Carlos Davio

University of Buenos Aires, Buenos Aires, Buenos Aires F.D., Argentina

Are you Carlos Davio?

Claim your profile

Publications (67)251.44 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Histamine mediates numerous functions acting through its four receptor subtypes all belonging to the large family of seven transmembrane G-protein coupled receptors. In particular, histamine H2 receptor (H2R) is mainly involved in gastric acid production, becoming a classic pharmacological target to treat Zollinger-Ellison disease and gastric and duodenal ulcers. H2 ligands rank among the most widely prescribed and over the counter-sold drugs in the world. Recent evidence indicate that some H2R ligands display biased agonism, selecting and triggering some, but not all, of the signaling pathways associated to the H2R. The aim of the present work is to study whether famotidine, clinically widespread used ligand acting at H2R, exerts biased signaling. Our findings indicate that while famotidine acts as inverse agonist diminishing cAMP basal levels, it mimics the effects of histamine and the agonist amthamine concerning receptor desensitization and internalization. Moreover, the treatment of HEK293T transfected cells with any of the three ligands lead to a concentration dependent pERK increment. Similarly in AGS gastric epithelial cells, famotidine treatment led to both, the reduction in cAMP levels as well as the increment in ERK phosphorylation, suggesting that this behavior could have pharmacological relevant implications. Based on that, histidine decarboxylase expression was studied by quantitative PCR in AGS cells and its levels were increased by famotidine as well as by histamine and amthamine. In all cases, the positive regulation was impeded by the MEK inhibitor PD98059, indicating that biased signaling toward ERK1/2 pathway is the responsible of such enzyme regulation. These results support that ligand bias is not only a pharmacological curiosity but has physiological and pharmacological implications on cell metabolism.
    Frontiers in Pharmacology 03/2015; 6. DOI:10.3389/fphar.2015.00045
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported that atrial natriuretic factor (ANF) stimulates secretin-evoked cAMP efflux through multidrug resistance-associated protein 4 (MRP4) in the exocrine pancreas. Here we sought to establish in vivo whether this mechanism was involved in acute pancreatitis onset in the rat. Rats pretreated with or without probenecid (MRPs general inhibitor) were infused with secretin alone or with ANF. A set of these animals were given repetitive caerulein injections to induce acute pancreatitis. Plasma amylase and intrapancreatic trypsin activities were measured and histological examination of the pancreas performed. Secretin alone activated trypsinogen but induced no pancreatic histological changes. Blockade by probenecid in secretin-treated rats increased trypsin and also induced vacuolization, a hallmark of acute pancreatitis. ANF prevented the secretin response but in the absence of probenecid. In rats with acute pancreatitis, pre-treatment with secretin aggravated the disease but ANF prevented secretin-induced changes. Blockade of MRPs in rats with acute pancreatitis induced trypsinogen activation and larger cytoplasmic vacuoles as well as larger areas of necrosis and edema that were aggravated by secretin but not prevented by ANF. The temporal resolution of intracellular cAMP levels seems critical in the onset of acute pancreatitis since secretin-evoked cAMP in a context of MRPs inhibition makes the pancreas prone to injury in normal rats and aggravates the onset of acute pancreatitis. Present findings support a protective role for ANF mediated by cAMP extrusion through MRP4 and further suggest that the regulation of MRP4 by ANF would be relevant to maintain pancreatic acinar cell homeostasis.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cyclic AMP represents one of the most studied signaling molecules and its role in proliferation and differentiation processes has been well established. Intracellular cAMP levels are tightly regulated where the MRP4 transporter plays a major role. In the present study, we sought to establish whether cAMP modulated MRP4 expression in pancreatic adenocarcinoma cell lines. Quantitative PCR and western blot studies showed that cAMP-increasing agents enhanced MRP4 transcripts and protein levels in PANC-1 cells. Reporter luciferase experiments carried out in pancreatic AR42J cells showed that intracellular cAMP up-regulates MRP4 through an Epac2- and Rap1- mediated mechanism whereas extracellular cAMP reduced MRP4 promoter activity by a MEK/ERK-mediated pathway. Present results show that cAMP regulates MRP4 promoter activity, and further indicate that the balance between intracellular and extracellular cAMP levels determines MRP4 expression.
