights (liver, kidney, testes, epididymides, preputial gland, and seminal vesicles), protein luciferase assays and Western blot analysis. Biophotonic imaging was used to follow Kap-luc expression from each animal throughout the experiment using a sensitive imaging system. These imaging results correlated well with Western blot analysis and traditional endpoints of body and organ weights. Following treatment with anti-androgens, the luciferase signal was found to significantly decrease in the intact male mouse using in vivo biophotonic imaging and correlated with measurements of luciferase activity in homogenized organ extracts. The decrease in epididymal and seminal vesicle weight confirmed the action of the anti-androgens. In vivo imaging documented significant changes in luciferase expression within the first few days of the experiment indicative of the anti-androgenic activity of the drugs. Testosterone treatment significantly increased the Kap-luc bioluminescent signal in female mice. This increased luciferase induction was shown to be inhibited by coadministration of cyproterone (100 mg/kg/day). Our results indicate that biophotonic imaging may provide a useful approach for noninvasively tracking the effects of endocrine disruptors in specific tissues.
    Toxicological Sciences 07/2004; 79(2):266-77. DOI:10.1093/toxsci/kfh125 · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previously we described a transgenic mouse model [FVB/NTg(CYP3A4-luc)Xen] using a reporter construct consisting of 13 kilobases of the human CYP3A4 promoter driving the firefly luciferase gene in the inbred FVB/N mouse strain. Here we report regulation of the same CYP3A4-luc reporter gene in a transgenic outbred mouse strain (CD-1) and in a transgenic rat (Sprague-Dawley). Basal reporter expression and responses to several xenobiotics in the transgenic CD-1 mice [CD-1/Crl-Tg(CYP3A4-luc)Xen] were similar to those in the transgenic FVB/N mice. In both mouse backgrounds, the basal levels of the reporter were higher in male compared with female, and in the FVB/N strain there was greater induction for all drugs in male compared with female; however, in the CD-1 background this gender difference for induction was not obvious. In contrast with transgenic mice, transgenic rats [SD/Tac-Tg(CYP3A4-luc)Xen] expressed the luciferase reporter at higher basal levels in female compared with male rats. Responses to some compounds were much greater in rats than in mice, and the kinetics of induction was different with peak induction occurring later in the rat compared with the mouse. Our results suggest that the human CYP3A4 promoter is regulated differently in transgenic mice and rats in some aspects.
    Drug Metabolism and Disposition 03/2004; 32(2):163-7. DOI:10.1124/dmd.32.2.163 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The results of recent studies suggest that the mouse Sac (saccharin preference) locus is identical to the Tas1r3 (taste receptor) gene. The goal of this study was to identify Tas1r3 sequence variants associated with saccharin preference in a large number of inbred mouse strains. Initially, we sequenced approximately 6.7 kb of the Tas1r3 gene and its flanking regions from six inbred mouse strains with high and low saccharin preference, including the strains in which the Sac alleles were described originally (C57BL/6J, Sac(b); DBA/2J, Sac(d)). Of the 89 sequence variants detected among these six strains, eight polymorphic sites were significantly associated with preferences for 1.6 mm saccharin. Next, each of these eight variant sites were genotyped in 24 additional mouse strains. Analysis of the genotype-phenotype associations in all 30 strains showed the strongest association with saccharin preference at three sites: nucleotide (nt) -791 (3 bp insertion/deletion), nt +135 (Ser45Ser), and nt +179 (Ile60Thr). We measured Tas1r3 gene expression, transcript size, and T1R3 immunoreactivity in the taste tissue of two inbred mouse strains with different Tas1r3 haplotypes and saccharin preferences. The results of these experiments suggest that the polymorphisms associated with saccharin preference do not act by blocking gene expression, changing alternative splicing, or interfering with protein translation in taste tissue. The amino acid substitution (Ile60Thr) may influence the ability of the protein to form dimers or bind sweeteners. Here, we present data for future studies directed to experimentally confirm the function of these polymorphisms and highlight some of the difficulties of identifying specific DNA sequence variants that underlie quantitative trait loci.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 02/2004; 24(4):938-46. DOI:10.1523/JNEUROSCI.1374-03.2004 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The vascular endothelial growth factor-2 (VEGFR2) gene is transcriptionally regulated during angiogenesis. The ability to monitor and quantify VEGFR2 expression in vivo may facilitate a better understanding of the role of VEGFR2 in different states. Here we describe a transgenic mouse, Vegfr2-luc, in which a luciferase reporter is under control of the murine VEGFR2 promoter. In adult mice, luciferase activity was highest in lung and uterus, intermediate in heart, skin, and kidney, and lower in other tissues. Luciferase expression in these tissues correlated with endogenous VEGFR2 mRNA expression. In a cutaneous wound-healing model, Vegfr2-luc expression was induced in the wound tissue. Histologic and immunohistochemical studies showed significant macrophage infiltration into the wound and induction of Vegfr2-luc expression in endothelial and stromal cells. Dexamethasone significantly suppressed Vegfr2-luc expression and macrophage infiltration into the wound, resulting in delayed healing and impaired angiogenesis. In a skin hypersensitivity reaction produced by treatment with oxazolone, Vegfr2-luc expression was induced in the ear. Treatment by dexamethasone markedly suppressed Vegfr2-luc expression and leukocyte infiltration in the ear and was correlated with reduced dermal edema and epidermal hyperplasia. The Vegfr2-luc model will be valuable in monitoring the ability of drugs to affect angiogenesis in vivo.
