Guoling Tian

NYU Langone Medical Center, New York City, NY, United States

Are you Guoling Tian?

Claim your profile

Publications (23)264.99 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The genetic causes of malformations of cortical development (MCD) remain largely unknown. Here we report the discovery of multiple pathogenic missense mutations in TUBG1, DYNC1H1 and KIF2A, as well as a single germline mosaic mutation in KIF5C, in subjects with MCD. We found a frequent recurrence of mutations in DYNC1H1, implying that this gene is a major locus for unexplained MCD. We further show that the mutations in KIF5C, KIF2A and DYNC1H1 affect ATP hydrolysis, productive protein folding and microtubule binding, respectively. In addition, we show that suppression of mouse Tubg1 expression in vivo interferes with proper neuronal migration, whereas expression of altered γ-tubulin proteins in Saccharomyces cerevisiae disrupts normal microtubule behavior. Our data reinforce the importance of centrosomal and microtubule-related proteins in cortical development and strongly suggest that microtubule-dependent mitotic and postmitotic processes are major contributors to the pathogenesis of MCD.
    Nature Genetics 04/2013; · 29.65 Impact Factor
  • Guoling Tian, Nicholas J Cowan
    [Show abstract] [Hide abstract]
    ABSTRACT: The tubulin heterodimer consists of one α- and one β-tubulin polypeptide. Neither protein can partition to the native state or assemble into polymerization competent heterodimers without the concerted action of a series of chaperone proteins including five tubulin-specific chaperones (TBCs) termed TBCA-TBCE. TBCA and TBCB bind to and stabilize newly synthesized quasi-native β- and α-tubulin polypeptides, respectively, following their generation via multiple rounds of ATP-dependent interaction with the cytosolic chaperonin. There is free exchange of β-tubulin between TBCA and TBCD, and of α-tubulin between TBCB and TBCE, resulting in the formation of TBCD/β and TBCE/α, respectively. The latter two complexes interact, forming a supercomplex (TBCE/α/TBCD/β). Discharge of the native α/β heterodimer occurs via interaction of the supercomplex with TBCC, which results in the triggering of TBC-bound β-tubulin (E-site) GTP hydrolysis. This reaction acts as a switch for disassembly of the supercomplex and the release of E-site GDP-bound heterodimer, which becomes polymerization competent following spontaneous exchange with GTP. The tubulin-specific chaperones thus function together as a tubulin assembly machine, marrying the α- and β-tubulin subunits into a tightly associated heterodimer. The existence of this evolutionarily conserved pathway explains why it has never proved possible to isolate α- or β-tubulin as stable independent entities in the absence of their cognate partners, and implies that each exists and is maintained in the heterodimer in a nonminimal energy state. Here, we describe methods for the purification of recombinant TBCs as biologically active proteins following their expression in a variety of host/vector systems.
    Methods in cell biology 01/2013; 115:155-71. · 1.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of the mammalian cortex requires the generation, migration, and differentiation of neurons. The vital role that the microtubule cytoskeleton plays in these cellular processes is reflected by the discovery that mutations in various tubulin isotypes cause different neurodevelopmental diseases, including lissencephaly (TUBA1A), polymicrogyria (TUBA1A, TUBB2B, TUBB3), and an ocular motility disorder (TUBB3). Here, we show that Tubb5 is expressed in neurogenic progenitors in the mouse and that its depletion in vivo perturbs the cell cycle of progenitors and alters the position of migrating neurons. We report the occurrence of three microcephalic patients with structural brain abnormalities harboring de novo mutations in TUBB5 (M299V, V353I, and E401K). These mutant proteins, which affect the chaperone-dependent assembly of tubulin heterodimers in different ways, disrupt neurogenic division and/or migration in vivo. Our results provide insight into the functional repertoire of the tubulin gene family, specifically implicating TUBB5 in embryonic neurogenesis and microcephaly.
    Cell Reports 12/2012; · 7.21 Impact Factor
  • Source
    Guoling Tian, Simi Thomas, Nicholas J Cowan
    [Show abstract] [Hide abstract]
    ABSTRACT: Assembly of the α/β tubulin heterodimer requires the participation of a series of chaperone proteins (TBCA-E) that function downstream of the cytosolic chaperonin (CCT) as a heterodimer assembly machine. TBCD and TBCE are also capable of acting in a reverse reaction in which they disrupt native heterodimers. Homologs of TBCA-E exist in all eukaryotes, and the amino acid sequences of α- and β-tubulin isotypes are rigidly conserved among vertebrates. However, the efficiency with which TBCD effects tubulin disruption in vivo depends on its origin: bovine (but not human) TBCD efficiently destroys tubulin and microtubules upon overexpression in cultured cells. Here we show that recombinant bovine TBCD is produced in HeLa cells as a stoichiometric cocomplex with β-tubulin, consistent with its behavior in