    PLoS ONE 01/2015; 10(3):e0120651. DOI:10.1371/journal.pone.0120651 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer is the most frequent malignancy in women. Several reports demonstrated that adrenergic receptors (ARs) are involved in breast cancer. Here we observed that epinephrine (Epi), an endogenous AR agonist, caused opposite effects in non-tumorigenic (MCF-10A and HBL-100) and tumor cells (MCF-7 and MDA-MB-231). Thus, Epi, in non-tumor breast cells, as well as isoproterenol (β-agonist), in all cell lines, maintained a benign phenotype, decreasing cell proliferation and migration, and stimulating cell adhesion. β-AR expression and cAMP levels were higher in MCF-10A than in MCF-7 cells. β2-AR knock-down caused a significant increase of cell proliferation and migration, and a decrease of cell adhesion both in basal and in Iso-stimulated conditions. Coincidently, β2-AR over-expression induced a significant decrease of cell proliferation and migration, and an increase of cell adhesion. Therefore, β2-AR is implied in cell phenotype and its agonists or antagonists could eventually complement cancer therapy.
    Oncotarget 10/2014; · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Less than a third of adults patients with acute myeloid leukemia (AML) are cured by current treatments, emphasizing the need for new approaches to therapy. We previously demonstrated that besides playing a role in drug-resistant leukemia cell lines, multidrug resistance protein 4 (MRP4/ABCC4) regulates leukemia cell proliferation and differentiation through the endogenous MRP4/ABCC4 substrate, cAMP. Here, we studied the role of MRP4/ABCC4 in tumor progression in a mouse xenograft model and in leukemic stem cells (LSCs) differentiation. We found a decrease in the mitotic index and an increase in the apoptotic index associated with the inhibition of tumor growth when mice were treated with rolipram (PDE4 inhibitor) and/or probenecid (MRPs inhibitor). Genetic silencing and pharmacologic inhibition of MRP4 reduced tumor growth. Furthermore, MRP4 knockdown induced cell cycle arrest and apoptosis in vivo. Interestingly, when LSC population was isolated, we observed that increased cAMP levels and MRP4/ABCC4 blockade resulted in LSCs differentiation. Taken together, our findings show that MRP4/ABCC4 has a relevant role in tumor growth and apoptosis and in the eradication of LSCs, providing the basis for a novel promising target in AML therapy.
    Oncotarget 09/2014; 5(19). · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 7TMR exists as conformational collections in which different conformations would lead to differential downstream behaviors such as receptor phosphorylation, G-protein activation and receptor internalization among others. In this context, a ligand may cause differential activation of some, but not all, of the signaling events, which are associated to a particular receptor, and it would lead to biased agonism. The aim of the present work is to study if histamine H2 receptor (H2R) ligands -described as inverse agonists because of their negative efficacy at modulating adenylyl cyclase- could display some positive efficacy concerning receptor desensitization, internalization or even signaling through an adenylyl cyclase independent pathway. Our present findings indicate that treatment with H2R inverse agonists leads to receptor internalization in HEK293T transfected cells, by a mechanism mediated by arrestin and dynamin but being independent of GRK2-mediated phosphorylation. On the other hand we prove that two of the H2R inverse agonists tested, ranitidine and tiotidine, also induce receptor desensitization. Finally, we show that these ligands are able to display positive efficacy towards ERK1/2 pathway by a mechanism that involves Gβγ and PI3K mediated signaling in both HEK293T transfected cells and human gastric adenocarcinoma cells. These results point to the aspect of pluridimensional efficacy of H2R as a phenomenon that could be extended to naïve cells, and challenge previous classification of pharmacologically relevant histaminergic ligands.
