Yuji Mishina

Concordia University–Ann Arbor, Ann Arbor, Michigan, United States

Are you Yuji Mishina?

Claim your profile

Publications (192)1177.98 Total impact

  • Kazuo Noda, Yuji Mishina, Yoshihiro Komatsu
    [Show abstract] [Hide abstract]
    ABSTRACT: Cleft palate is among the most common human birth defects. Submucous cleft palate (SMCP) is a subgroup of cleft palate, which may be as common as overt cleft palate. Despite the high frequency of SMCP in humans, only recently have several animal models of SMCP begun to provide insight into the mechanisms by which SMCP develops. In this study, we show that enhanced BMP signaling through constitutively active ACVR1 in palatal epithelium causes submucous cleft palate in mice. In these mutant mice, the fusion of both palatal mesenchyme in hard palate, and muscles in soft palate were hampered by epithelial tissue. During palatal fusion, enhanced SMAD-dependent BMP signaling impaired cell death and altered cell proliferation rate in medial edge epithelium (MEE), and resulted in MEE persistence. At the molecular level, downregulation of ΔNp63, which is crucial for normal palatal fusion, in MEE cells was impaired, leading to a reduction in caspase-3 activation. Our study provides a new insight into the etiology of SMCP caused by augmented BMP signaling. Copyright © 2015. Published by Elsevier Inc.
    Developmental Biology 06/2015; DOI:10.1016/j.ydbio.2015.06.014 · 3.64 Impact Factor
  • PLoS ONE 05/2015; 10(5):e0125731. DOI:10.1371/journal.pone.0125731 · 3.53 Impact Factor
  • Plastic and Reconstructive Surgery 05/2015; 135(5S Suppl):68-69. DOI:10.1097/01.prs.0000465540.43486.b6 · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone morphogenetic protein (BMP) signaling plays many roles in skull morphogenesis. We have previously reported that enhanced BMP signaling through the BMP type IA receptor (BMPR1A) in cranial neural crest cells causes craniosynostosis during postnatal development. Additionally, we observed that 55% of Bmpr1a mutant mice show neonatal lethality characterized by a distended gastrointestinal tract. Here, we show that severely affected mutants exhibit defective nasal cartilage, failure of fusion between the nasal septum and the secondary palate, and higher levels of phosphorylated SMAD1 and SMAD5 in the nasal tissue. TUNEL demonstrated an increase in apoptosis in both condensing mesenchymal tissues and cartilage of the nasal region in mutants. The levels of p53 (TRP53) tumor suppressor protein were also increased in the same tissue. Injection of pifithrin-α, a chemical inhibitor of p53, into pregnant mice prevented neonatal lethality while concomitantly reducing apoptosis in nasal cartilage primordia, suggesting that enhanced BMP signaling induces p53-mediated apoptosis in the nasal cartilage. The expression of Bax and caspase 3, downstream targets of p53, was increased in the mutants; however, the p53 expression level was unchanged. It has been reported that MDM2 interacts with p53 to promote degradation. We found that the amount of MDM2-p53 complex was decreased in all mutants, and the most severely affected mutants had the largest decrease. Our previous finding that the BMP signaling component SMAD1 prevents MDM2-mediated p53 degradation coupled with our new data indicate that augmented BMP signaling induces p53-mediated apoptosis by prevention of p53 degradation in developing nasal cartilage. Thus, an appropriate level of BMP signaling is required for proper craniofacial morphogenesis. © 2015. Published by The Company of Biologists Ltd.
