Phuong Thien Thuong

National Institute of Medicinal Materials, Hà Nội, Ha Nội, Vietnam

Are you Phuong Thien Thuong?

Claim your profile

Publications (58)103.58 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: To search for new chemotherapeutic agents to treat colorectal cancer, we isolated a number of natural ent-kaurane diterpenoids from the plant Croton tonkinensis. Among them, only CeKDs with the 15-oxo-16-ene moiety induced the apoptosis of colorectal cancer cell lines Caco-2 and LS180. The active CeKD induced the activation of ERK and JNK, but the inactive ones induced that of ERK, but not that of JNK. It thus appears that JNK seemed to play an important role in the apoptotic activity of the active compounds. The dual-specificity JNK kinase MKK4 was activated in both colorectal cancer cells treated with the active CeKD, but MKK7 was not activated. Further, the active CeKD, but not the inactive one, enhanced the generation of intracellular reactive oxygen species (ROS) in both cells. CeKD-induced cell apoptosis and ROS generation, as well as JNK activation, were inhibited by the antioxidant N-acetyl-L-cysteine. These findings suggest that ROS stimulated the phosphorylation of JNK mediated by MKK4 and played a critical role in CeKD-induced apoptosis in colorectal cancer cells.
    Anti-cancer agents in medicinal chemistry 01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Four lignans, meso-dihydroguaiaretic acid (DHGA), macelignan, fragransin A2 and nectandrin B, were isolated from the seeds of Myristica fragrans (Vietnamese nutmeg) and investigated for their cytotoxic activity against eight cancer cell lines. Of these, DHGA exhibited potent cytotoxicity against H358 with IC50 value of 10.1 μM. In addition, DHGA showed antitumor activity in allogeneic tumor-bearing mice model.
    Archives of Pharmacal Research 07/2013; · 1.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocellular carcinoma (HCC) is the most common type of liver cancer with high mortality worldwide. Traditional chemotherapy for HCC is not widely accepted by clinical practitioners because of its toxic side effects. Thus, there is a need to identify chemotherapeutic drugs against HCC. AMP-activated protein kinase (AMPK) is a biologic sensor for cellular energy status that acts a tumor suppressor and a potential cancer therapeutic target. The traditional Vietnamese medicinal plant Croton tonkinensis shows cytotoxicity in various cancer cells; however, its anticancer mechanism remains unclear. In this study, we determined whether the ent-kaurane diterpenoid ent-18-acetoxy-7β-hydroxy kaur-15-oxo-16-ene (CrT1) isolated from this plant plays a role as a chemotherapeutic drug targeting AMPK. CrT1 blocked proliferation in dose- and time-dependent manners in human hepatocellular carcinoma SK-HEP1 cells. CrT1 induced sub-G(1) arrest and caspase-dependent apoptosis. CrT1 activated caspase-3, -7, -8, -9, and poly(ADP-ribose) polymerase, and its effect was inhibited by z-VAD-fmk suppressing caspase-3 cleavage. CrT1 induced increases in p53 and Bax levels but decreased Bcl(2) levels. In addition, CrT1 resulted in increased translocation of cytochrome c into the cytoplasm. We showed that CrT1-activated AMPK activation was followed by modulating the mammalian target of rapamycin/p70S6K pathway and was inactivated by treating cells with compound C. Treatment with CrT1 and aminoimidazole carboxamide ribonucleotide (AICAR) synergistically activated AMPK. CrT1-induced AMPK activation regulated cell viability and apoptosis. These results suggest that CrT1 is a novel AMPK activator and that AMPK activation in SK-HEP1 cells is responsible for CrT1-induced anticancer activity including apoptosis.
