Claudio Passananti

Sapienza University of Rome, Roma, Latium, Italy

Are you Claudio Passananti?

Claim your profile

Publications (57)302.9 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian target of rapamycin (mTOR) is a key protein kinase that regulates cell growth, metabolism, and autophagy to maintain cellular homeostasis. Its activity is inhibited by adverse conditions, including nutrient limitation, hypoxia, and DNA damage. In this study, we demonstrate that Che-1, a RNA polymerase II-binding protein activated by the DNA damage response, inhibits mTOR activity in response to stress conditions. We found that, under stress, Che-1 induces the expression of two important mTOR inhibitors, Redd1 and Deptor, and that this activity is required for sustaining stress-induced autophagy. Strikingly, Che-1 expression correlates with the progression of multiple myeloma and is required for cell growth and survival, a malignancy characterized by high autophagy response. © 2015 Regina Elena Cancer Institute.
    The EMBO Journal 03/2015; DOI:10.15252/embj.201489920
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since the discovery that long-term memory is dependent on protein synthesis, several transcription factors have been found to participate in the transcriptional activity needed for its consolidation. Among them, NF-kappa B is a constitutive transcription factor whose nuclear activity has proven to be necessary for the consolidation of inhibitory avoidance in mice. This transcription factor has a wide distribution in the nervous system, with a well reported presence in dendrites and synaptic terminals. Here we report changes in synaptosomal NF-kappa B localization and activity, during long-term memory consolidation. Activity comparison of synaptosomal and nuclear NF-kappa B, indicates different dynamics for both localizations. In this study we identify two pools of synaptosomal NF-kappa B, one obtained with the synaptoplasm (free fraction) and the second bound to the synaptosomal membranes. During the early steps of consolidation the first pool is activated, as the membrane associated transcription factor fraction increases and concomitantly the free fraction decreases. These results suggest that the activation of synaptic NF-kappa B and its translocation to membranes are part of the consolidation of long-term memory in mice. Copyright © 2015. Published by Elsevier Ltd.
    Neuroscience 02/2015; 291. DOI:10.1016/j.neuroscience.2015.01.063
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Che-1/AATF is an RNA polymerase II-binding protein that is involved in the regulation of gene transcription, which undergoes stabilization and accumulation in response to DNA damage. We have previously demonstrated that following apoptotic induction, Che-1 protein levels are downregulated through its interaction with the E3 ligase HDM2, which leads to Che-1 degradation by ubiquitylation. This interaction is mediated by Pin1, which determines a phosphorylation-dependent conformational change. Here we demonstrate that HIPK2, a proapoptotic kinase, is involved in Che-1 degradation. HIPK2 interacts with Che-1 and, upon genotoxic stress, phosphorylates it at specific residues. This event strongly increases HDM2/Che-1 interaction and degradation of Che-1 protein via ubiquitin-dependent proteasomal system. In agreement with these findings, we found that HIPK2 depletion strongly decreases Che-1 ubiquitylation and degradation. Notably, Che-1 overexpression strongly counteracts HIPK2-induced apoptosis. Our results establish Che-1 as a new HIPK2 target and confirm its important role in the cellular response to DNA damage.