    Development 03/2015; 142(7). DOI:10.1242/dev.118802 · 6.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BMP signaling mediated by ACVR1 plays a critical role for development of multiple structures including the cardiovascular and skeletal systems. While deficient ACVR1 signaling impairs normal embryonic development, hyperactive ACVR1 function (R206H in humans and Q207D mutation in mice, ca-ACVR1) results in formation of heterotopic ossification (HO). We developed a mouse line, which conditionally expresses ca-ACVR1 with Nfatc1-Cre(+) transgene. Mutant mice developed ectopic cartilage and bone at the distal joints of the extremities including the interphalangeal joints and hind limb ankles as early as P4 in the absence of trauma or exogenous bone morphogenetic protein (BMP) administration. Micro-CT showed that even at later time points (up to P40), cartilage and bone development persisted at the affected joints most prominently in the ankle. Interestingly, this phenotype was not present in areas of bone outside of the joints - tibia are normal in mutants and littermate controls away from the ankle. These findings demonstrate that this model may allow for further studies of heterotopic ossification, which does not require the use of stem cells, direct trauma or activation with exogenous Cre gene administration. Copyright © 2015. Published by Elsevier Inc.
    Developmental Biology 02/2015; 400(2). DOI:10.1016/j.ydbio.2015.02.011 · 3.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone morphogenetic proteins (BMPs) regulate multiple aspects of skeletal development in vertebrates. Although exogenously applied BMPs can induce chondrogenesis de novo, the role and mechanism of physiologic BMP signaling during precartilaginous mesenchymal condensation is not well understood. By deleting the type I BMP receptors or the transcription factor Smad4 in the limb bud mesenchyme, we find that loss of BMP-Smad signaling abolishes skeletal development due to a failure in mesenchymal condensation. In the absence of Smad4, expression of Sox9, an essential transcription factor for chondrogenesis, initiates normally in the proximal mesenchyme of the limb bud, but fails to maintain its level or expand to the more distal territory at the later stages. However, forced-expression of Sox9 does not restore cartilage formation in the Smad4-deficeint embryo. In vitro micromass cultures show that the Smad4-deficient cells fail to condense in a cell-autonomous manner, even though they express several cell adhesion molecules either normally or even at a higher level. Thus, BMP-Smad signaling critically controls mesenchymal condensation to initiate skeletal development likely through a Sox9-independent mechanism. Copyright © 2015. Published by Elsevier Inc.
    Developmental Biology 01/2015; 400(1). DOI:10.1016/j.ydbio.2015.01.022 · 3.64 Impact Factor
  • Article: Abstract P6
    Plastic &amp Reconstructive Surgery 01/2015; 135:1212. DOI:10.1097/01.prs.0000463326.38300.13 · 3.33 Impact Factor
  • Article: Abstract P6
    Plastic &amp Reconstructive Surgery 01/2015; 135(4):1212. DOI:10.1097/01.prs.0000463975.23324.4f · 3.33 Impact Factor
  • Li Wang, Yuji Mishina, Fei Liu
    [Show abstract] [Hide abstract]
    ABSTRACT: The Cre/loxP system has been widely used to generate tissue-specific gene knockout mice. Inducible (Tet-off) Osx-GFP::Cre (Osx-Cre) mouse line that targets osteoblasts is widely used in the bone research field. In this study, we investigated the effect of Osx-Cre on craniofacial bone development. We found that newborn Osx-Cre mice showed severe hypomineralization in parietal, frontal, and nasal bones as well as the coronal sutural area when compared to control mice. As the mice matured, the intramembranous bone hypomineralization phenotype became less severe. The major hypomineralization defect in parietal, frontal, and nasal bones had mostly disappeared by postnatal day 21, but the defect in sutural areas persisted. Importantly, Doxycycline treatment eliminated cranial bone defects at birth which indicates that Cre expression may be responsible for the phenotype. In addition, we showed that the primary calvarial osteoblasts isolated from neonatal Osx-Cre mice had comparable differentiation ability compared to their littermate controls. This study reinforces the idea that Cre-positive litter mates are indispensable controls in studies using conditional gene deletion.