vitro and in vivo. In contrast, expression of human TBCD using the same host/vector system results in the generation of TBCD that is not complexed with β-tubulin. We show that recombinant human TBCD functions indistinguishably from its nonrecombinant bovine counterpart in in vitro CCT-driven folding reactions, in tubulin disruption reactions, and in tubulin GTPase activating protein assays in which TBCD and TBCC stimulate GTP hydrolysis by β-tubulin at a heterodimer concentration far below that required for polymerization into microtubules. We conclude that bovine and human TBCD have functionally identical roles in de novo tubulin heterodimer assembly, and show that the inability of human TBCD to disrupt microtubule integrity upon overexpression in vivo can be overcome by siRNA-mediated suppression of expression of the TBCD regulator Arl2 (ADP ribosylation factor-like protein).
    Cytoskeleton 11/2010; 67(11):706-14. · 2.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malformations of cortical development are characteristic of a plethora of diseases that includes polymicrogyria, periventricular and subcortical heterotopia and lissencephaly. Mutations in TUBA1A and TUBB2B, each a member of the multigene families that encode alpha- and beta-tubulins, have recently been implicated in these diseases. Here we examine the defects that result from nine disease-causing mutations (I188L, I238V, P263T, L286F, V303G, L397P, R402C, 402H, S419L) in TUBA1A. We show that the expression of all the mutant proteins in vitro results in the generation of tubulin heterodimers in varying yield and that these can co-polymerize with microtubules in vitro. We identify several kinds of defects that result from these mutations. Among these are various defects in the chaperone-dependent pathway leading to de novo tubulin heterodimer formation. These include a defective interaction with the chaperone prefoldin, a reduced efficiency in the generation of productive folding intermediates as a result of inefficient interaction with the cytosolic chaperonin, CCT, and, in several cases, a failure to stably interact with TBCB, one of five tubulin-specific chaperones that act downstream of CCT in the tubulin heterodimer assembly pathway. Other defects include structural instability in vitro, diminished stability in vivo, a compromised ability to co-assemble with microtubules in vivo and a suppression of microtubule growth rate in the neurites (but not the soma) of cultured neurons. Our data are consistent with the notion that some mutations in TUBA1A result in tubulin deficit, whereas others reflect compromised interactions with one or more MAPs that are essential to proper neuronal migration.
    Human Molecular Genetics 09/2010; 19(18):3599-613. · 6.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polymicrogyria is a relatively common but poorly understood defect of cortical development characterized by numerous small gyri and a thick disorganized cortical plate lacking normal lamination. Here we report de novo mutations in a beta-tubulin gene, TUBB2B, in four individuals and a 27-gestational-week fetus with bilateral asymmetrical polymicrogyria. Neuropathological examination of the fetus revealed an absence of cortical lamination associated with the presence of ectopic neuronal cells in the white matter and in the leptomeningeal spaces due to breaches in the pial basement membrane. In utero RNAi-based inactivation demonstrates that TUBB2B is required for neuronal migration. We also show that two disease-associated mutations lead to impaired formation of tubulin heterodimers. These observations, together with previous data, show that disruption of microtubule-based processes underlies a large spectrum of neuronal migration disorders that includes not only lissencephaly and pachygyria, but also polymicrogyria malformations.
    Nature Genetics 06/2009; 41(6):746-52. · 29.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The agyria (lissencephaly)/pachygyria phenotypes are catastrophic developmental diseases characterized by abnormal folds on the surface of the brain and disorganized cortical layering. In addition to mutations in at least four genes--LIS1, DCX, ARX and RELN--mutations in a human alpha-tubulin gene, TUBA1A, have recently been identified that cause these diseases. Here, we show that one such mutation, R264C, leads to a diminished capacity of de novo tubulin heterodimer formation. We identify the mechanisms that contribute to this defect. First, there is a reduced efficiency whereby quasinative alpha-tubulin folding intermediates are generated via ATP-dependent interaction with the cytosolic chaperonin CCT. Second, there is a failure of CCT-generated folding intermediates to stably interact with TBCB, one of the five tubulin chaperones (TBCA-E) that participate in the pathway leading to the de novo assembly of the tubulin heterodimer. We describe the behavior of the R264C mutation in terms of its effect on the structural integrity of alpha-tubulin and its interaction with TBCB. In spite of its compromised folding efficiency, R264C molecules that do productively assemble into heterodimers are capable of copolymerizing into dynamic microtubules in vivo. The diminished production of TUBA1A tubulin in R264C individuals is consistent with haploinsufficiency as a cause of the disease phenotype.