    Biological & Pharmaceutical Bulletin 01/2013; 36(1):158-64. · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pristimerin is a naturally occurring triterpenoid that causes cytotoxicity in several cancer cell lines. However, the mechanism of action for the cytotoxic effect of pristimerin has not been unexplored. The purpose of this study was to investigate the effect of pristimerin on cytotoxicity using the epidermal growth factor receptor 2 (HER2)-positive SKBR3 human breast cancer cell line. Pristimerin inhibited proliferation in dose- and time-dependent manners in cells. We found it to be effective for suppressing HER2 protein and mRNA expression. Fatty acid synthase (FASN) expression and FASN activity were downregulated by pristimerin. Adding of exogenous palmitate, the end product of de novo fatty acid synthesis, reduced the proliferation activity of pristimerin. The changes in HER2 and FASN expression induced by pristimerin altered the levels of Akt and mitogen-activated protein kinase (MAPK) phosphorylation (Erk1/2, p38, and c-Jun N-terminal kinase (JNK)). Pristimerin lowered the levels of phosphorylated mammalian target of rapamycin (mTOR) and its downstream targets such as phosphoprotein 70 ribosomal protein S6 kinase and 4E binding protein1. Pristimerin inhibited migration and invasion of cells, and co-treatment with the mTOR inhibitor rapamycin additionally suppressed these activities. Pristimerin-induced apoptosis was evaluated using Western blotting for caspase-3, -8, -9, and poly (ADP-ribose) polymerase expression and flow cytometric analysis for propidium iodide labeling. These results suggest that pristimerin is a novel HER2-downregulated compound that is able to decrease fatty acid synthase and modulate the Akt, MAPK, and mTOR signaling pathways to influence metastasis and apoptosis. Pristimerin may be further evaluated as a chemotherapeutic agent for HER2-positive breast cancers.
    Biological & Pharmaceutical Bulletin 01/2013; 36(2):316-325. · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The emergence of the H1N1 swine flu pandemic has the possibility to develop the occurrence of disaster- or drug-resistant viruses by additional reassortments in novel influenza A virus. In the course of an anti-influenza screening program for natural products, 10 xanthone derivatives (1-10) were isolated by bioassay-guided fractionation from the EtOAc-soluble extract of Polygala karensium. Compounds 1, 3, 5, 7, and 9 with a hydroxy group at C-1 showed strong inhibitory effects on neuraminidases from various influenza viral strains, H1N1, H9N2, novel H1N1 (WT), and oseltamivir-resistant novel H1N1 (H274Y) expressed in 293T cells. In addition, these compounds reduced the cytopathic effect of H1N1 swine influenza virus in MDCK cells. Our results suggest that xanthones from P. karensium may be useful in the prevention and treatment of disease by influenza viruses.
    Bioorganic & medicinal chemistry letters 04/2012; 22(11):3688-92. · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: AMP-activated protein kinase (AMPK) is a sensor of cellular energy status found in all eukaryotes. Recent studies indicate that AMPK activation strongly suppresses cell proliferation in tumor cells, which requires high rates of protein synthesis and de novo fatty acid synthesis for their rapid growth. Pomolic acid (PA) has been previously described as being active in inhibiting the growth of cancer cells. In this study, we investigated PA activated AMPK, and this activity was related to proliferation and apoptosis in MCF7 breast cancer cells. PA inhibited cell proliferation and induced sub-G(1) arrest, elevating the mRNA levels of the apoptotic genes p53 and p21. PA activated caspase-3, -9, and poly(ADP-ribose) polymerase, and this effect was inhibited by z-VAD-fmk. AMPK activation was increased by treating cells with PA, inactivated by treating cells with a compound C, and co-treatment consisting of PA and aminoimidazole carboxamide ribonucleotide (AICAR) synergistically activated AMPK. These anti-cancer potentials of PA were accompanied by effects on de novo fatty acid synthesis as shown by the decreased expression of fatty acid synthase, and decreased acetyl-CoA carboxylase activation and incorporation of [(3)H]acetyl-CoA into fatty acids. In addition, PA inhibited key enzymes involved in protein synthesis such as mammalian target of rapamycin (mTOR), 70 kDa ribosomal protein S6 kinase (p70S6K), and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1). These results suggest that PA exerts anti-cancer properties through the modulation of AMPK pathways and its value as an anti-cancer agent in breast cancer therapy.