    Calcified Tissue International 12/2014; 96(2). DOI:10.1007/s00223-014-9945-5 · 2.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transforming growth factor-beta3 (TGF-β3) plays a critical role in palatal epithelial cells by inducing palatal epithelial fusion, failure of which results in cleft palate, one of the most common birth defects in humans. Recent studies have shown that Smad-dependent and Smad-independent pathways work redundantly to transduce TGF-β3 signaling in palatal epithelial cells. However, detailed mechanisms by which this signaling is mediated still remain to be elucidated. Here we show that TGF-β activated kinase-1 (Tak1) and Smad4 interact genetically in palatal epithelial fusion. While simultaneous abrogation of both Tak1 and Smad4 in palatal epithelial cells resulted in characteristic defects in the anterior and posterior secondary palate, these phenotypes were less severe than those seen in the corresponding Tgfb3 mutants. Moreover, our results demonstrate that Trim33, a novel chromatin reader and regulator of TGF-β signaling, cooperates with Smad4 during palatogenesis. Unlike the epithelium-specific Smad4 mutants, epithelium-specific Tak1:Smad4- and Trim33:Smad4-double mutants display reduced expression of Mmp13 in palatal medial edge epithelial cells, suggesting that both of these redundant mechanisms are required for appropriate TGF-β signal transduction. Moreover, we show that inactivation of Tak1 in Trim33:Smad4 double conditional knockouts leads to the palatal phenotypes which are identical to those seen in epithelium-specific Tgfb3 mutants. To conclude, our data reveal added complexity in TGF-β signaling during palatogenesis and demonstrate that functionally redundant pathways involving Smad4, Tak1 and Trim33 regulate palatal epithelial fusion.
    Developmental Biology 12/2014; 398(2). DOI:10.1016/j.ydbio.2014.12.006 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Platelet-derived growth factors (PDGFs) play important roles in skeletal development and bone fracture healing, yet how PDGFs execute their functions remains incompletely understood. Here we show that PDGF-AA, but not -AB or -BB, could activate the BMP-Smad1/5/8 pathway in mesenchymal stem cells (MSCs), which requires BMPRIA as well as PDGFRα. PDGF-AA promotes MSC osteogenic differentiation through the BMP-Smad1/5/8-Runx2/Osx axis and MSC migration via the BMP-Smad1/5/8-Twist1/Atf4 axis. Mechanistic studies show that PDGF-AA activates BMP-Smad1/5/8 signaling by feedback down-regulating PDGFRα, which frees BMPRI and allows for BMPRI-BMPRII complex formation to activate smad1/5/8, using BMP molecules in the microenvironment. This study unravels a physical and functional interaction between PDGFRα and BMPRI, which plays an important role in MSC differentiation and migration, and establishes a link between PDGF-AA and BMPs pathways, two essential regulators of embryonic development and tissue homeostasis.
    PLoS ONE 12/2014; 9(12):e113785. DOI:10.1371/journal.pone.0113785 · 3.53 Impact Factor
  • Cancer Research 10/2014; 74(19 Supplement):LB-107-LB-107. DOI:10.1158/1538-7445.AM2014-LB-107 · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Access to readily available autogenous tissue that regenerates bone would greatly improve clinical care. We believe the osteogenic phenotype caused by mutations in ALK2 can be harnessed in adipose-derived stem cells (ASCs) to improve bone tissue engineering. We set out to demonstrate that ALK2 may serve as a novel target to (a) improve in vitro ASC osteogenic differentiation and (b) enhance in vivo bone regeneration and calvarial healing. Transgenic mice were designed using the Cre/lox system to express constitutively active ALK2 (caALK2) with ubiquitously inducible Cre expression after tamoxifen exposure. ASCs from caALK2+/- and caALK2-/- (control) mice were exposed to tamoxifen and assessed for pro-osteogenic gene expression, bone morphogenetic protein (BMP) signaling, and osteogenic differentiation. Next, ASCs collected from these transgenic mice were analyzed in vivo using a calvarial defect model and analyzed by micro-computed tomography (micro-CT) and histology. ASCs from caALK2+/- mice had increased BMP signaling as demonstrated by upregulation of pSmad 1/5. ASCs from caALK2+/- mice had enhanced bone signaling and osteogenic differentiation compared with caALK2-/- mice (n = 4, p < .05). Transcription of pro-osteogenic genes at day 7 was significantly higher in ASCs from caALK2-overexpressing mice (Alp, Runx2, Ocn, Opn) (n = 4, p < .05). Using micro-CT and histomorphometry, we found that bone formation was significantly higher in mice treated with caALK2-expressing ASCs in vivo. Using a novel transgenic mouse model, we show that expression of constitutively active ALK2 receptor results in significantly increased ASC osteogenic differentiation. Furthermore, we demonstrate that this increased ASC differentiation can be harnessed to improve calvarial healing.