    Molecular biology of the cell 04/2008; 19(3):1152-61. · 5.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of the mammalian brain is dependent on extensive neuronal migration. Mutations in mice and humans that affect neuronal migration result in abnormal lamination of brain structures with associated behavioral deficits. Here, we report the identification of a hyperactive N-ethyl-N-nitrosourea (ENU)-induced mouse mutant with abnormalities in the laminar architecture of the hippocampus and cortex, accompanied by impaired neuronal migration. We show that the causative mutation lies in the guanosine triphosphate (GTP) binding pocket of alpha-1 tubulin (Tuba1) and affects tubulin heterodimer formation. Phenotypic similarity with existing mouse models of lissencephaly led us to screen a cohort of patients with developmental brain anomalies. We identified two patients with de novo mutations in TUBA3, the human homolog of Tuba1. This study demonstrates the utility of ENU mutagenesis in the mouse as a means to discover the basis of human neurodevelopmental disorders.
    Cell 02/2007; 128(1):45-57. · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microtubules are indispensable dynamic structures that contribute to many essential biological functions. Assembly of the native alpha/beta tubulin heterodimer, the subunit that polymerizes to form microtubules, requires the participation of several molecular chaperones, namely prefoldin, the cytosolic chaperonin CCT, and a series of five tubulin-specific chaperones termed cofactors A-E (TBCA-E). Among these, TBCC, TBCD, and TBCE are essential in higher eukaryotes; they function together as a multimolecular machine that assembles quasinative CCT-generated alpha- and beta-tubulin polypeptides into new heterodimers. Deletion and truncation mutations in the gene encoding TBCE have been shown to cause the rare autosomal recessive syndrome known as HRD, a devastating disorder characterized by congenital hypoparathyroidism, mental retardation, facial dysmorphism, and extreme growth failure. Here we identify cryptic translational initiation at each of three out-of-frame AUG codons upstream of the genetic lesion as a unique mechanism that rescues a mutant HRD allele by producing a functional TBCE protein. Our data explain how afflicted individuals, who would otherwise lack the capacity to make functional TBCE, can survive and point to a limiting capacity to fold tubulin heterodimers de novo as a contributing factor to disease pathogenesis.
    Proceedings of the National Academy of Sciences 10/2006; 103(36):13491-6. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Revertants of a colcemid-resistant Chinese hamster ovary cell line with an altered (D45Y) beta-tubulin have allowed the identification of four cis-acting mutations (L187R, Y398C, a 12-amino acid in-frame deletion, and a C-terminal truncation) that act by destabilizing the mutant tubulin and preventing it from incorporating into microtubules. These unstable beta-tubulins fail to form heterodimers and are predominantly found in association with the chaperonin CCT, suggesting that they cannot undergo productive folding. In agreement with these in vivo observations, we show that the defective beta-tubulins do not stably interact with cofactors involved in the tubulin folding pathway and, hence, fail to exchange with beta-tubulin in purified alphabeta heterodimers. Treatment of cells with MG132 causes an accumulation of the aberrant tubulins, indicating that improperly folded beta-tubulin is degraded by the proteasome. Rapid degradation of the mutant tubulin does not elicit compensatory changes in wild-type tubulin synthesis or assembly. Instead, loss of beta-tubulin from the mutant allele causes a 30-40% decrease in cellular tubulin content with no obvious effect on cell growth or survival.
    Journal of Biological Chemistry 06/2006; 281(19):13628-35. · 4.60 Impact Factor
  • Article: Cofactor C
    Guoling Tian, Nicholas Cowan
    AfCS-Nature Molecule Pages 01/2006;
  • Article: Cofactor E
    Guoling Tian, Nicholas Cowan
    AfCS-Nature Molecule Pages 01/2006;
  • Article: Cofactor A
    Guoling Tian, Nicholas Cowan
    AfCS-Nature Molecule Pages 01/2006;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Factors that regulate the microtubule cytoskeleton are critical in determining cell behavior. Here we describe the function of a novel protein that we term E-like based on its sequence similarity to the tubulin-specific chaperone cofactor E. We find that upon overexpression, E-like depolymerizes microtubules by committing tubulin to proteosomal degradation. Our data suggest that this function is direct and is based on the ability of E-like to disrupt the tubulin heterodimer in vitro. Suppression of E-like expression results in an increase in the number of stable microtubules and a tight clustering of endocellular membranes around the microtubule-organizing center, while the properties of dynamic microtubules are unaffected. These observations define E-like as a novel regulator of tubulin stability, and provide a link between tubulin turnover and vesicle transport.