    Blood 02/2004; 103(2):617-26. DOI:10.1182/blood-2003-06-1820 · 10.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytochrome p450 3A4 (CYP3A4) plays an important role in drug metabolism, and the enzymatic activity of CYP3A4 contributes to many adverse drug-drug interactions. Here we describe a transgenic mouse model that is useful in monitoring the in vivo transcriptional regulation of the human CYP3A4 gene. A reporter construct consisting of 13 kilobases of the human CYP3A4 promoter controlling the firefly luciferase gene was used to generate a transgenic mouse line [FVB/N-Tg(CYP3A4-luc)Xen]. Reporter gene expression was assessed using an in vivo imaging system (IVIS) in anesthetized mice. Basal expression of the reporter was highest in liver and kidney, and moderate in the duodenum in male transgenic mice, whereas the basal luciferase activity was highest in the duodenum and lower in kidney and liver in females. Injections of pregnenolone, phenobarbital, rifampicin, nifedipine, dexamethasone, 5-pregnen-3beta-ol-20-one-16alpha-carbonitrile (PCN), and clotrimazole resulted in a time-dependent induction of luciferase expression, primarily in liver, that peaked at 6 h post injection. The greatest induction was found with clotrimazole, dexamethasone, and PCN, whereas the lowest induction followed pregnenolone, phenobarbital, and rifampicin injection. In general, male mice responded to these drugs more strongly than did females. Our results suggest that the human CYP3A4 promoter functions in transgenic mice and that this in vivo model can be used to study transcriptional regulation of the CYP3A4 gene.
    Drug Metabolism and Disposition 09/2003; 31(8):1054-64. DOI:10.1124/dmd.31.8.1054 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The inducible NO synthase gene (iNOS) plays a role in a number of chronic and acute conditions, including septic shock and contact hypersensitivity autoimmune diseases, such as rheumatoid arthritis, gastrointestinal disorders, and myocardial ischemia. The iNOS gene is primarily under transcriptional control and is induced in a variety of conditions. The ability to monitor and quantify iNOS expression in vivo may facilitate a better understanding of the role of iNOS in different diseases. In this study, we describe a transgenic mouse (iNos-luc) in which the luciferase reporter is under control of the murine iNOS promoter. In an acute sepsis model produced by injection of IFN-gamma and LPS, we observed an induction of iNOS-driven luciferase activity in the mouse liver. This transgene induction is dose and time dependent and correlated with an increase of liver iNOS protein and iNOS mRNA levels. With this model, we tested 11 compounds previously shown to inhibit iNOS induction in vitro or in vivo. Administration of dexamethasone, epigallocatechin gallate, alpha-phenyl-N-tert-butyl nitrone, and ebselen significantly suppressed iNOS transgene induction by IFN-gamma and LPS. We further evaluated the use of the iNos-luc transgenic mice in a zymosan-induced arthritis model. Intra-articular injection of zymosan induced iNos-luc expression in the knee joint. The establishment of the iNos-luc transgenic model provides a valuable tool for studying processes in which the iNOS gene is induced and for screening anti-inflammatory compounds in vivo.