    STEM CELLS TRANSLATIONAL MEDICINE 09/2014; DOI:10.5966/sctm.2014-0082 · 3.60 Impact Factor
  • Taylor Nicholas Snider, Yuji Mishina
    [Show abstract] [Hide abstract]
    ABSTRACT: This review provides an overview of the state and future directions of development and pathology in the craniofacial complex in the context of Cranial Neural Crest Cells (CNCC). CNCC are a multipotent cell population that is largely responsible for forming the vertebrate head. We focus on findings that have increased the knowledge of gene regulatory networks and molecular mechanisms governing CNCC migration and the participation of these cells in tissue formation. Pathology due to aberrant migration or cell death of CNCC, termed neurocristopathies, is discussed in addition to craniosynostoses. Finally, we discuss tissue engineering applications that take advantage of recent advancements in genome editing and the multipotent nature of CNCC. These applications have relevance to treating diseases due directly to the failure of CNCC, and also in restoring tissues lost due to a variety of reasons. Birth Defects Research (Part C), 2014. © 2014 Wiley Periodicals, Inc.
    Birth Defects Research Part C Embryo Today Reviews 09/2014; 102(3). DOI:10.1002/bdrc.21075 · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The importance of Bone Morphogenetic Proteins (BMPs) in the regulation of cell fate, differentiation and proliferation in the growth plate is well-known. However, in secondary cartilages (such as that in the temporomandibular joint) that grow by proliferation of prechondrocytes and differ in their pattern of growth, the role of BMPs is largely unexplored. To examine this question, we ablated Bmpr1a in the condylar cartilage of neonatal mice and assessed the consequences for mandibular condyle growth and organization at intervals over the ensuing 4 weeks. Bmpr1a deficiency caused significant chondrodysplasia and almost eliminated the chondrocytic phenotype in the TMJ. Expression of Sox9, collagen II, proteoglycan were all greatly reduced, and cell proliferation as detected by BrdU was almost non-existent in the knockout mice. Primary bone spongiosa formation was also disturbed and was accompanied by reduced Osterix expression. These findings strongly suggest that Bmpr1a is critical for the development and growth of the mandibular condyle via its effect on proliferation of prechondroblasts and chondrocyte differentiation.
    Connective Tissue Research 08/2014; 55(S1):73-78. DOI:10.3109/03008207.2014.923858 · 1.98 Impact Factor
  • Yuji Mishina, Taylor Nicholas Snider
    [Show abstract] [Hide abstract]
    ABSTRACT: Neural crest cells appear early during embryogenesis and give rise to many structures in the mature adult. In particular, a specific population of neural crest cells migrates to and populates developing cranial tissues. The ensuing differentiation of these cells via individually complex and often intersecting signaling pathways is indispensible to growth and development of the craniofacial complex. Much research has been devoted to this area of development with particular emphasis on cell signaling events required for physiologic development. Understanding such mechanisms will allow researchers to investigate ways in which they can be exploited in order to treat a multitude of diseases affecting the craniofacial complex. Knowing how these multipotent cells are driven towards distinct fates could, in due course, allow patients to receive regenerative therapies for tissues lost to a variety of pathologies. In order to realize this goal, nucleotide sequencing advances allowing snapshots of entire genomes and exomes are being utilized to identify molecular entities associated with disease states. Once identified, these entities can be validated for biological significance with other methods. A crucial next step is the integration of knowledge gleaned from observations in disease states with normal physiology to generate an explanatory model for craniofacial development. This review seeks to provide a current view of the landscape on cell signaling and fate determination of the neural crest and to provide possible avenues of approach for future research.