    Biochemical Journal 01/2014; DOI:10.1042/BJ20131226 · 4.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sperm capacitation has been largely associated with an increase in cAMP, although its relevance in the underlying mechanisms of this maturation process remains elusive. Increasing evidence shows that the extrusion of cAMP through multidrug resistance associated protein 4 (MRP4), regulates cell homeostasis not only in physiological but also in pathophysiological situations and studies from our laboratory strongly support this assumption. In the present work we sought to establish the role of cAMP efflux in the regulation of sperm capacitation. Sperm capacitation was performed in vitro by exposing bovine spermatozoa to bicarbonate 40 and 70 mM; cAMP; probenecid (a MRPs general inhibitor) and an adenosine type 1 receptor (A1 adenosine receptor) selective antagonist (DPCPX). Capacitation was assessed by chlortetracycline assay and lysophosphatidylcholine-induced acrosome reaction assessed by PSA-FITC staining. Intracellular and extracellular cAMP was measured by radiobinding the regulatory subunit of PKA under the same experimental conditions. MRP4 was detected by Western blot and immunohistochemistry assays. Results showed that the inhibition of soluble adenylyl cyclase significantly inhibited bicarbonate-induced sperm capacitation. Furthermore, in the presence of 40 and 70 mM bicarbonate bovine spermatozoa synthesized and extruded cAMP. Interestingly, in the absence of IBMX (a PDEs inhibitor) cAMP efflux still operated in sperm cells, suggesting that cAMP extrusion would be a physiological process in the spermatozoa complementary to the action of PDE. Blockade of MRPs by probenecid abolished the efflux of the cyclic nucleotide resulting not only in the accumulation of intracellular cAMP but also in the inhibition of bicarbonate-induced sperm capacitation. The effect of probenecid was abolished by exposing sperm cells to cAMP. The high affinity efflux pump for cAMP, MRP4 was expressed in bovine spermatozoa and localized to the mid-piece of the tail as previously reported for soluble adenylyl cyclase and A1 adenosine receptor. Additionally, blockade of A1 adenosine receptor abolished not only bicarbonate-induced sperm capacitation but also that stimulated by cAMP. Present findings strongly support that cAMP efflux, presumably through MRP4, and the activation of A1 adenosine receptor regulate some events associated to bicarbonate-induced sperm capacitation, and further suggest a paracrine and/or autocrine role for cAMP.
    Molecular Human Reproduction 08/2013; DOI:10.1093/molehr/gat053 · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The accurate characterization of the molecular mechanisms involved in the action of receptor ligands is important for their appropriate therapeutic use and safety. It is well established that ligands acting at the histamine system currently used in the clinic exert their actions by specifically antagonizing G-protein coupled H1 and H2 receptors. However, most of these ligands, assumed to be neutral antagonists, behave as inverse agonists displaying negative efficacy in experimental systems. This suggests that their therapeutic actions may involve not only receptor blockade, but also the decrease of spontaneous receptor activity. The mechanisms whereby inverse agonists achieve negative efficacy are diverse. Theoretical models predict at least three possible mechanisms, all of which are supported by experimental observations. Depending on the mechanism of action engaged, the inverse agonist could interfere specifically with signaling events triggered by unrelated receptors. This possibility opens up new venues to explain the therapeutic actions of inverse agonists of the histamine receptor and perhaps new therapeutic applications.
    European journal of pharmacology 07/2013; DOI:10.1016/j.ejphar.2013.06.027 · 2.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of tumor-selective drugs with low systemic toxicity has always been a major challenge in cancer treatment. Our group previously identified the 7,8-dihydroxy-4-methylcoumarin (DHMC) as a potential chemotherapeutic agent due to its potent, selective anti-proliferative and apoptosis-inducing effects on several cancer cell lines over peripheral blood mononuclear cells. However, there are still no published reports that can explain such selectivity of action. Herein, we addressed this question by using the U-937 promonocytic leukemia cell line, which can be forced to differentiate into a monocyte-like phenotype in vitro. U-937 cells differentiation is dependent on the nuclear expression of p21(Cip1/WAF1), a protein that is absent in immature U-937 cells but present in both the nucleus and the cytoplasm of normal DHMC-resistant monocytes. Considering that induction of differentiation rendered U-937 cells resistant to DHMC, we evaluated the possible causal role of cytoplasmic p21(Cip1/WAF1) in the onset of such resistance by employing U-937 cells stably transfected with a ZnCl2-inducible p21(Cip1/WAF1) variant lacking the nuclear localization signal (U-937/CB6-ΔNLS-p21 cells). Expression of cytoplasmic p21(Cip1/WAF1) did not induce differentiation of the cells but turned them resistant to DHMC through inhibition of JNK, a crucial mediator of DHMC-induced apoptosis in U-937 cells. Sub-acute toxicity evaluation of DHMC in Balb/c mice indicated that DHMC administered intraperitoneally at doses up to 100mg/kg induced no systemic damage. Collectively, our results explain for the first time the selective cytotoxicity of DHMC for tumor cells over normal monocytes, and encourage further in vivo studies on this compound as potential anti-leukemic agent.
