C R Ganellin

University College London, London, ENG, United Kingdom

Are you C R Ganellin?

Claim your profile

Publications (203)831.38 Total impact

  • Lei Zhang, Ming Ouyang, C Robin Ganellin, Steven A Thomas
    [Show abstract] [Hide abstract]
    ABSTRACT: In rodents, adrenergic signaling by norepinephrine (NE) in the hippocampus is required for the retrieval of intermediate-term memory. NE promotes retrieval via the stimulation of β1-adrenergic receptors, the production of cAMP, and the activation of both protein kinase A (PKA) and the exchange protein activated by cAMP. However, a final effector for this signaling pathway has not been identified. Among the many targets of adrenergic signaling in the hippocampus, the slow afterhyperpolarization (sAHP) is an appealing candidate because its reduction by β1 signaling enhances excitatory neurotransmission. Here we report that reducing the sAHP is critical for the facilitation of retrieval by NE. Direct blockers of the sAHP, as well as blockers of the L-type voltage-dependent calcium influx that activates the sAHP, rescue retrieval in mutant mice lacking either NE or the β1 receptor. Complementary to this, a facilitator of L-type calcium influx impairs retrieval in wild-type mice. In addition, we examined the role of NE in the learning-related reduction of the sAHP observed ex vivo in hippocampal slices. We find that this reduction in the sAHP depends on the induction of persistent PKA activity specifically in conditioned slices. Interestingly, this persistent PKA activity is induced by NE/β1 signaling during slice preparation rather than during learning. These observations suggest that the reduction in the sAHP may not be present autonomously in vivo, but is likely induced by neuromodulatory input, which is consistent with the idea that NE is required in vivo for reduction of the sAHP during memory retrieval.
    Journal of Neuroscience 03/2013; 33(11):5006-16. · 6.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previously, quinolinium-based tetraazacyclophanes, such as UCL 1684 and UCL 1848, have been shown to be extraordinarily sensitive to changes in chemical structure (especially to the size of the cyclophane system) with respect to activity as potent non-peptidic blockers of the small conductance Ca(2+)-activated K(+) ion channels (SKCa). The present work has sought to optimize the structure of the linking chains in UCL 1848. We report the synthesis and SKCa channel-blocking activity of 29 analogues of UCL 1848 in which the central CH2 of UCL 1848 is replaced by other groups X or Y = O, S, CF2, CO, CHOH, CC, CHCH, CHMe to explore whether subtle changes in bond length or flexibility can improve potency still further. The possibility of improving potency by introducing ring substituents has also been explored by synthesizing and testing 25 analogues of UCL 1684 and UCL 1848 with substituents (NO2, NH2, CF3, F, Cl, CH3, OCH3, OCF3, OH) in the 5, 6 or 7 positions of the aminoquinolinium rings. As in our earlier work, each compound was assayed for inhibition of the afterhyperpolarization (AHP) in rat sympathetic neurons, an action mediated by the SK3 subtype of the SKCa channel. One of the new compounds (39, R(7) = Cl, UCL 2053) is twice as potent as UCL 1848 and UCL 1684: seven are comparable in activity.
    European Journal of Medicinal Chemistry 03/2013; 63C:907-923. · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cetiedil ((±)-2−cyclohexyl-2-(3−thienyl)ethanoic acid 2-(hexahydro-1H-azepin-1−yl) ethyl ester) possesses anti-sickling and analgesic, antispasmodic, local anaesthetic and vasodilator activities. A total synthesis and circular dichroism spectra of the enantiomers of cetiedil is described, together with a comparison of their effectiveness as blockers of the Ca2+-activated K+ permeability of rabbit erythrocytes; the contractile response of intestinal smooth muscle to acetylcholine; the Ca2+-dependent contraction of depolarized intestinal muscle; and the cell volume-sensitive K+ permeability (Kvol) of liver cells.The enantiomers did not differ substantially in their ability to block the Ca2+-activated K+ permeability of rabbit red cells or in their effectiveness as blockers of the contractile response of depolarized smooth muscle to externally applied Ca2+. There was a clear difference in the muscarinic blocking activity of the enantiomers, as assessed by inhibition of the contractile response of intestinal smooth muscle to acetylcholine; (+)-cetiedil was 7.7 ± 0.2 (s.d.) times more active than the (–-) form. The enantiomers also differed in their potency as blockers of the increase in membrane conductance which occurs when liver cells swell. The concentration of (+)-cetiedil needed to reduce the conductance increase by 50% was 2.04 ± 0.54 (s.d.) μM; (–-)-cetiedil was 2.6 ± 0.8 (s.d.) times less active (IC50 of 5.2 ± 1.2 μM).Differences in the biological actions of the enantiomers of cetiedil indicate that a more extensive study could be rewarding in relation to the use of the enantiomers both in therapeutics and in the study of K+ channels.
    Journal of Pharmacy and Pharmacology. 04/2011; 48(8):851 - 859.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    ChemInform 12/2010; 26(51).
  • C Robin Ganellin
    [Show abstract] [Hide abstract]
    ABSTRACT: Sir James Black, Nobel laureate (1988), became interested in the role of histamine in gastric acid secretion in the early 1950s. In 1964, he joined the pharmaceutical company Smith Kline and French Laboratories at their English subsidiary to seek a new type of antagonist that would block those actions of histamine that were not blocked by mepyramine. No such compound was known and working with medicinal chemists it took four years to discover a lead compound. Further work provided the compound burimamide, which was used to define histamine H(2) receptors in 1972 for the first time, and to verify the action in human volunteers. Subsequent work led to the drug metiamide, which was withdrawn during early clinical trials. This was replaced by cimetidine, which was launched in 1977, as the first histamine H(2)-receptor antagonist and which revolutionized the treatment of peptic ulcer disease. The characterisation of a second type of histamine receptor revitalised interest in histamine and led to many later studies on the role of histamine in inflammation.
    Agents and Actions 10/2010; 60(1):103-10. · 1.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    ChemInform 06/2010; 32(26).
  • [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    ChemInform 06/2010; 31(24).
  • [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    ChemInform 05/2010; 28(20).
  • [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    ChemInform 04/2010; 29(17).
  • [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    ChemInform 01/2010; 29(21).
  • G. SORBA, W. TERTIUK, C. R. GANELLIN
    [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    ChemInform 01/2010; 27(4).
  • [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    ChemInform 01/2010; 27(3).
  • [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    ChemInform 01/2010; 31(34).