    Experimental Cell Research 07/2014; 325(2). DOI:10.1016/j.yexcr.2014.01.019 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblast growth factors (FGFs) and their receptors (FGFRs) play significant roles in vertebrate organogenesis and morphogenesis. FGFR3 is a negative regulator of chondrogenesis and multiple mutations with constitutive activity of FGFR3 result in achondroplasia, one of the most common dwarfisms in humans, but the molecular mechanism remains elusive. In this study, we found that chondrocyte-specific deletion of BMP type I receptor a (Bmpr1a) rescued the bone overgrowth phenotype observed in Fgfr3 deficient mice by reducing chondrocyte differentiation. Consistently, using in vitro chondrogenic differentiation assay system, we demonstrated that FGFR3 inhibited BMPR1a-mediated chondrogenic differentiation. Furthermore, we showed that FGFR3 hyper-activation resulted in impaired BMP signaling in chondrocytes of mouse growth plates. We also found that FGFR3 inhibited BMP-2- or constitutively activated BMPR1-induced phosphorylation of Smads through a mechanism independent of its tyrosine kinase activity. We found that FGFR3 facilitate BMPR1a to degradation through Smurf1-mediated ubiquitination pathway. We demonstrated that down-regulation of BMP signaling by BMPR1 inhibitor dorsomorphin led to the retardation of chondrogenic differentiation, which mimicks the effect of FGF-2 on chondrocytes and BMP-2 treatment partially rescued the retarded growth of cultured bone rudiments from thanatophoric dysplasia type II mice. Our findings reveal that FGFR3 promotes the degradation of BMPR1a, which plays an important role in the pathogenesis of FGFR3-related skeletal dysplasia.
    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 07/2014; 1843(7). DOI:10.1016/j.bbamcr.2014.03.011 · 5.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The molecular mechanisms of endothelial dysfunction and vascular calcification have been considered independently and potential links are currently unknown in chronic kidney disease (CKD). Bone morphogenetic protein (BMP) receptor signaling mediates calcification of atherosclerotic plaques. Here we tested whether BMP receptor signaling contributes to endothelial dysfunction, as well as to osteogenic differentiation of vascular smooth muscle cells (VSMCs), in a model of short-term CKD. In C57BL/6 mice, subtotal nephrectomy activated BMP receptor and increased phosphatase-and-tensin homolog (PTEN) protein in the endothelial cells and medial VSMCs without vascular remodeling in the aorta. In the endothelial cells, PTEN induction led to inhibition of the Akt-endothelial nitric oxide synthase (eNOS) pathway and endothelial dysfunction. In VSMCs, the PTEN increase induced early osteogenic differentiation. CKD-induced inhibition of eNOS phosphorylation and the resultant endothelial dysfunction were inhibited in mice with endothelial cell-specific PTEN ablation. Knockout of the BMP type I receptor abolished endothelial dysfunction, the inhibition of eNOS phosphorylation, and VSMC osteogenic differentiation in mice with CKD. A small molecule inhibitor of BMP type I receptor, LDN-193189, prevented endothelial dysfunction and osteogenic differentiation in CKD mice. Thus, BMP receptor activation is a mechanism for endothelial dysfunction in addition to vascular osteogenic differentiation in a short-term CKD model. PTEN may be key in linking BMP receptor activation and endothelial dysfunction in CKD.Kidney International advance online publication, 25 June 2014; doi:10.1038/ki.2014.223.