    Biochemical pharmacology 05/2013; DOI:10.1016/j.bcp.2013.04.021 · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypotonicity triggered in human hepatoma cells (Huh-7) the release of ATP and cell swelling, followed by volume regulatory decrease (RVD). We analyzed how the interaction between those processes modulates cell volume. Cells exposed to hypotonic medium swelled 1.5 times their basal volume. Swelling was followed by 41% RVD40 (extent of RVD after 40 min of maximum), whereas the concentration of extracellular ATP (ATPe) increased 10 times to a maximum value at 15 min. Exogenous apyrase (which removes di- and trinucleotides) did not alter RVD, whereas exogenous Na(+)-K(+) ATPase (which converts ATP to ADP in the extracellular medium) enhanced RVD40 by 2.6 times, suggesting that hypotonic treatment alone produced a basal RVD, whereas extracellular ADP activated RVD to achieve complete volume regulation (i.e., RVD40≈100%). Under hypotonicity, addition of 2MetSADP (ADP analog) increased RVD to the same extent as exposure to Na(+)-K(+) ATPase and the same analog did not stimulate RVD when co-incubated with MRS2211, a blocker of ADP receptor P2Y13. RT-PCR and Western blot analysis confirmed the presence of P2Y13. Cells exhibited significant ectoATPase activity, which according to RT-PCR analysis can be assigned to ENTPDase2. Both carbenoxolone, a blocker of conductive ATP release, and Brefeldin A, an inhibitor of exocytosis, were able to partially decrease ATPe accumulation, pointing to the presence of at least two mechanisms for ATP release. Thus, in Huh-7 cells, hypotonic treatment triggered the release of ATP. Conversion of ATPe to ADPe by ENTPDase 2 activity facilitates the accumulated ADPe to activate P2Y13 receptors, which mediate complete RVD.
    AJP Cell Physiology 03/2013; DOI:10.1152/ajpcell.00254.2012 · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: G-protein coupled receptor (GPCR) signaling does not result from sequential activation of a linear pathway of proteins/enzymes, but rather from complex interactions of multiple, branched signaling routes, ie, signaling networks. In this work we present an exhaustive study of the crosstalk between H1 and H2 histamine receptors (H1R and H2R) in U937 cells and CHO transfected cells. By desensitization assays we demonstrated the existence of a cross-desensitization between both receptors independent of protein kinase A (PKA) or C (PKC). H1R agonist stimulation inhibited cell proliferation and induced apoptosis in U937 cells following treatment for 48h. H1R-induced antiproliferative and apoptotic response was inhibited by an H2R agonist suggesting that the crosstalk between both receptors modifies their function. Binding and confocal microscopy studies revealed cointernalization of both receptors upon treatment with the agonists. In order to evaluate potential heterodimerization of the receptors, sensitized emission FRET experiments were performed in HEK293T cells using H1R-CFP and H2R-YFP. To our knowledge these findings may represent the first demonstration of agonist-induced heterodimerization of the H1R and H2R. In addition, we also show that the inhibition of the internalization process did not prevent receptor cross-desensitization which was mediated by GRK2. Our study provides new insights into the complex signaling network mediated by histamine and further knowledge for the rational use of its ligands.