  • ChemInform 01/2010; 30(13).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Drug-discovery projects frequently employ structure-based information through protein modeling and ligand docking, and there is a plethora of reports relating successful use of them in virtual screening. Hit/lead optimization, which represents the next step and the longest for the medicinal chemist, is very rarely considered. This is not surprising because lead optimization is a much more complex task. Here, a homology model of the histamine H(3) receptor was built and tested for its ability to discriminate ligands above a defined threshold of affinity. In addition, drug safety is also evaluated during lead optimization, and "antitargets" are studied. So, we have used the same benchmarking procedure with the HERG channel and CYP2D6 enzyme, for which a minimal affinity is strongly desired. For targets and antitargets, we report here an accuracy as high as at least 70%, for ligands being classified above or below the chosen threshold. Such a good result is beyond what could have been predicted, especially, since our test conditions were particularly stringent. First, we measured the accuracy by means of AUC of ROC plots, i. e. considering both false positive and false negatives. Second, we used as datasets extensive chemical libraries (nearly a thousand ligands for H(3)). All molecules considered were true H(3) receptor ligands with moderate to high affinity (from microM to nM range). Third, the database is issued from concrete SAR (Bioprojet H(3) BF2.649 library) and is not simply constituted by few active ligands buried in a chemical catalogue.
    Archiv der Pharmazie 10/2008; 341(10):610-23. · 1.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Closely related structural analogues of prazosin have been synthesised and tested for inhibition and activation of Transport-P in order to identify the structural features of the prazosin molecule that appear to be necessary for activation of Transport-P. So far, all the compounds tested are less active than prazosin. It is shown that the structure of prazosin appears to be very specific for the activation. Only quinazolines have been found to activate, and the presence of the 6,7-dimethoxy and 4-amino groups appears to be critically important.
    Bioorganic & medicinal chemistry 07/2008; 16(15):7254-63. · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PXR, pregnane X receptor, in its activated state, is a validated target for controlling certain drug-drug interactions in humans. In this context, there is a paucity of inhibitors directed toward activated PXR. Using prior observations with ketoconazole as a PXR inhibitor, the target compound 3 was synthesized from (s)-glycidol with overall 56% yield. (+)-Glycidol was reacted with 4-bromophenol and potassium carbonate in DMF to yield the ring opened compound 6. This was then heated to reflux in benzene along with 2', 4'-difluoroacetophenone and catalytic amount of para-toluene sulfonic acid to yield 8. The resultant acetal 8 was then functionalized using Palladium chemistry to yield the target compound 3. The activity of the compound was compared with ketoconazole and UCL2158H. However, in contrast with ketoconazole (IC(50) approximately 0.020 microM; approximately 100% inhibition), 3 has negligible effects on inhibition of microsomal CYP450 (maximum approximately 20% inhibition) at concentrations >40 microM. In vitro, micromolar concentration of ketoconazole is toxic to passaged human cell lines, while 3 does not exhibit cytotoxicity up to concentrations approximately 100 microM (viability >85%). This is the first demonstration of a chemical analog of a PXR inhibitor that retains activity against activated PXR. Furthermore, in contrast with ketoconazole, 3 is less toxic in human cell lines and has negligible CYP450 activity.
    Bioorganic & medicinal chemistry letters 07/2008; 18(14):3974-7. · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The synthesis and pharmacological testing of a series of non-peptidic blockers of the SK(Ca) (SK-3) channel is described. Target compounds were designed to mimic the spatial relationships of selected key residues in the energy-minimised structure of the octadecapeptide apamin, which are a highly potent blocker of this channel. Structures consist of a central unit, either a fumaric acid or an aromatic ring, to which are attached two alkylguanidine or two to four alkylaminoquinoline substituents. Potency was tested by the ability to inhibit the SK(Ca) channel-mediated after-hyperpolarization (AHP) in cultured rat sympathetic neurones. It was found that bis-aminoquinoline derivatives are significantly more potent as channel blockers than are the corresponding guanidines. This adds to the earlier evidence that delocalisation of positive charge through the more extensive aminoquinolinium ring system is important for effective channel binding. It was also found that an increase in activity can be gained by the addition of a third aminoquinoline residue to give non-quaternized amines which have submicromolar potencies (IC(50)=0.13-0.36 microM). Extension to four aminoquinoline residues increased the potency to IC(50)=93 nM.
    Bioorganic & Medicinal Chemistry 09/2007; 15(16):5457-79. · 2.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Histamine H3 receptor inverse agonists are known to enhance the activity of histaminergic neurons in brain and thereby promote vigilance and cognition. 1-{3-[3-(4-Chlorophenyl)propoxy]propyl}piperidine, hydrochloride (BF2.649) is a novel, potent, and selective nonimidazole inverse agonist at the recombinant human H3 receptor. On the stimulation of guanosine 5'-O-(3-[35S]thio)triphosphate binding to this receptor, BF2.649 behaved as a competitive antagonist with a Ki value of 0.16 nM and as an inverse agonist with an EC50 value of 1.5 nM and an intrinsic activity approximately 50% higher than that of ciproxifan. Its in vitro potency was approximately 6 times lower at the rodent receptor. In mice, the oral bioavailability coefficient, i.e., the ratio of plasma areas under the curve after oral and i.v. administrations, respectively, was 84%. BF2.649 dose dependently enhanced tele-methylhistamine levels in mouse brain, an index of histaminergic neuron activity, with an ED50 value of 1.6 mg/kg p.o., a response that persisted after repeated administrations for 17 days. In rats, the drug enhanced dopamine and acetylcholine levels in microdialysates of the prefrontal cortex. In cats, it markedly enhanced wakefulness at the expense of sleep states and also enhanced fast cortical rhythms of the electroencephalogram, known to be associated with improved vigilance. On the two-trial object recognition test in mice, a promnesiant effect was shown regarding either scopolamine-induced or natural forgetting. These preclinical data suggest that BF2.649 is a valuable drug candidate to be developed in wakefulness or memory deficits and other cognitive disorders.
    Journal of Pharmacology and Experimental Therapeutics 02/2007; 320(1):365-75. · 3.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The slow afterhyperpolarization (sAHP) in hippocampal neurons has been implicated in learning and memory. However, its precise role in cell excitability and central nervous system function has not been explicitly tested for 2 reasons: 1) there are, at present, no selective inhibitors that effectively reduce the underlying current in vivo or in intact in vitro tissue preparations, and 2) although it is known that a small conductance K(+) channel that activates after a rise in [Ca(2+)](i) underlies the sAHP, the exact molecular identity remains unknown. We show that 3-(triphenylmethylaminomethyl)pyridine (UCL2077), a novel compound, suppressed the sAHP present in hippocampal neurons in culture (IC(50) = 0.5 microM) and in the slice preparation (IC(50) approximately 10 microM). UCL2077 was selective, having minimal effects on Ca(2+) channels, action potentials, input resistance and the medium afterhyperpolarization. UCL2077 also had little effect on heterologously expressed small conductance Ca(2+)-activated K(+) (SK) channels. Moreover, UCL2077 and apamin, a selective SK channel blocker, affected spike firing in hippocampal neurons in different ways. These results provide further evidence that SK channels are unlikely to underlie the sAHP. This study also demonstrates that UCL2077, the most potent, selective sAHP blocker described so far, is a useful pharmacological tool for exploring the role of sAHP channels in the regulation of cell excitability in intact tissue preparations and, potentially, in vivo.
    Molecular Pharmacology 12/2006; 70(5):1494-502. · 4.41 Impact Factor