    Biological & Pharmaceutical Bulletin 01/2012; 35(1):105-10. · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer is the most common malignant tumor in women these days accounting for approximately 24% of all cancer. During our screening program searching for cytotoxic materials from natural products, two new symmetric dimers of ent-kaurane diterpenoid, crotonkinensins C (1) and D (2), with connectivity at C-17 were isolated from the leaves of the Vietnamese endemic medicinal plant Croton tonkinensis. Their structures were determined on the basis of physicochemical and spectroscopic data. Compound 2 showed a potent cytotoxic activity against MCF-7, tamoxifen-resistant MCF-7 (MCF-7/TAMR), adriamycin-resistant MCF-7 (MCF-7/ADR), and MDA-MB-231 breast cancer cell lines.
    Bioorganic & medicinal chemistry letters 12/2011; 22(2):1122-4. · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoclasts play an important role in bone metabolism by resorbing the bone matrix. Thus, the compounds inhibiting osteoclasts can treat bone diseases such as osteoporosis. Among the 8 triterpenoids tested, we show that Ilekudinol B isolated from the plant Weigela subsessilis inhibits receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis from bone marrow-derived monocyte/macrophage cells in a dose-dependent manner, whereas it has no significant effect on osteoblast differentiation. Furthermore, Ilekudinol B attenuates the induction of nuclear factor of activated T cells (NFAT) c1 and osteoclast-associated receptor (OSCAR) expression. Our results indicate that Ilekudinol B has the potential to inhibit osteoclast formation by attenuating the signaling cascades associated with RANKL.
    Journal of Medicinal Plants Research. 04/2011; 5:903-909.
  • Nguyen Hai Nam, Phan Thi Phuong Dung, Phuong Thien Thuong
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of 2-phenylbenzothiazoles has been synthesized either by i) condensation of different aromatic aldehydes with 2-aminothiophenol or ii) condensation of N-(2-chlorophenyl)benzothioamides in KOH catalyzed by potassium fericyanide. The structures of synthesized compounds were confirmed by IR, MS, and 1H-NMR. The results of biological activity screening showed that six compounds including 2-phenylbenzothiazol (1a), 2-(2-chlorophenyl)benzothiazole (1b), 2- (3-chlorophenyl)benzothiazole (1c), 2-(4-hydroxyphenyl)benzothiazole (1e), 2-(4-dimethylaminophenyl)benzothiazole (1h) and 2-(2,3,4-trimethoxyphenyl)benzothiazole (1i) exhibited significant antibacterial activities; two compounds (1a, 1e) exhibited antifungal activities. Especially, 1e showed considerable antimicrobial activity against both A. niger and F. oxysporum. The brominated derivative of 1e displayed extended spectrum against all four bacterial strains tested with lower MIC values. In vitro cytotoxicity of the synthesized compounds was evaluated on three cancer cell lines (A549, HT1080, MCF7-MDR). The results indicated that three compounds (1e, 1g, 1i) exhibited significant cytotoxic activity on A549 and MCF7-ADR cells (IC50, 10.07-13.21μg/ml). Brominated and nitrated derivatives (1k, 1l, respectively) of 1e exhibited even more potent cytotoxicity.