    Cell Death & Disease 09/2014; 5(9):e1414. DOI:10.1038/cddis.2014.381
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over-expression of the dystrophin-related gene utrophin represents a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). The strategy is based on the ability of utrophin to functionally replace defective dystrophin. We developed the artificial zinc finger transcription factor ''Jazz" that up-regulates both the human and mouse utrophin promoter. We observed a significant recovery of muscle strength in dystrophic Jazz-transgenic mdx mice. Here we demonstrate the efficacy of an experimental gene therapy based on the systemic delivery of Jazz gene in mdx mice by adeno-associated virus (AAV). AAV serotype 8 was chosen on the basis of its high affinity for skeletal muscle. Muscle-specific expression of the therapeutic Jazz gene was enhanced by adding the muscle α-actin promoter to the AAV vector (mAAV). Injection of mAAV8-Jazz viral preparations into mdx mice resulted in muscle-specific Jazz expression coupled with up-regulation of the utrophin gene. We show a significant recovery from the dystrophic phenotype in mAAV8-Jazz treated mdx mice. Histological and physiological analysis revealed a reduction of fiber necrosis and inflammatory cell infiltration associated with functional recovery in muscle contractile force. The combination of ZF-ATF technology with the AAV delivery can open a new avenue to obtain a therapeutic strategy for treatment of DMD. J. Cell. Physiol. © 2014 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 09/2014; 229(9). DOI:10.1002/jcp.24567
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant up-regulation of NOTCH3 gene plays a critical role in cancer pathogenesis. However, the underlying mechanisms are still unknown. We tested here the hypothesis that aberrant epigenetic modifications in the NOTCH3 promoter region might account for its up-regulation in cancer cells. We compared DNA and histone methylation status of NOTCH3 promoter region in human normal blood cells and T cell Acute Lymphoblastic Leukaemia (T-ALL) cell lines, differentially expressing NOTCH3. We found that histone methylation, rather than DNA hypomethylation, contributes towards establishing an active chromatin status of NOTCH3 promoter in NOTCH3 overexpressing cancer cells. We discovered that the chromatin regulator protein BORIS/CTCFL plays an important role in regulating NOTCH3 gene expression. We observed that BORIS is present in T-ALL cell lines as well as in cell lines derived from several solid tumours overexpressing NOTCH3. Moreover, BORIS targets NOTCH3 promoter in cancer cells and it is able to induce and to maintain a permissive/active chromatin conformation. Importantly, the association between NOTCH3 overexpression and BORIS presence was confirmed in primary T-ALL samples from patients at the onset of the disease. Overall, our results provide novel insights into the determinants of NOTCH3 overexpression in cancer cells, by revealing a key role for BORIS as the main mediator of transcriptional deregulation of NOTCH3.
    Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 06/2014; DOI:10.1016/j.bbagrm.2014.06.017
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant up-regulation of NOTCH3 gene plays a critical role in cancer pathogenesis. However, the underlying mechanisms are still unknown. We tested here the hypothesis that aberrant epigenetic modifications in the NOTCH3 promoter region might account for its up-regulation in cancer cells. We compared DNA and histone methylation status of NOTCH3 promoter region in human normal blood cells and T cell Acute Lymphoblastic Leukaemia (T-ALL) cell lines, differentially expressing NOTCH3. We found that histone methylation, rather than DNA hypomethylation, contributes towards establishing an active chromatin status of NOTCH3 promoter in NOTCH3 overexpressing cancer cells. We discovered that the chromatin regulator protein BORIS/CTCFL plays an important role in regulating NOTCH3 gene expression. We observed that BORIS is present in T-ALL cell lines as well as in cell lines derived from several solid tumours overexpressing NOTCH3. Moreover, BORIS targets NOTCH3 promoter in cancer cells and it is able to induce and to maintain a permissive/active chromatin conformation. Importantly, the association between NOTCH3 overexpression and BORIS presence was confirmed in primary T-ALL samples from patients at the onset of the disease. Overall, our results provide novel insights into the determinants of NOTCH3 overexpression in cancer cells, by revealing a key role for BORIS as the main mediator of transcriptional deregulation of NOTCH3.
    Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To combat threats posed by DNA damage cells have evolved mechanisms, collectively termed DNA-damage response (DDR). These mechanisms detect DNA lesions, signal their presence and promote their repair. Centrosomes integrate G2/M checkpoint control and repair signals in response to genotoxic stress, acting as an efficient back-up mechanism when G2/M checkpoint function fails and mitosis begins in the presence of damaged DNA. Che-1 is a RNA polymerase II-binding protein involved in the regulation of gene transcription, induction of cell proliferation and DDR. Here we provide evidence that in addition to its nuclear localization Che-1 localizes at interphase centrosomes, where it accumulates following DNA damage. We show that Che-1 depletion generates supernumerary centrosomes, multinucleated cells and multipolar spindle formation. Notably, Che-1 inhibition abolishes the ability of Chk1 to bind pericentrin and to localize at centrosomes, which, in its turn, deregulates the activation of centrosomal cyclin B-Cdk1 and anticipates entry into mitosis. Our results reinforce the notion that Che-1 plays an important role in DDR, and that its contribution seems to be relevant for the control of cell division.