    The Journal of Immunology 07/2003; 170(12):6307-19. DOI:10.4049/jimmunol.170.12.6307 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of high-fat feeding on the development of obesity were evaluated in intercellular adhesion molecule-1 (ICAM-1) knockout and C57BL/6J (B6) male mice fed a high-fat diet for < or =50 days. Serum and tissues were collected at baseline and after 1, 11, and 50 days on the diet. After 11 days on the diet, ICAM-1-deficient, but not B6, mice developed fatty livers and showed a significant increase in inguinal fat pad weight. At day 50, ICAM-1-deficient mice weighed less, and their adiposity index and circulating leptin levels were significantly lower than those of B6 controls. To better understand the early differential response to the diet, liver gene expression was analyzed at three time points by use of Affymetrix GeneChips. In both strains, a similar pattern of gene expression was detected in response to the high-fat diet. However, sterol regulatory element-binding protein-1, apolipoprotein A4, and adipsin mRNAs were significantly induced in ICAM-1-deficient livers, suggesting that these genes and their associated pathways may be involved in the acute diet response observed in the knockout mice.
    AJP Endocrinology and Metabolism 03/2002; 282(3):E703-13. DOI:10.1152/ajpendo.00072.2001 · 4.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The subtelomeric region of mouse chromosome (Chr) 4 harbors loci with effects on behavior, development, and disease susceptibility. Regions near the telomeres are more difficult to map and characterize than other areas because of the unique features of subtelomeric DNA. As a result of these problems, the available mapping information for this part of mouse Chr 4 was insufficient to pursue candidate gene evaluation. Therefore, we sought to characterize the area in greater detail by creating a comprehensive genetic, physical, and comparative map. We constructed a genetic map that contained 30 markers and covered 13.3 cM; then we created a 1.2-Mb sequence-ready BAC contig, representing a 5.1-cM area, and sequenced a 246-kb mouse BAC from this contig. The resulting sequence, as well as approximately 40 kb of previously deposited genomic sequence, yielded a total of 284 kb of sequence, which contained over 20 putative genes. These putative genes were confirmed by matching ESTs or cDNA in the public databases to the genomic sequence and/or by direct sequencing of cDNA. Comparative genome sequence analysis demonstrated conserved synteny between the mouse and the human genomes (1p36.3). DNA from two strains of mice (C57BL/6ByJ and 129P3/J) was sequenced to detect single nucleotide polymorphisms (SNPs). The frequency of SNPs in this region was more than threefold higher than the genome-wide average for comparable mouse strains (129/Sv and C57BL/6J). The resulting SNP map, in conjunction with the sequence annotation and with physical and genetic maps, provides a detailed description of this gene-rich region. These data will facilitate genetic and comparative mapping studies and identification of a large number of novel candidate genes for the trait loci mapped to this region.
    Mammalian Genome 02/2002; 13(1):5-19. DOI:10.1007/s00335-001-2109-8 · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Familial combined hyperlipidemia (FCHL, MIM-144250) is a common, multifactorial and heterogeneous dyslipidemia predisposing to premature coronary artery disease and characterized by elevated plasma triglycerides, cholesterol, or both. We identified a mutant mouse strain, HcB-19/Dem (HcB-19), that shares features with FCHL, including hypertriglyceridemia, hypercholesterolemia, elevated plasma apolipoprotein B and increased secretion of triglyceride-rich lipoproteins. The hyperlipidemia results from spontaneous mutation at a locus, Hyplip1, on distal mouse chromosome 3 in a region syntenic with a 1q21-q23 FCHL locus identified in Finnish, German, Chinese and US families. We fine-mapped Hyplip1 to roughly 160 kb, constructed a BAC contig and sequenced overlapping BACs to identify 13 candidate genes. We found substantially decreased mRNA expression for thioredoxin interacting protein (Txnip). Sequencing of the critical region revealed a Txnip nonsense mutation in HcB-19 that is absent in its normolipidemic parental strains. Txnip encodes a cytoplasmic protein that binds and inhibits thioredoxin, a major regulator of cellular redox state. The mutant mice have decreased CO2 production but increased ketone body synthesis, suggesting that altered redox status down-regulates the citric-acid cycle, sparing fatty acids for triglyceride and ketone body production. These results reveal a new pathway of potential clinical significance that contributes to plasma lipid metabolism.