Publication Stats

4k Citations
831.38 Total Impact Points

Institutions

  • 1990–2013
    • University College London
      • Department of Chemistry
      London, ENG, United Kingdom
    • Unité Inserm U1077
      Caen, Lower Normandy, France
  • 2010
    • Lawrence University
      Lawrence, Kansas, United States
  • 2005–2010
    • Goethe-Universität Frankfurt am Main
      • Institut für Pharmazeutische Chemie
      Frankfurt, Hesse, Germany
  • 2007
    • Bioprojet Biotech
      Sant-Gregor, Brittany, France
  • 2006
    • University of Hertfordshire
      • School of Life and Medical Sciences
      Hatfield, ENG, United Kingdom
  • 1999–2005
    • Freie Universität Berlin
      • Institute of Pharmacy
      Berlin, Land Berlin, Germany
  • 2004
    • University of Sunderland
      • Sunderland Pharmacy School
      Sunderland, ENG, United Kingdom
    • University of London
      Londinium, England, United Kingdom
  • 1988–2003
    • French Institute of Health and Medical Research
      Lutetia Parisorum, Île-de-France, France
  • 2000
    • Collegium Medicum of the Jagiellonian University
      Cracovia, Lesser Poland Voivodeship, Poland
  • 1994
    • University of Oxford
      Oxford, England, United Kingdom