    Journal of Biological Chemistry 06/2013; 288(32). DOI:10.1074/jbc.M113.465302
  • [Show abstract] [Hide abstract]
    ABSTRACT: Memory consolidation requires gene expression regulation by transcription factors, which eventually may induce chromatin modifications as histone acetylation. This mechanism is regulated by histone acetylases and deacetylases. It is not yet clear whether memory consolidation always recruits histone acetylation or it is only engaged in more persistent memories. To address this question, we used different strength of training for novel object recognition task in mice. Only strong training induced a long-lasting memory and an increase in hippocampal histone H3 acetylation. Histone acetylase inhibition in the hippocampus during consolidation impaired memory persistence, whereas histone deacetylase inhibition caused weak memory to persist. Nuclear factor κB (NF-κB) transcription factor inhibition impaired memory persistence and, concomitantly, reduced the general level of H3 acetylation. Accordingly, we found an important increase in H3 acetylation at a specific NF-κB-regulated promoter region of the Camk2d gene, which was reversed by NF-kB inhibition. These results show for the first time that histone acetylation is a specific molecular signature of enduring memories.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 04/2013; 33(17):7603-7614. DOI:10.1523/JNEUROSCI.4181-12.2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Duchenne muscular dystrophy (DMD) is the most common X-linked muscle degenerative disease and it is due to the absence of the cytoskeletal protein dystrophin. Currently there is no effective treatment for DMD. Among the different strategies for achieving a functional recovery of the dystrophic muscle, the upregulation of the dystrophin-related gene utrophin is becoming more and more feasible. Results We have previously shown that the zinc finger-based artificial transcriptional factor “Jazz” corrects the dystrophic pathology in mdx mice by upregulating utrophin gene expression. Here we describe a novel artificial transcription factor, named “UtroUp”, engineered to further improve the DNA-binding specificity. UtroUp has been designed to recognise an extended DNA target sequence on both the human and mouse utrophin gene promoters. The UtroUp DNA-binding domain contains six zinc finger motifs in tandem, which is able to recognise an 18-base-pair DNA target sequence that statistically is present only once in the human genome. To achieve a higher transcriptional activation, we coupled the UtroUp DNA-binding domain with the innovative transcriptional activation domain, which was derived from the multivalent adaptor protein Che-1/AATF. We show that the artificial transcription factor UtroUp, due to its six zinc finger tandem motif, possesses a low dissociation constant that is consistent with a strong affinity/specificity toward its DNA-binding site. When expressed in mammalian cell lines, UtroUp promotes utrophin transcription and efficiently accesses active chromatin promoting accumulation of the acetylated form of histone H3 in the utrophin promoter locus. Conclusions This novel artificial molecule may represent an improved platform for the development of future applications in DMD treatment.
    BMC Molecular Biology 01/2013; 14(1):3. DOI:10.1186/1471-2199-14-3
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PARylation [poly(ADP-ribosyl)ation] is involved in the maintenance of genomic methylation patterns through its control of Dnmt1 [DNA (cytosine-5)-methyltransferase 1] activity. Our previous findings indicated that Ctcf (CCCTC-binding factor) may be an important player in key events whereby PARylation controls the unmethylated status of some CpG-rich regions. Ctcf is able to activate Parp1 [poly(ADP-ribose) polymerase 1], which ADP-ribosylates itself and, in turn, inhibits DNA methylation via non-covalent interaction between its ADP-ribose polymers and Dnmt1. By such a mechanism, Ctcf may preserve the epigenetic pattern at promoters of important housekeeping genes. The results of the present study showed Dnmt1 as a new protein partner of Ctcf. Moreover, we show that Ctcf forms a complex with Dnmt1 and PARylated Parp1 at specific Ctcf target sequences and that PARylation is responsible for the maintenance of the unmethylated status of some Ctcf-bound CpGs. We suggest a mechanism by which Parp1, tethered and activated at specific DNA target sites by Ctcf, preserves their methylation-free status.