    Molecular pharmacology 03/2013; 83(5). DOI:10.1124/mol.112.083394 · 4.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Seminal plasma is not just a carrier for spermatozoa. It contains high concentrations of cytokines, chemokines, and other biological compounds that are able to exert potent effects on the immune system of the receptive partner. Previous studies have shown that semen induces an acute inflammatory response at the female genital mucosa after coitus. Moreover, it induces regulatory mechanisms that allow the fetus (a semiallograft) to grow and develop in the uterus. The mechanisms underlying these regulatory mechanisms, however, are poorly understood. In this study, we show that seminal plasma redirects the differentiation of human dendritic cells (DCs) toward a regulatory profile. DCs differentiated from human monocytes in the presence of high dilutions of seminal plasma did not express CD1a but showed high levels of CD14. They were unable to develop a fully mature phenotype in response to LPS, TNF-α, CD40L, Pam2CSK4 (TLR2/6 agonist), or Pam3CSK4 (TLR1/2 agonist). Upon activation, they produced low amounts of the inflammatory cytokines IL-12p70, IL-1β, TNF-α, and IL-6, but expressed a high ability to produce IL-10 and TGF-β. Inhibition of the PG receptors E-prostanoid receptors 2 and 4 prevented the tolerogenic effect induced by seminal plasma on the phenotype and function of DCs, suggesting that E-series PGs play a major role. By promoting a tolerogenic profile in DCs, seminal plasma might favor fertility, but might also compromise the capacity of the receptive partner to mount an effective immune response against sexually transmitted pathogens.
    The Journal of Immunology 10/2012; 189(10). DOI:10.4049/jimmunol.1202089 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies indicated the need of at least one phenolic hydroxyl group in the coumarin core for induction of cytotoxicity in different cell lines. Herein, we present an exhaustive structure-activity relationship study including ortho-dihydroxycoumarins (o-DHC) derivatives, cinnamic acid derivatives (as open-chain coumarin analogues) and 1,2-pyrones (representative of the δ-lactone ring of the coumarin core), carried out to further identify the structural features of o-DHC required to induce leukemic cell differentiation and apoptosis in U-937 cells. Our results show for the first time that the δ-lactone ring positively influences the aforementioned biological effects, by conferring greater potency to compounds with an intact coumarin nucleus. Most tellingly, we reveal herein the crucial role of this molecular portion in determining the selective toxicity that o-DHC show for leukemic cells over normal blood cells. From a pharmacological perspective, our findings point out that o-DHC may be useful prototypes for the development of novel chemotherapeutic agents.
    Bioorganic & medicinal chemistry 08/2012; 20(18):5537-49. DOI:10.1016/j.bmc.2012.07.043 · 2.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The differentiation of myelin-forming Schwann cells (SC) is completed with the appearance of myelin proteins MBP and P(0) and a concomitant downregulation of markers GFAP and p75NTR, which are expressed by immature and adult non-myelin-forming SC. We have previously demonstrated that holotransferrin (hTf) can prevent SC dedifferentiation in culture (Salis et al., 2002), while apotransferrin (aTf) cannot. As a consequence, we used pure cultured SC and submitted them to serum deprivation in order to promote dedifferentiation and evaluate the prodifferentiating ability of ferric ammonium citrate (FAC) through the expression of MBP, P(0), p75NTR and c-myc. The levels of cAMP, CREB and p-CREB were also measured. Results show that Fe(3+), either in its free form or as hTf, can prevent the dedifferentiation promoted by serum withdrawal. Both FAC and hTf were proven to promote differentiation, probably through the increase in cAMP levels and CREB phosphorylation, as well as levels of reactive oxygen species. This effect was inhibited by deferroxamine (Dfx, an iron chelator), H9 (a cAMP-PKA antagonist) and N-acetylcysteine (NAC, a powerful antioxidant).
    Neurochemistry International 07/2012; 61(5):798-806. DOI:10.1016/j.neuint.2012.06.023 · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chemotherapeutics represent the main approach for the treatment of leukemia. However, the occurrence of adverse side effects and the complete lack of effectiveness in some cases make it necessary to develop new drugs. As part of our screening program to evaluate the potential chemotherapeutic effect of natural coumarins, we investigated the anti-leukemic activities of a series of six prenylated coumarins isolated from the stem bark of Toddalia asiatica (Rutaceae). Among these, 6-(3-methyl-2-butenyl)-5,7-dimethoxycoumarin (toddaculin) displayed the most potent cytotoxic and anti-proliferative effects in U-937 cells. To determine whether these effects resulted from induction of cell death or differentiation, we further evaluated the expression of several apoptosis and maturation markers. Interestingly, while toddaculin at 250 μM was able to induce apoptosis in U-937 cells, involving decreased phosphorylation levels of ERK and Akt, 50 μM toddaculin exerted differentiating effects, inducing both the capacity of U-937 cells to reduce NBT and the expression of differentiation markers CD88 and CD11b, but no change in p-Akt or p-ERK levels. Taken together, these findings indicate that toddaculin displays a dual effect as a cell differentiating agent and apoptosis inducer in U-937 cells, suggesting it may serve as a pharmacological prototype for the development of novel anti-leukemic agents.