    Kidney International 06/2014; 87(1). DOI:10.1038/ki.2014.223 · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BMP signaling plays an essential role in second heart field-derived heart and arterial trunk development, including myocardial differentiation, right ventricular growth, and interventricular, outflow tract and aortico-pulmonary septation. It is mediated by a number of different BMP ligands, and receptors, many of which are present simultaneously. The mechanisms by which they regulate morphogenetic events and degree of redundancy amongst them have still to be elucidated. We therefore assessed the role of BMP Type I receptor AcvR1 in anterior second heart field-derived cell development, and compared it with that of BmpR1a. By removing Acvr1 using the driver Mef2c[AHF]-Cre, we show that AcvR1 plays an essential role in arterial pole morphogenesis, identifying defects in outflow tract wall and cushion morphology that preceded a spectrum of septation defects from double outlet right ventricle to common arterial trunk in mutants. Its absence caused dysregulation in gene expression important for myocardial differentiation (Isl1, Fgf8) and regional identity (Tbx2, Tbx3, Tbx20, Tgfb2). Although these defects resemble to some degree those in the equivalent Bmpr1a mutant, a novel gene knock-in model in which Bmpr1a was expressed in the Acvr1 locus only partially restored septation in Acvr1 mutants. These data show that both BmpR1a and AcvR1 are needed for normal heart development, in which they play some non-redundant roles, and refine our understanding of the genetic and morphogenetic processes underlying Bmp-mediated heart development important in human congenital heart disease.
    Developmental Biology 06/2014; 390(2). DOI:10.1016/j.ydbio.2014.03.008 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tankyrases (TNKS) play roles in Wnt signaling, telomere homeostasis and mitosis, offering attractive targets for anti-cancer treatment. Using unbiased combination screening in a large panel of cancer cell lines, we have identified a strong synergy between TNKS and MEK inhibitors in KRAS mutant cancer cells. Our study uncovers a novel function of TNKS in the relief of a feedback loop induced by MEK inhibition on FGFR2 signaling pathway. Moreover, dual inhibition of TNKS and MEK leads to more robust apoptosis and anti-tumor activity both in vitro and in vivo than effects observed by previously reported MEK inhibitor combinations. Altogether, our results show how a novel combination of TNKS and MEK inhibitors can be highly effective in targeting KRAS mutant cancers by suppressing a newly discovered resistance mechanism.
    Cancer Research 04/2014; 74(12). DOI:10.1158/0008-5472.CAN-14-0138-T · 9.28 Impact Factor

Publication Stats

11k Citations
1,177.98 Total Impact Points


  • 2010–2015
    • Concordia University–Ann Arbor
      Ann Arbor, Michigan, United States
  • 2008–2015
    • University of Michigan
      • • Department of Biologic and Materials Sciences
      • • School of Dentistry
      Ann Arbor, Michigan, United States
    • National Eye Institute
      Maryland, United States
    • Kumamoto University
      Kumamoto, Kumamoto, Japan
  • 2014
    • Novartis Institutes for BioMedical Research
      Cambridge, Massachusetts, United States
  • 2013
    • University of North Carolina at Charlotte
      • Department of Kinesiology
      Charlotte, NC, United States
  • 2012
    • Shanghai Jiao Tong University
      • Bio-X Institute
      Shanghai, Shanghai Shi, China
  • 2002–2011
    • National Institute of Environmental Health Sciences
      • Laboratory of Reproductive and Developmental Toxicology (LRDT)
      Durham, North Carolina, United States
  • 2006–2008
    • Research Triangle Park Laboratories, Inc.
      Raleigh, North Carolina, United States
  • 2002–2008
    • National Institutes of Health
      • Branch of Reproductive and Developmental Toxicology
      Maryland, United States
  • 1996–2004
    • University of Texas MD Anderson Cancer Center
      • Human and Molecular Genetics
      Houston, Texas, United States
  • 2000
    • Monash University (Australia)
      • Department of Anatomy and Developmental Biology
      Melbourne, Victoria, Australia
  • 1999
    • University of Houston
      Houston, Texas, United States