    Biochemical Journal 01/2012; 441(2):645-52. DOI:10.1042/BJ20111417
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Poly(ADP-ribose) polymerase 1 (PARP-1) catalyzes a post-translational modification that plays a crucial role in coordinating the signalling cascade in response to stress stimuli. During the DNA damage response, phosphorylation by ataxia telangiectasia mutated (ATM) kinase and checkpoint kinase Chk2 induces the stabilization of Che-1 protein, which is critical for the maintenance of G2/M arrest. In this study we showed that poly(ADP-ribosyl)ation, beyond phosphorylation, is involved in the regulation of Che-1 stabilization following DNA damage. We demonstrated that Che-1 accumulation upon doxorubicin treatment is reduced after the inhibition of PARP activity in HCT116 cells and in PARP-1 knock-out or silenced cells. In accordance, impairment in Che-1 accumulation by PARP inhibition reduced Che-1 occupancy at p21 promoter and affected the expression of the corresponding gene. Epistasis experiments showed that the effect of poly(ADP-ribosyl)ation on Che-1 stabilization is independent from ATM kinase activity. Indeed we demonstrated that Che-1 protein co-immunoprecipitates with ADP-ribose polymers and that PARP-1 directly interacts with Che-1, promoting its modification in vitro and in vivo.
    DNA repair 02/2011; 10(4):380-9. DOI:10.1016/j.dnarep.2011.01.002
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here, we show that the eukaryotic translation elongation factor 1 gamma (eEF1γ) physically interacts with the RNA polymerase II (pol II) core subunit 3 (RPB3), both in isolation and in the context of the holo-enzyme. Importantly, eEF1γ has been recently shown to bind Vimentin mRNA. By chromatin immunoprecipitation experiments, we demonstrate, for the first time, that eEF1γ is also physically present on the genomic locus corresponding to the promoter region of human Vimentin gene. The eEF1γ depletion causes the Vimentin protein to be incorrectly compartmentalised and to severely compromise cellular shape and mitochondria localisation. We demonstrate that eEF1γ partially colocalises with the mitochondrial marker Tom20 and that eEF1γ depletion increases mitochondrial superoxide generation as well as the total levels of carbonylated proteins. Finally, we hypothesise that eEF1γ, in addition to its role in translation elongation complex, is involved in regulating Vimentin gene by contacting both pol II and the Vimentin promoter region and then shuttling/nursing the Vimentin mRNA from its gene locus to its appropriate cellular compartment for translation.
    PLoS ONE 12/2010; 5(12):e14481. DOI:10.1371/journal.pone.0014481
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Che-1 is a RNA polymerase II binding protein involved in the regulation of gene transcription and, in response to DNA damage, promotes p53 transcription. In this study, we investigated whether Che-1 regulates mutant p53 expression. We found that Che-1 is required for sustaining mutant p53 expression in several cancer cell lines, and that Che-1 depletion by siRNA induces apoptosis both in vitro and in vivo. Notably, loss of Che-1 activates DNA damage checkpoint response and induces transactivation of p73. Therefore, these findings underline the important role that Che-1 has in survival of cells expressing mutant p53.
    Cancer cell 08/2010; 18(2):122-34. DOI:10.1016/j.ccr.2010.05.027
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zinc finger (ZF) proteins belonging to the Cys2-His2 class provide a simple and versatile framework to design novel artificial transcription factors (ATFs) targeted to the desired genes. Our work is based on ZF ATFs engineered to up-regulate the expression level of the dystrophin-related gene utrophin in Duchenne muscular dystrophy (DMD). In particular, on the basis of the "recognition code" that defines specific rules between zinc finger primary structure and potential DNA-binding sites we engineered and selected a new family of artificial transcription factors, whose DNA-binding domain consists in a three zinc finger peptide called "Jazz." Jazz protein binds specifically the 9 bp DNA sequence (5(')-GCT-GCT-GCG-3(')) present in the promoter region of both the human and mouse utrophin gene. We generated a transgenic mouse expressing Jazz protein fused to the strong transcriptional activation domain VP16 and under the control of the muscle specific promoter of the myosin light chain gene. Vp16-Jazz mice display a strong up-regulation of the utrophin at both mRNA and protein levels. To our knowledge, this represents the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger-based transcription factor.