    Phytomedicine: international journal of phytotherapy and phytopharmacology 04/2012; 19(8-9):737-46. DOI:10.1016/j.phymed.2012.03.008 · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Porphyrias are diseases caused by partial deficiencies of haem biosynthesis enzymes. Acute porphyrias are characterized by a neuropsychiatric syndrome with intermittent induction of hepatic ALAS1 (δ-aminolaevulinate synthase 1), the first and rate-limiting enzyme of the haem pathway. Acute porphyria attacks are usually treated by the administration of glucose; its effect is apparently related to its ability to inhibit ALAS1 by modulating insulin plasma levels. It has been shown that insulin blunts hepatocyte ALAS1 induction, by disrupting the interaction of FOXO1 (forkhead box O1) and PGC-1α (peroxisome-proliferator-activated receptor γ co-activator 1α). We evaluated the expression of ALAS1 in a murine model of diabetes and determined the effects of the insulinomimetic vanadate on the enzyme regulation to evaluate its potential for the treatment of acute porphyria attacks. Both ALAS1 mRNA and protein content were induced in diabetic animals, accompanied by decreased Akt phosphorylation and increased nuclear FOXO1, PGC-1α and FOXO1-PGC-1α complex levels. Vanadate reversed ALAS1 induction, with a concomitant PI3K (phosphoinositide 3-kinase)/Akt pathway activation and subsequent reduction of nuclear FOXO1, PGC-1α and FOXO1-PGC-1α complex levels. These findings support the notion that the FOXO1-PGC-1α complex is involved in the control of ALAS1 expression and suggest further that a vanadate-based therapy could be beneficial for the treatment of acute porphyria attacks.
    Biochemical Journal 11/2011; 442(2):303-10. DOI:10.1042/BJ20111005 · 4.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the search for alternative chemotherapeutic strategies against leukemia, various 1-indanone thiosemicarbazones, as well as eight novel platinum(II) and palladium(II) complexes, with the formula [MCl₂(HL)] and [M(HL)(L)]Cl, derived from two 1-indanone thiosemicarbazones were synthesized and tested for antiproliferative activity against the human leukemia U937 cell line. The crystal structure of [Pt(HL1)(L1)]Cl·2MeOH, where L1=1-indanone thiosemicarbazone, was solved by X-ray diffraction. Free thiosemicarbazone ligands showed no antiproliferative effect, but the corresponding platinum(II) and palladium(II) complexes inhibited cell proliferation and induced apoptosis. Platinum(II) complexes also displayed selective apoptotic activity in U937 cells but not in peripheral blood monocytes or the human hepatocellular carcinoma HepG2 cell line used to screen for potential hepatotoxicity. Present findings show that, in U937 cells, 1-indanone thiosemicarbazones coordinated to palladium(II) were more cytotoxic than those complexed with platinum(II), although the latter were found to be more selective for leukemic cells suggesting that they are promising compounds with potential therapeutic application against hematological malignancies.