    Nature Genetics 02/2002; 30(1):110-6. DOI:10.1038/ng811 · 29.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Differences in sweetener intake among inbred strains of mice are partially determined by allelic variation of the saccharin preference (Sac) locus. Genetic and physical mapping limited a critical genomic interval containing Sac to a 194 kb DNA fragment. Sequencing and annotation of this region identified a gene (Tas1r3) encoding the third member of the T1R family of putative taste receptors, T1R3. Introgression by serial backcrossing of the 194 kb chromosomal fragment containing the Tas1r3 allele from the high-sweetener-preferring C57BL/6ByJ strain onto the genetic background of the low-sweetener-preferring 129P3/J strain rescued its low-sweetener-preference phenotype. Polymorphisms of Tas1r3 that are likely to have functional significance were identified using analysis of genomic sequences and sweetener-preference phenotypes of genealogically distant mouse strains. Tas1r3 has two common haplotypes, consisting of six single nucleotide polymorphisms: one haplotype was found in mouse strains with elevated sweetener preference and the other in strains relatively indifferent to sweeteners. This study provides compelling evidence that Tas1r3 is equivalent to the Sac locus and that the T1R3 receptor responds to sweeteners.
    Chemical Senses 10/2001; 26(7):925-33. · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nutrient preferences and orosensory responses were characterized in two mouse inbred strains. In two-bottle solution tests (tastant vs. vehicle; ascending concentrations), the effects of strain and chow type (12 or 26% fat) on preference thresholds for sucrose and corn oil were compared in AKR/J and SWR/J mice. SWR/J mice displayed lower preference thresholds and ingested more sucrose than AKR/J mice did. SWR/J mice also showed lower preference thresholds and consumed more corn oil than AKR/J mice did; corn oil preference was suppressed 3.5-fold in AKR/J mice compared with SWR/J mice when fed 26% fat chow. Next, licking was recorded during 30-s access to sucrose or corn oil across a range of concentrations. SWR/J mice licked the tastants more than AKR/J mice did. Analysis of modal interlick intervals during lick training revealed that SWR/J mice licked water faster than AKR/J mice when water deprived, suggesting that motor as well as sensory factors may determine lick responses to tastants in brief-access tests. Finally, in two-bottle tests pitting maximally preferred concentrations of sucrose (8 or 16%) against corn oil (20%), SWR/J mice highly preferred sucrose over corn oil at either sucrose concentration. AKR/J mice preferred corn oil over 8% sucrose but reversed their preference when 16% sucrose was offered. These results support a primary role of flavor in the nutrient preferences of SWR/J mice. In AKR/J mice, the low lick activity for sucrose and corn oil and greater suppression of corn oil preference by the high-fat chow suggest that their preferences depend more on postingestive factors than on flavor.
    AJP Regulatory Integrative and Comparative Physiology 09/2001; 281(2):R596-606. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An important approach for understanding complex disease risk using the mouse is to map and ultimately identify the genes conferring risk. Genes contributing to complex traits can be mapped to chromosomal regions using genome scans of large mouse crosses. Congenic strains can then be developed to fine-map a trait and to ascertain the magnitude of the genotype effect in a chromosomal region. Congenic strains are constructed by repeated backcrossing to the background strain with selection at each generation for the presence of a donor chromosomal region, a time-consuming process. One approach to accelerate this process is to construct a library of congenic strains encompassing the entire genome of one strain on the background of the other. We have employed marker-assisted breeding to construct two sets of overlapping congenic strains, called genome-tagged mice (GTMs), that span the entire mouse genome. Both congenic GTM sets contain more than 60 mouse strains, each with on average a 23-cM introgressed segment (range 8 to 58 cM). C57BL/6J was utilized as a background strain for both GTM sets with either DBA/2J or CAST/Ei as the donor strain. The background and donor strains are genetically and phenotypically divergent. The genetic basis for the phenotypic strain differences can be rapidly mapped by simply screening the GTM strains. Furthermore, the phenotype differences can be fine-mapped by crossing appropriate congenic mice to the background strain, and complex gene interactions can be investigated using combinations of these congenics.
    Genomics 06/2001; 74(1):89-104. DOI:10.1006/geno.2000.6497 · 2.79 Impact Factor

Publication Stats

2k Citations
225.69 Total Impact Points

Institutions

  • 2004
    • University Hospital Vall d'Hebron
      Barcino, Catalonia, Spain
    • Baylor College of Medicine
      Houston, Texas, United States
  • 2001
    • University of California, Los Angeles
      • Department of Medicine
      Los Ángeles, California, United States
  • 1994–2001
    • Pennington Biomedical Research Center
      Baton Rouge, Louisiana, United States