    Medicinal Chemistry 02/2011; 7(2):127-134. · 1.37 Impact Factor
  • Nguyen Hai Nam, Phan Thi Phuong Dung, Phuong Thien Thuong
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of 2-phenylbenzothiazoles has been synthesized either by i) condensation of different aromatic aldehydes with 2-aminothiophenol or ii) condensation of N-(2-chlorophenyl)benzothioamides in KOH catalyzed by potassium fericyanide. The structures of synthesized compounds were confirmed by IR, MS, and (1)H-NMR. The results of biological activity screening showed that six compounds including 2-phenylbenzothiazol (1a), 2-(2-chlorophenyl)benzothiazole (1b), 2-(3-chlorophenyl)benzothiazole (1c), 2-(4-hydroxyphenyl)benzothiazole (1e), 2-(4-dimethylaminophenyl)benzothiazole (1h) and 2-(2,3,4-trimethoxyphenyl)benzothiazole (1i) exhibited significant antibacterial activities; two compounds (1a, 1e) exhibited antifungal activities. Especially, 1e showed considerable antimicrobial activity against both A. niger and F. oxysporum. The brominated derivative of 1e displayed extended spectrum against all four bacterial strains tested with lower MIC values. In vitro cytotoxicity of the synthesized compounds was evaluated on three cancer cell lines (A549, HT1080, MCF7-MDR). The results indicated that three compounds (1e, 1g, 1i) exhibited significant cytotoxic activity on A549 and MCF7-ADR cells (IC(50), 10.07-13.21 μg/ml). Brominated and nitrated derivatives (1k, 1l, respectively) of 1e exhibited even more potent cytotoxicity.
    Medicinal chemistry (Shāriqah (United Arab Emirates)) 01/2011; 7(2):127-34. · 1.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Corosolic acid is one of the triterpenoids present in the leaves of Weigela subsessilis. The antidiabetic activity of corosolic acid has been reported previously, but to date, the anticancer effects on gastric cancer have been poorly studied. In this study, corosolic acid showed growth inhibition on SNU-601 human gastric cancer cells, with an IC₅₀ value of 16.9 ± 2.9 μM. Corosolic acid also triggered the activation of caspase-3 and poly (ADP-ribose) polymerase, while it was recovered by Z-VAD-FMK. Moreover, the cell growth/apoptosis activities of corosolic acid were regulated by the AMP-activated protein kinase-mammalian target of rapamycin (AMPK-mTOR) signals. These results showed that corosolic acid-mediated AMPK activation leads to inhibition of mTOR, thus providing a possible mechanism of action of corosolic acid in the inhibition of cancer cell growth and the induction of apoptosis.
    Phytotherapy Research 12/2010; 24(12):1857-61. · 2.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During the screening effort to discover new types of protein tyrosine phosphatase 1B (PTP1B) inhibitors, it was found that a MeOH extract of the leaves and stems of Weigela subsessilis (Caprifoliaceae) inhibited the enzyme activity. By means of an in vitro bioassay-guided fractionation on the MeOH extract, two 24-norursane triterpenes, ilekudinol A (1) and ilekudinol B (2), were isolated as active metabolites. Compounds 1 and 2 inhibited PTP1B with IC(50) values of 29.1 ± 2.8 and 5.3 ± 0.5 μM, respectively. Kinetic studies suggest that both 1 and 2 are non-competitive inhibitors of PTP1B. The findings indicate that the free carboxyl group at C-28 in this type of triterpenes plays a critical role in the inhibition of PTP1B.
    Phytotherapy Research 11/2010; 24(11):1716-9. · 2.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of benzothiazole derivatives including N-(benzo[d]thiazol-2-yl)cyclohexanecarboxamides (2a-g) and N-(benzo[d]thiazol-2-yl)cyclohexancarbothioamides (3b-d) have been synthesized and evaluated for cytotoxic and antimicrobial activities. Two compounds including N-(6-ethoxybenzo[d]thiazol-2-yl)cyclohexanecarboxamide (2c) and N-(6-ethoxybenzo[d]thiazol-2-yl)cyclohexanecarbothiamide (3c) demonstrated significant cytotoxicity against three cancer cell lines (A549, MCF7-MDR and HT1080) while most of compounds exhibited moderate inhibitory effects on the growth of Staphyllococcus aureus and some other fungi.