    ChemMedChem 08/2011; 6(8):1485-94. DOI:10.1002/cmdc.201100060 · 3.05 Impact Factor
  • Cancer Research 07/2011; 71(8 Supplement):3262-3262. DOI:10.1158/1538-7445.AM2011-3262 · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is widely assumed that G protein-coupled receptor kinase 2 (GRK2)-mediated specific inhibition of G protein-coupled receptors (GPCRs) response involves GRK-mediated receptor phosphorylation followed by β-arrestin binding and subsequent uncoupling from the heterotrimeric G protein. It has recently become evident that GRK2-mediated GPCRs regulation also involves phosphorylation-independent mechanisms. In the present study we investigated whether the histamine H2 receptor (H2R), a Gα(s)-coupled GPCR known to be desensitized by GRK2, needs to be phosphorylated for its desensitization and/or internalization and resensitization. For this purpose we evaluated the effect of the phosphorylating-deficient GRK2K220R mutant on H2R signaling in U937, COS7, and HEK293T cells. We found that although this mutant functioned as dominant negative concerning receptor internalization and resensitization, it desensitized H2R signaling in the same degree as the GRK2 wild type. To identify the domains responsible for the kinase-independent receptor desensitization, we co-transfected the receptor with constructions encoding the GRK2 RGS-homology domain (RH) and the RH or the kinase domain fused to the pleckstrin-homology domain. Results demonstrated that the RH domain of GRK2 was sufficient to desensitize the H2R. Moreover, disruption of RGS functions by the use of GRK2D110A/K220R double mutant, although coimmunoprecipitating with the H2R, reversed GRK2K220R-mediated H2R desensitization. Overall, these results indicate that GRK2 induces desensitization of H2R through a phosphorylation-independent and RGS-dependent mechanism and extends the GRK2 RH domain-mediated regulation of GPCRs beyond Gα(q)-coupled receptors. On the other hand, GRK2 kinase activity proved to be necessary for receptor internalization and the resulting resensitization.
    Journal of Biological Chemistry 06/2011; 286(33):28697-706. DOI:10.1074/jbc.M111.269613 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Atrial natriuretic factor (ANF) prevents increases in intracellular levels of cAMP that are induced by secretin in the exocrine pancreas. We investigated the contribution of cyclic adenosine monophosphate (cAMP) efflux to ANF inhibition of secretin signaling. Intracellular and extracellular cAMP were measured by radio-binding assays in isolated pancreatic acini exposed to secretin and other secretagogues, alone or with ANF. Levels of messenger RNA for multidrug resistance-associated protein (MRP)4, MRP5, and MRP8 were measured by real-time polymerase chain reaction. MRP4 was knocked down in AR42J cells by small interfering RNA. In vivo studies were performed in rats. Pancreatic secretagogues increased levels of intracellular cAMP, but only secretin and vasoactive intestinal peptide promoted cAMP efflux; efflux was increased by ANF, through signaling via natriuretic peptide receptor-C and phospholipase C-protein kinase C. In time-course studies with active phosphodiesterases, levels of intracellular and extracellular cAMP increased earlier after the addition of secretin and ANF (1 min) than after the addition of secretin alone (3 min). Similar kinetic patterns occurred with a phosphodiesterase inhibitor. A probenecid-sensitive transporter mediated cAMP egression. The main cAMP transporter, MRP4, was expressed in AR42J cells and pancreas. cAMP egression occurred in AR42J cells exposed to secretin, but this response was reduced in cells that expressed MRP4 small interfering RNA. In rats, levels of cAMP in plasma and pancreatic juice increased after infusion with secretin alone or secretin plus ANF. ANF signals via natriuretic peptide receptor-C coupled to the phospholipase C-protein kinase C pathway to increase secretin-induced efflux of cAMP, probably through MPR-4. Cyclic AMP extrusion might be a mechanism, in addition to phosphodiesterase action, to regulate intracellular cAMP levels in pancreatic acinar cells.
    Gastroenterology 04/2011; 140(4):1292-302. DOI:10.1053/j.gastro.2010.12.053 · 13.93 Impact Factor

Publication Stats

774 Citations
251.44 Total Impact Points

Institutions

  • 1994–2015
    • University of Buenos Aires
      • • Faculty of Pharmacy and Biochemistry
      • • Laboratory of Receptor Pharmacology
      • • Pharmacology Department (FMED)
      • • Department of Physiology, Molecular and Cellular Biology
      • • Department of Medicine
      Buenos Aires, Buenos Aires F.D., Argentina
  • 2012
    • THE UNIVERSITY OF BAMENDA
      Bamenda, North-West Province, Cameroon
  • 2010
    • Instituto de Biología y Medicina Experimental
      Buenos Aires, Buenos Aires F.D., Argentina
  • 2007
    • IVI Buenos Aires
      Buenos Aires, Buenos Aires F.D., Argentina