    Methods in molecular biology (Clifton, N.J.) 01/2010; 649:183-206. DOI:10.1007/978-1-60761-753-2_11
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The absence of the cytoskeletal protein dystrophin results in Duchenne muscular dystrophy (DMD). The utrophin protein is the best candidate for dystrophin replacement in DMD patients. To obtain therapeutic levels of utrophin expression in dystrophic muscle, we developed an alternative strategy based on the use of artificial zinc finger transcription factors (ZF ATFs). The ZF ATF 'Jazz' was recently engineered and tested in vivo by generating a transgenic mouse specifically expressing Jazz at the muscular level. To validate the ZF ATF technology for DMD treatment we generated a second mouse model by crossing Jazz-transgenic mice with dystrophin-deficient mdx mice. Here, we show that the artificial Jazz protein restores sarcolemmal integrity and prevents the development of the dystrophic disease in mdx mice. This exclusive animal model establishes the notion that utrophin-based therapy for DMD can be efficiently developed using ZF ATF technology and candidates Jazz as a novel therapeutic molecule for DMD therapy.
    Human Molecular Genetics 12/2009; 19(5):752-60. DOI:10.1093/hmg/ddp539
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant hypermethylation of CpG islands in housekeeping gene promoters and widespread genome hypomethylation are typical events occurring in cancer cells. The molecular mechanisms behind these cancer-related changes in DNA methylation patterns are not well understood. Two questions are particularly important: (i) how are CpG islands protected from methylation in normal cells, and how is this protection compromised in cancer cells, and (ii) how does the genome-wide demethylation in cancer cells occur. The latter question is especially intriguing since so far no DNA demethylase enzyme has been found. Our data show that the absence of ADP-ribose polymers (PARs), caused by ectopic over-expression of poly(ADP-ribose) glycohydrolase (PARG) in L929 mouse fibroblast cells leads to aberrant methylation of the CpG island in the promoter of the Dnmt1 gene, which in turn shuts down its transcription. The transcriptional silencing of Dnmt1 may be responsible for the widespread passive hypomethylation of genomic DNA which we detect on the example of pericentromeric repeat sequences. Chromatin immunoprecipitation results show that in normal cells the Dnmt1 promoter is occupied by poly(ADP-ribosyl)ated Parp1, suggesting that PARylated Parp1 plays a role in protecting the promoter from methylation. In conclusion, the genome methylation pattern following PARG over-expression mirrors the pattern characteristic of cancer cells, supporting our idea that the right balance between Parp/Parg activities maintains the DNA methylation patterns in normal cells. The finding that in normal cells Parp1 and ADP-ribose polymers localize on the Dnmt1 promoter raises the possibility that PARylated Parp1 marks those sequences in the genome that must remain unmethylated and protects them from methylation, thus playing a role in the epigenetic regulation of gene expression.
    PLoS ONE 02/2009; 4(3):e4717. DOI:10.1371/journal.pone.0004717
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our aim is to upregulate the expression level of the dystrophin related gene utrophin in Duchenne muscular dystrophy, thus complementing the lack of dystrophin functions. To this end, we have engineered synthetic zinc finger based transcription factors. We have previously shown that the artificial three-zinc finger protein named Jazz fused with the Vp16 activation domain, is able to bind utrophin promoter A and to increase the endogenous level of utrophin in transgenic mice. Here, we report on an innovative artificial protein, named CJ7, that consists of Jazz DNA binding domain fused to a novel activation domain derived from the regulatory multivalent adaptor protein Che-1/AATF. This transcriptional activation domain is 100 amino acids in size and it is very powerful as compared to the Vp16 activation domain. We show that CJ7 protein efficiently promotes transcription and accumulation of the acetylated form of histone H3 on the genomic utrophin promoter locus.