    Medicinal chemistry (Shāriqah (United Arab Emirates)) 05/2010; 6(3):159-64. · 1.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Silent information regulator two ortholog 1 (SIRT1) is a member of the sirtuin deacetylase family of enzymes that removes acetyl groups from the lysine residues in histones and other proteins. It has been suggested that SIRT1 inhibitors might be beneficial in the treatment of cancer and neurodegenerative diseases. Bioassay-guided fractionation of the MeOH extract of the leaves of CROTON TONKINENSIS resulted in the isolation of a new ENT-kaurane diterpenoid (1) along with 11 known compounds (2- 12). The structure of the new compound 1 was determined to be ENT-11 alpha-acetoxy-7 beta-hydroxykaur-16-en-15-one based on spectroscopic analyses. Compounds 3, 4, 6- 9, 11, and 12 exhibited SIRT1 inhibitory activity in an IN VITRO assay, with IC (50) values ranging from 16.08 +/- 0.11 to 44.34 +/- 2.32 microM. This is the first report showing the potential of ENT-kaurane diterpenoids as a new class of natural SIRT1 inhibitors.
    Planta Medica 02/2010; 76(10):1011-4. · 2.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Overexpression/amplification of human epidermal growth factor receptor (HER)2/neu (erbB-2) oncogene plays a causal role in carcinogenesis and correlates with a poor clinical prognosis. However, little is known about HER2 in gastric cancer. In this study, we explored the pharmacological activities of natural triterpenoid corosolic acid (CRA) in HER2 signaling and its role in gastric cancer development and progression. In this study, CRA dramatically inhibited HER2 expression in a dose- and time-dependent manner, effectively inhibited cell proliferation, and induced G(0)/G(1) arrest through the induction of p27(kip1) and cyclin D(1) down-regulation. CRA exposure enhanced apoptotic cell death, as confirmed by caspase-3 and poly (ADP-ribose) polymerase cleavage activities. CRA inhibited signaling pathways downstream of HER2, including phospho-proteins such as Akt and Erk. In addition, CRA combined with adriamycin and 5-fluorouracil enhanced this growth inhibition, but not with docetaxel and paclitaxel. These findings demonstrate that CRA suppresses HER2 expression, which in turn promotes cell cycle arrest and apoptotic cell death of gastric cancer cells, providing a rationale for future clinical trials of CRA in the treatment of HER2-positive gastric cancers.
    Biological & Pharmaceutical Bulletin 01/2010; 33(6):931-7. · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    ChemInform 01/2010; 41(13).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bioassay-guided fractionation of the EtOAc extract of the stem bark of Erythrina abyssinica (Leguminosae) resulted in the isolation of three new (1-3), along with 12 known (4-15) pterocarpan derivatives. Their chemical structures were determined by physicochemical and spectroscopic data analysis (IR, UV, [alpha](D), CD, 1D and 2D NMR, and MS data). All the isolates were evaluated for their inhibitory effects on protein tyrosine phosphatase-1B (PTP1B), as well as their growth inhibition on MCF7, tamoxifen-resistant MCF7 (MCF7/TAMR), adriamycin-resistant MCF7 (MCF7/ADR) and MDA-MB-231 breast cancer cell lines. Compounds which exhibited PTP1B inhibitory activity (IC(50) values ranging from 4.2+/-0.2 to 19.3+/-0.3 microM) showed strong cytotoxic activity (IC(50) values from 5.6+/-0.7 to 28.0+/-0.2 microM). Our data suggested that pterocarpans could be considered as new anticancer materials by PTP1B inhibition.
    Bioorganic & medicinal chemistry letters 12/2009; 19(23):6745-9. · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There are multiple lines of evidence that persimmon extract and its constituents have potent antitumor activity against human cancer cells. However, the molecular mechanisms of 24-hydroxyursolic acid, a triterpenoid found in persimmon, on antitumor activities are not yet understood. Here, we demonstrate that 24-hydroxyursolic acid inhibited cell proliferation, strongly activated AMP-activated protein kinase (AMPK) and mediated critical anticancer effects by inhibition of cyclooxygenase (COX-2) expression in HT-29 cells. In addition, 24-hydroxyursolic acid induced cellular apoptosis by activation of poly(ADP-ribose) polymerase (PARP), caspase-3, and phosphorylation of p53 at Ser15. It also strongly induced DNA fragmentation in HT-29 cells and thereby significantly inhibited colony formation of HT-29 cells in soft agar. In addition, 24-hydroxyursolic acid blocked the EGF-induced ERKs phosphorylation and led to the inhibition of AP-1 activity and cell transformation in JB6 CL41 cells. Collectively, these findings are the first to reveal a molecular basis for the anticarcinogenic action of 24-hydroxyursolic acid and might account for the reported chemopreventive and chemotherapic effects of persimmon extracts.