    Journal of Cell Science 04/2005; 118(Pt 6):1197-207. · 5.33 Impact Factor
  • Article: Cofactor D
    Guoling Tian, Nicholas Cowan
    AfCS-Nature Molecule Pages 01/2005;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vivo, many proteins must interact with molecular chaperones to attain their native conformation. In the case of tubulin, newly synthesized alpha- and beta-subunits are partially folded by cytosolic chaperonin, a double-toroidal ATPase with homologs in all kingdoms of life and in most cellular compartments. alpha- and beta-tubulin folding intermediates are then brought together by tubulin-specific chaperone proteins (named cofactors A-E) in a cofactor-containing supercomplex with GTPase activity. Here we show that tubulin subunit exchange can only occur by passage through this supercomplex, thus defining it as a dimer-making machine. We also show that hydrolysis of GTP by beta-tubulin in the supercomplex acts as a switch for the release of native tubulin heterodimer. In this folding reaction and in the related reaction of tubulin-folding cofactors with native tubulin, the cofactors behave as GTPase-activating proteins, stimulating the GTP-binding protein beta-tubulin to hydrolyze its GTP.
    Journal of Biological Chemistry 09/1999; 274(34):24054-8. · 4.60 Impact Factor
  • S A Lewis, G Tian, N J Cowan
    [Show abstract] [Hide abstract]
    ABSTRACT: The alpha-beta tubulin heterodimer is the subunit from which microtubules are assembled. The pathway leading to correctly folded alpha- and beta-tubulins is unusually complex: it involves cycles of ATP-dependent interaction of newly synthesized tubulin subunits with cytosolic chaperonin, resulting in the production of quasi-native folding intermediates, which must then be acted upon by additional protein cofactors. These cofactors form a supercomplex containing both alpha- and beta-tubulin polypeptides, from which native heterodimer is released in a GTP-dependent reaction. Here, we discuss the current state of our understanding of the function of cytosolic chaperonin and cofactors in tubulin folding.
    Trends in Cell Biology 01/1998; 7(12):479-84. · 12.31 Impact Factor
  • Trends in Cell Biology 12/1997; 7(12):479-484. · 12.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The production of native alpha/beta tubulin heterodimer in vitro depends on the action of cytosolic chaperonin and several protein cofactors. We previously showed that four such cofactors (termed A, C, D, and E) together with native tubulin act on beta-tubulin folding intermediates generated by the chaperonin to produce polymerizable tubulin heterodimers. However, this set of cofactors generates native heterodimers only very inefficiently from alpha-tubulin folding intermediates produced by the same chaperonin. Here we describe the isolation, characterization, and genetic analysis of a novel tubulin folding cofactor (cofactor B) that greatly enhances the efficiency of alpha-tubulin folding in vitro. This enabled an integrated study of alpha- and beta-tubulin folding: we find that the pathways leading to the formation of native alpha- and beta-tubulin converge in that the folding of the alpha subunit requires the participation of cofactor complexes containing the beta subunit and vice versa. We also show that sequestration of native alpha-or beta-tubulins by complex formation with cofactors results in the destabilization and decay of the remaining free subunit. These data demonstrate that tubulin folding cofactors function by placing and/or maintaining alpha-and beta-tubulin polypeptides in an activated conformational state required for the formation of native alpha/beta heterodimers, and imply that each subunit provides information necessary for the proper folding of the other.
    The Journal of Cell Biology 09/1997; 138(4):821-32. · 9.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We describe the complete beta-tubulin folding pathway. Folding intermediates produced via ATP-dependent interaction with cytosolic chaperonin undergo a sequence of interactions with four proteins (cofactors A, D, E, and C). The postchaperonin steps in the reaction cascade do not depend on ATP or GTP hydrolysis, although GTP plays a structural role in tubulin folding. Cofactors A and D function by capturing and stabilizing beta-tubulin in a quasi-native conformation. Cofactor E binds to the cofactor D-beta-tubulin complex; interaction with cofactor C then causes the release of beta-tubulin polypeptides that are committed to the native state. Sequence analysis identifies yeast homologs of cofactors D (cin1) and E (pac2), characterized by mutations that affect microtubule function.
    Cell 08/1996; 86(2):287-96. · 33.12 Impact Factor

Publication Stats

1k Citations
264.99 Total Impact Points

Institutions

  • 2010–2013
    • NYU Langone Medical Center
      • Department of Biochemistry and Molecular Pharmacology
      New York City, NY, United States
  • 2008
    • Université René Descartes - Paris 5
      Lutetia Parisorum, Île-de-France, France
  • 1995–2008
    • State University of New York Downstate Medical Center
      • Department of Biochemistry
      Brooklyn, NY, United States