    Neuromuscular Disorders 02/2009; 19(2):158-62. DOI:10.1016/j.nmd.2008.11.005
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chimeric proteins obtained by the fusion of a G protein-coupled receptor (GPCR) sequence to the N-terminus of the G protein alpha-subunit have been extensively used to investigate several aspects of GPCR signalling. Although both the receptor and the G protein generally maintain a fully functional state in such polypeptides, original observations made using a chimera between the beta2-adrenergic receptor (beta2AR) and Galphas indicated that the fusion to the alpha-subunit resulted in a marked reduction of receptor desensitization and down-regulation. To further investigate this phenomenon, we have compared the rates of internalization and recycling between wild-type and Galphas-fused beta2AR. The rate of agonist-induced internalization, measured as the disappearance of cell surface immunofluorescence in HEK293 cells permanently expressing N-terminus tagged receptors, was reduced three-fold by receptor-G protein fusion. However, both fused and non-fused receptors translocated to the same endocytic compartment, as determined by dual-label confocal analysis of cells co-expressing both proteins and transferrin co-localization. Receptor recycling, determined as the reversion of surface immunofluorescence following the addition of antagonist to cells that were previously exposed to agonist, markedly differed between wild-type and fused receptors. While most of the internalized beta2AR returned rapidly to the plasma membrane, beta2AR-Galphas did not recycle, and the observed slow recovery for the fusion protein immunofluorescence was entirely accounted for by protein synthesis. The covalent linkage between beta2AR and Galphas does not appear to alter the initial endocytic translocation of the two proteins, although there is reduced efficiency. It does, however, completely disrupt the process of receptor and G protein recycling. We conclude that the physical separation between receptor and Galpha is not necessary for the transit to early endosomes, but is an essential requirement for the correct post-endocytic sorting and recycling of the two proteins.
    BMC Cell Biology 11/2008; 9:56. DOI:10.1186/1471-2121-9-56
  • [Show abstract] [Hide abstract]
    ABSTRACT: Che-1 is a nuclear protein involved in the regulation of gene transcription and cell proliferation. It has also been shown to localize to the cytoplasm of postmitotic neuronal cells, where it is able to interact with the microtubule-associated protein tau. Cyclin-dependent kinase 5 (Cdk5) is a postmitotic proline-directed serine/threonine kinase that hyperphosphorylates tau under pathological conditions. We observed that Che-1 overexpression induces Cdk5 expression both at the mRNA and protein levels. Furthermore, we show that Che-1 directly interacts with Cdk5 protein in vivo. Cdk5/Che-1 complex formation does not compete with Cdk5/p35 interaction, thus Che-1 is able to bind the active kinase complex. Finally, we demonstrated that Che-1 is itself a Cdk5 substrate.
    Neuroreport 04/2008; 19(5):531-5. DOI:10.1097/WNR.0b013e3282f85c1b
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: X-linked inhibitor of apoptosis protein (XIAP) is a member of the inhibitor of apoptosis proteins family that selectively binds and inhibits caspase-3, -7 and -9. As such, XIAP is an extremely potent suppressor of apoptosis and an attractive target for cancer treatment. Che-1 is an antiapoptotic agent involved in the control of gene transcription and cell proliferation. Recently, we showed that the checkpoint kinases ATM/ATR and checkpoint kinase 2 physically and functionally interact with Che-1 and promote its phosphorylation and accumulation in response to DNA damage. These Che-1 modifications induce transcription of p53, and Che-1 depletion strongly sensitizes tumor cells to anticancer drugs. Here we show that Che-1 activates XIAP expression in response to DNA damage. This effect is mediated by Che-1 phosphorylation and requires NF-kappaB. Notably, we found that XIAP expression is necessary for antiapoptotic activity of Che-1 and that in vivo downregulation of Che-1 by small interference RNA strongly enhanced the cytotoxicity of anticancer drugs.
    Cell Death and Differentiation 04/2008; 15(3):515-20. DOI:10.1038/sj.cdd.4402284

Publication Stats

837 Citations
302.90 Total Impact Points

Institutions

  • 1992–2015
    • Sapienza University of Rome
      • • Department of Molecular Medicine
      • • Department of Cellular Biotechnology and Hematology BCE
      Roma, Latium, Italy
  • 1999–2010
    • Istituto Regina Elena - Istituti Fisioterapici Ospitalieri
      Roma, Latium, Italy
  • 2009
    • Roche Institute of Molecular Biology
      Nutley, New Jersey, United States
  • 1984–2009
    • National Research Council
      • • Institute of Neurobiology and Molecular Medicine INMM
      • • Institute of Molecular Biology and Pathology IBPM
      Roma, Latium, Italy
  • 2007
    • Università degli Studi di Trieste
      Trst, Friuli Venezia Giulia, Italy
  • 2002–2007
    • Università degli Studi dell'Aquila
      • Department of Experimental Medicine
      Aquila, Abruzzo, Italy
  • 2003
    • INO - Istituto Nazionale di Ottica
      Florens, Tuscany, Italy