    Planta Medica 12/2009; 76(7):689-93. · 2.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Atherosclerosis is main cause of arteriosclerosis. The pivotal role of low-density lipoprotein (LDL) oxidation in atherogenesis suggests antioxidants may help prevent cardiovascular disease. Fraxinus rhynchophylla DENCE (Oleaceae) is a traditional medicinal plant from East Asia. During the course of characterizing potential drug candidates from natural products, we isolated two major coumarins, esculetin and fraxetin and found that fraxetin has dual-antioxidative functions. Low concentrations (1-5 microM) of fraxetin potently inhibited LDL oxidation induced by metal and free radicals. Moreover, treatment of vascular smooth muscle cells (VSMCs) with higher concentrations (above 30 microM) of fraxetin significantly increased the protein level of heme oxygenase-1 (HO-1), a key enzyme that inhibits vascular proliferation and atherosclerosis. Subcellular fractionation and reporter gene analysis using an antioxidant response element (ARE) construct revealed that fraxetin increased the level of nuclear factor (NF)-E2-related factor 2 (Nrf2) and reporter activity, and these were associated with the induction of antioxidant enzymes, such as HO-1 and glutathione S-transferase-alpha. In conclusion, fraxetin has direct protective properties against LDL oxidation at lower concentrations, and higher concentrations of fraxetin induce antioxidant enzymes via Nrf2/ARE activation. These effects suggest potential anti-atherosclerosis effects of Fraxinus rhynchophylla D.
    Biological & Pharmaceutical Bulletin 10/2009; 32(9):1527-32. · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bioassay-guided fractionation of the MeOH extract of the stem bark of Erythrina lysistemon Hutch. resulted in isolation of pterocarpans (1-3), named erylysins A-C, along with nine known pterocarpans (4-12). Their structures were determined to be 3''-hydroxy-2',2'-dimethylpyrano[6',5':3,4]-2'',2''-dimethyldihydropyrano[6'',5'':9,10]pterocarpan (1), furano[5',4':3,4]-9-hydroxy-10-prenylpterocarpan (2), and 8-formyl-3,9-dihydroxy-4,10-diprenylpterocarpan (3), based on spectroscopic analyses. All the isolates, with the exception of 3, 6, and 11, strongly inhibited protein tyrosine phosphatase 1B (PTP1B) activity in an in vitro assay, with IC(50) values ranging from 1.01+/-0.3 to 18.1+/-0.9 microg/mL. This is the first report showing the potential of prenylated pterocarpans as a class of natural PTP1B inhibitors.
    Phytochemistry 10/2009; 70(17-18):2053-7. · 3.35 Impact Factor

Publication Stats

432 Citations
103.58 Total Impact Points

Institutions

  • 2007–2013
    • National Institute of Medicinal Materials
      Hà Nội, Ha Nội, Vietnam
  • 2007–2012
    • Chosun University
      • College of Pharmacy
      Goyang, Gyeonggi, South Korea
  • 2011
    • Hanoi University of Pharmacy
      Hà Nội, Ha Nội, Vietnam
  • 2005–2010
    • Chungnam National University
      • College of Pharmacy
      Daiden, Daejeon, South Korea
  • 2009
    • University of Yaoundé II
      Jaúnde, Centre Region, Cameroon
  • 2007–2009
    • Korea Research Institute of Bioscience and Biotechnology KRIBB
      • Chemical Biology Research Center
      Anzan, Gyeonggi Province, South Korea
  • 2006–2008
    • Catholic University of Daegu
      • College of Pharmacy
      Hayang, North Gyeongsang, South Korea